Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Data Analysis
2.2. SNP Characterization, LD Decay Distance, and Population Structure
2.3. Genome-Wide Association Analysis for BLSB Resistance
2.4. Candidate Genes Revealed by GWAS
3. Discussion
3.1. The Feasibility of GWAS in this Experiment
3.2. Comparison of the Results of the Present Study with the Previous Results
3.3. Functional Annotation of Genes Identified through GWAS
4. Materials and Methods
4.1. Plant Materials and Population Construction
4.2. Disease Scoring and Calculation of Disease Index
4.3. Phenotyping and Statistical Analysis
4.4. DNA Extraction and Genotyping-by-Sequencing (GBS)
4.5. Linkage Disequilibrium (LD), Population Structure, and LD Block Analysis
4.6. Genome-Wide Association Study
4.7. Gene Predictive Analysis
4.8. Haplotype Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, H.; Yang, Z.; Song, S.; Xue, M.; Liang, G.; Li, N. Transcriptome analysis reveals genes potentially related to maize resistance to Rhizoctonia solani. Plant Physiol. Biochem. 2022, 193, 78–89. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, L.; Xia, H.; Yu, C.; Dou, K.; Li, Y.; Chen, J. Omics for understanding synergistic action of validamycin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen. Sci. Rep. 2017, 7, 40140. [Google Scholar] [CrossRef]
- Chen, B.; Han, H.; Hou, J.; Bao, F.; Tan, H.; Lou, X.; Wang, G.; Zhao, F. Control of Maize Sheath Blight and Elicit Induced Systemic Resistance Using Paenibacillus polymyxa Strain SF05. Microorganisms 2022, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Lin, R.; Zhang, D.; Qin, P.; Xu, L.; Ai, P.; Ding, L.; Wang, Y.; Chen, Y.; Liu, Y.; et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 2013, 4, 1424. [Google Scholar] [CrossRef] [PubMed]
- Chen, F. Occurrence and Control of Autumn Corn Sheath Blight. Plant Prot. Sci. 1986, 5, 27–28. [Google Scholar]
- Tan, S.F.; Jiang, C.Y. Investigation on loss rate of corn sheath blight in western Hubei mountainous area. Plant Prot. 1988, 14, 54. [Google Scholar]
- Wekesa, T.B.; Wafula, E.N.; Kavesu, N.; Sangura, R.M. Taxonomical, functional, and cytopathological characterization of Bacillus spp. from Lake Magadi, Kenya, against Rhizoctonia solani Kühn in Phaseolus vulgaris L. J. Basic Microbiol. 2023, 63, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Chang, Y.; Wang, Y.; Yang, J.; Nie, S.; Guo, N.; Xu, J.; Cai, F.; Zhao, C.; Fu, Y. Aspergillus sp. R3, a new producer for cyclopyazonic acid, inhibits rice sheath blight fungus Rhizoctonia solani Kühn. Physiol. Mol. Plant Pathol. 2023, 125, 102007. [Google Scholar] [CrossRef]
- Zhao, M.J.; Gao, S.B.; Zhang, Z.M.; Rong, T.Z.; Pan, G.T. Initial identification of quantitative trait loci controlling resistance to banded leaf and sheath blight at elongating and heading date in maize. Fen Zi XI Bao Sheng Wu Xue Bao 2006, 39, 139–144. [Google Scholar] [PubMed]
- Riedelsheimer, C.; Lisec, J.; Czedik-Eysenberg, A.; Sulpice, R.; Flis, A.; Grieder, C.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 8872–8877. [Google Scholar] [CrossRef]
- Mullins, N.; Kang, J.; Campos, A.I.; Coleman, J.; Edwards, A.C.; Galfalvy, H.; Levey, D.F.; Lori, A.; Shabalin, A.; Starnawska, A.; et al. Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biol. Psychiatry 2022, 91, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, H.; Ni, P.; Yu, S.; Dong, H.; Zhang, A.; Cao, H.; Zhang, L.; Ruan, Y.; Cui, Z. Genome-Wide Association Study Dissects the Genetic Architecture of Maize Husk Tightness. Front. Plant Sci. 2020, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.H.; Gouker, F.E.; Crowell, C.R.; Evans, L.; Difazio, S.P.; Smart, C.D.; Smart, L.B. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.). Ann. Bot. 2019, 124, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Mammadov, J.; Sun, X.; Gao, Y.; Ochsenfeld, C.; Bakker, E.; Ren, R.; Flora, J.; Wang, X.; Kumpatla, S.; Meyer, D.; et al. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genom. 2015, 16, 916. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lin, Z.; Li, X.; Zhao, Y.; Zhao, B.; Wu, G.; Ma, X.; Wang, H.; Xie, Y.; Li, Q.; et al. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 2020, 52, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liu, S.; Pei, Y.; Jiang, X.; Jaqueth, J.S.; Li, B.; Han, J.; Jeffers, D.; Wang, J.; Song, X. Identification of genetic loci associated with rough dwarf disease resistance in maize by integrating GWAS and linkage mapping. Plant Sci. 2022, 315, 111100. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, C.; Yang, D.; Lu, M.; Qian, Y.; Jin, F.; Liu, X.; Wang, Y.; Liu, W.; Li, X. Detection of QTNs for kernel moisture concentration and kernel dehydration rate before physiological maturity in maize using multi-locus GWAS. Sci. Rep. 2021, 11, 1764. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lin, B.; Wang, H.; Li, X.; Yang, F.; Ding, X.; Yan, J.; Chu, Z. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat. Genet. 2019, 51, 1540–1548. [Google Scholar] [CrossRef]
- Yi, G.; Shen, M.; Yuan, J.; Sun, C.; Duan, Z.; Qu, L.; Dou, T.; Ma, M.; Lu, J.; Guo, J.; et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genom. 2015, 16, 746. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, Z.; Li, W.; Qin, M.; Yang, P.; Hou, J.; Huang, F.; Lei, Z.; Wu, Z.; Wang, J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2022, 22, 229. [Google Scholar] [CrossRef]
- Li, H.; Peng, Z.; Yang, X.; Wang, W.; Fu, J.; Wang, J.; Han, Y.; Chai, Y.; Guo, T.; Yang, N.; et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 2013, 45, 43–50. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, M.; Yu, S.; Li, X.; Zhang, A.; Cui, Z.; Dong, X.; Fan, J.; Zhang, L.; Li, C.; et al. A Genome-Wide Association Study Dissects the Genetic Architecture of the Metaxylem Vessel Number in Maize Brace Roots. Front. Plant Sci. 2022, 13, 847234. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Chen, Z.H.; Ren, H.; Wang, A.Y.; Guo, X.Y. Breeding and Application of New Maize Variety Jinyu 506. Bull. Agric. Sci. Technol. 2014, 9, 176–178. [Google Scholar]
- Fei, J.F.; Sun, Z.; Wang, X.C. Breeding of new maize variety Zhongkeyu 505 and discussion on related commercial breeding problems. Chin. Agric. Sci. Bull. 2021, 37, 6–13. [Google Scholar]
- Du, S.K.; Wang, L.M.; Liu, C.B. Breeding and cultivation techniques of new maize variety Endan 801. Mod. Agric. Sci. Technol. 2015, 1, 72. [Google Scholar]
- Wu, A.; Li, J. A new sweet corn cultivar ‘Huawangtian 7’. Acta Hortic. Sin. 2018, 45, 809–810. [Google Scholar] [CrossRef]
- Pavani, P.; Singh, L.N.; Sinha, B.; Bathula, P. In-vitro Sensitivity Test of Native Trichoderma spp. against Growth of Rhizoctonia solani f.sp. sasakii Causing Banded Leaf and Sheath Blight of Maize in Manipur. Int. J. Environ. Clim. Chang. 2022, 12, 998–1002. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Wu, P.; Zhang, A.; Liu, Y.; Hu, G.; Cao, S.; Qu, J.; Dhliwayo, T.; Zheng, H.; et al. Genetic Dissection of Quantitative Resistance to Common Rust (Puccinia sorghi) in Tropical Maize (Zea mays L.) by Combined Genome-Wide Association Study, Linkage Mapping, and Genomic Prediction. Front. Plant Sci. 2021, 12, 692205. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasu, N.; Hossain, F.; Shiriga, K.; Mittal, S.; Arora, K.; Rathore, A.; Mohan, S.; Shah, T.; Sharma, R.; Namratha, P.M.; et al. Unraveling the genetic architecture of subtropical maize (Zea mays L.) lines to assess their utility in breeding programs. BMC Genom. 2013, 14, 877. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Y.; Shi, Y.; Song, Y.; Wang, T.; Huang, Y.; Li, Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor. Appl. Genet. 2014, 127, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Oreiro, E.G.; Grimares, E.K.; Atienza-Grande, G.; Quibod, I.L.; Roman-Reyna, V.; Oliva, R. Genome-Wide Associations and Transcriptional Profiling Reveal ROS Regulation as One Underlying Mechanism of Sheath Blight Resistance in Rice. Mol. Plant-Microbe Interact. 2020, 33, 212–222. [Google Scholar] [CrossRef]
- Gurung, S.; Mamidi, S.; Bonman, J.M.; Xiong, M.; Brown-Guedira, G.; Adhikari, T.B. Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 2014, 9, e108179. [Google Scholar] [CrossRef] [PubMed]
- Kump, K.L.; Bradbury, P.J.; Wisser, R.J.; Buckler, E.S.; Belcher, A.R.; Oropeza-Rosas, M.A.; Zwonitzer, J.C.; Kresovich, S.; Mcmullen, M.D.; Ware, D.; et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 2011, 43, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Tan, R.; Yuan, J.; Bales, C.; Du, W.; Zhang, S.; Chilvers, M.I.; Schmidt, C.; Song, Q.; Cregan, P.B.; et al. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genom. 2014, 15, 809. [Google Scholar] [CrossRef] [PubMed]
- Weigel, D. Natural variation in Arabidopsis: From molecular genetics to ecological genomics. Plant Physiol. 2012, 158, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Tung, C.W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S. Screening of Maize Sheath Blight Resistance Resources and Meta-Analysis of Resistance QTL. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2014. [Google Scholar]
- Yang, H. Studies on Identification and QTL Mapping andBreeding Utilization of Germplasm Resistant to Banded Leaf and Sheath Blight in Maize. Ph.D. Thesis, Sichuan Agricultural University, Chengdu, China, 2005. [Google Scholar]
- Lin, H.J.; Liu, C.L.; Shen, Y.O. QTL analysis of maize sheath blight resistance based on RIL population. J. Nucl. Agric. Sci. 2013, 27, 895–903. [Google Scholar]
- Chen, G.P.; Tan, H.; Zheng, D.B.; Yang, L.T. QTL mapping for sheath blight resistance in maize. Southwest China J. Agric. Sci. 2009, 22, 950–955. [Google Scholar] [CrossRef]
- Sneha Adhikari, A.J.A.K. Identification of QTL for Banded Leaf and Sheath Blight in Teosinte-Derived Maize Population. Springerlink 2022, 11, 155–163. [Google Scholar]
- Liu, C.L. QTL Mapping for the Resistance to Banded Leaf and Sheath Blight and Related Traits on The RIL Population. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2011. [Google Scholar]
- van der Biezen, E.A.; Jones, J.D. The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 1998, 8, R226–R227. [Google Scholar] [CrossRef] [PubMed]
- Jamann, T.M.; Balint-Kurti, P.J.; Holland, J.B. QTL mapping using high-throughput sequencing. Methods Mol. Biol. 2015, 1284, 257–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, M.C.; Mennie, A.K.; Pettus, J.M.; Xu, Y.; Lin, L.; Traxler, M.G.; Jakoubek, J.; Atanur, S.S.; Aitman, T.J.; et al. Systems biology with high-throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat. Circ. Cardiovasc. Genet. 2015, 8, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fan, G.; Zhang, X.; Zhao, F.; Wei, W.; Du, G.; Feng, X.; Wang, X.; Wang, F.; Song, G.; et al. Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing. G3-Genes Genomes Genet. 2017, 7, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, K.P.; Korup, K.; Andersen, M.N.; Sonderkaer, M.; Andersen, M.S.; Kirk, H.G.; Nielsen, K.L. Cytosolic glutamine synthetase is important for photosynthetic efficiency and water use efficiency in potato as revealed by high-throughput sequencing QTL analysis. Theor. Appl. Genet. 2015, 128, 2143–2153. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T.; Laible, G.; Dorn, R.; Reuter, G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci. 1998, 54, 80–93. [Google Scholar] [CrossRef]
- Rea, S.; Eisenhaber, F.; O’Carroll, D.; Strahl, B.D.; Sun, Z.W.; Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C.P.; Allis, C.D.; et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000, 406, 593–599. [Google Scholar] [CrossRef]
- Didelon, M.; Khafif, M.; Godiard, L.; Barbacci, A.; Raffaele, S. Patterns of Sequence and Expression Diversification Associate Members of the PADRE Gene Family with Response to Fungal Pathogens. Front. Genet. 2020, 11, 491. [Google Scholar] [CrossRef]
- Jain, B.P.; Pandey, S. WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions. Protein J. 2018, 37, 391–406. [Google Scholar] [CrossRef]
- Li, D.; Roberts, R. WD-repeat proteins: Structure characteristics, biological function, and their involvement in human diseases. Cell. Mol. Life Sci. 2001, 58, 2085–2097. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.F.; Gaitatzes, C.; Saxena, K.; Neer, E.J. The WD repeat: A common architecture for diverse functions. Trends Biochem.Sci. 1999, 24, 181–185. [Google Scholar] [CrossRef]
- Clout, N.J.; Tisi, D.; Hohenester, E. Novel fold revealed by the structure of a FAS1 domain pair from the insect cell adhesion molecule fasciclin I. Structure 2003, 11, 197–203. [Google Scholar] [CrossRef]
- Huber, O.; Sumper, M. Algal-CAMs: Isoforms of a cell adhesion molecule in embryos of the alga Volvox with homology to Drosophila fasciclin I. Embo J. 1994, 13, 4212–4222. [Google Scholar] [CrossRef]
- Ulstrup, J.C.; Jeansson, S.; Wiker, H.G.; Harboe, M. Relationship of secretion pattern and MPB70 homology with osteoblast-specific factor 2 to osteitis following Mycobacterium bovis BCG vaccination. Infect. Immun. 1995, 63, 672–675. [Google Scholar] [CrossRef]
- Coutu, D.L.; Wu, J.H.; Monette, A.; Rivard, G.E.; Blostein, M.D.; Galipeau, J. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J. Biol. Chem. 2008, 283, 17991–18001. [Google Scholar] [CrossRef]
- Faik, A.; Abouzouhair, J.; Sarhan, F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): Identification and bioinformatic analyses. Mol. Genet. Genomics 2006, 276, 478–494. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, S.J.; Lee, B.H.; Park, R.W.; Kim, K.S.; Kim, I.S. Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3. J. Biol. Chem. 2000, 275, 30907–30915. [Google Scholar] [CrossRef] [PubMed]
- Kzhyshkowska, J.; Gratchev, A.; Martens, J.H.; Pervushina, O.; Mamidi, S.; Johansson, S.; Schledzewski, K.; Hansen, B.; He, X.; Tang, J.; et al. Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors. J. Leukoc. Biol. 2004, 76, 1151–1161. [Google Scholar] [CrossRef]
- Matsumoto, S.; Matsuo, T.; Ohara, N.; Hotokezaka, H.; Naito, M.; Minami, J.; Yamada, T. Cloning and sequencing of a unique antigen MPT70 from Mycobacterium tuberculosis H37Rv and expression in BCG using E. coli-mycobacteria shuttle vector. Scand. J. Immunol. 1995, 41, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bi, Y.; Jiang, F.; Shaw, R.K.; Sun, J.; Hu, C.; Guo, R.; Fan, X. Mapping and Functional Analysis of QTL for Kernel Number per Row in Tropical and Temperate-Tropical Introgression Lines of Maize (Zea mays L.). Curr. Issues Mol. Biol. 2023, 45, 4416–4430. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.C.; Wang, X.M. Field Manual of Corn Pests and Diseases: Identification of Pests and Diseases and Identification of Resistance; China Agricultural Science and Technology Press: Beijing, China, 2002. [Google Scholar]
- Knapp, S.J.; Stroup, W.W.; Ross, W.M. Exact Confidence Intervals for Heritability on a Progeny Mean Basis1. Crop Sci. 1985, 25, 192–194. [Google Scholar] [CrossRef]
- Fisher, R.A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Stewart, C.J.; Via, L.E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 1993, 14, 748–750. [Google Scholar] [PubMed]
- Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guan, H.; Jing, X.; Li, Y.; Wang, B.; Li, Y.; Liu, X.; Zhang, D.; Liu, C.; Xie, X.; et al. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nat. Plants 2022, 8, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Peluso, P.; Shi, J.; Liang, T.; Stitzer, M.C.; Wang, B.; Campbell, M.S.; Stein, J.C.; Wei, X.; Chin, C.S.; et al. Improved maize reference genome with single-molecule technologies. Nature 2017, 546, 524–527. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Mussmann, S.M.; Douglas, M.R.; Chafin, T.K.; Douglas, M.E. ADMIXPIPE: Population analyses in ADMIXTURE for non-model organisms. BMC Bioinform. 2020, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.; Xu, J.; He, W.; Yang, T. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Strable, J.; Wallace, J.G.; Unger-Wallace, E.; Briggs, S.; Bradbury, P.J.; Buckler, E.S.; Vollbrecht, E. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture. Plant Cell 2017, 29, 1622–1641. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.H.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE 2017, 12, e184129. [Google Scholar] [CrossRef]
Populations (Sample Number.) | Env. | Range | Mean | SD | CV (%) | Skewness | Kurtosis | Variations | H2 (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
G | E | G*E | |||||||||
Pop2 (221) | JH 22 W | 1–9 | 5.59 | 1.922 | 0.34 | −0.518 | 0.713 | 0.93 | |||
YS 21 S | 1–9 | 5.25 | 2.073 | 0.39 | 0.163 | −0.061 | 3.42 * | 0.25 * | 0.3 * | ||
YS 22 S | 1–9 | 5.98 | 1.865 | 0.31 | −0.408 | 0.757 | |||||
Pop1 (221) | JH 22 W | 1–9 | 4.66 | 2.18 | 0.45 | −0.035 | −0.586 | ||||
YS 21 S | 1–9 | 3.62 | 2.252 | 0.46 | 0.661 | −0.133 | 4.14 * | 0.49 * | 0.118 * | 0.92 | |
YS 22 S | 1–9 | 4.58 | 2.226 | 0.48 | −0.04 | −0.638 |
Pop | df | Sum of Squares | F-Value | p | Error |
---|---|---|---|---|---|
Pop1 | 2 | 5.60 | 14.9 | 0.0227 * | 0.52 |
Pop2 | 2 | 4.12 | 7.98 | 0.056 | 0.38 |
No. | Chr | Physical Position | Threshold (−log10(p) = 4.5) | Allele | Environments |
---|---|---|---|---|---|
1 | 1 | 442415 | 4.62 | C/T | |
2 | 1 | 282946785 | 4.71 | G/A | |
3 | 2 | 239027952 | 4.51 | C/T | |
4 | 3 | 50067223 | 4.92 | A/G | |
5 | 4 | 63379553 | 4.90 | C/T | |
6 | 4 | 63306693 | 4.90 | T/A | |
7 | 5 | 147529611 | 4.69 | T/C | |
8 | 5 | 148963157 | 5.13 | C/T | |
9 | 5 | 147757336 | 4.66 | T/C | |
10 | 5 | 217509599 | 4.51 | C/T | |
11 | 6 | 42410465 | 4.52 | A/G | |
12 | 6 | 46848365 | 4.53 | C/T | |
13 | 8 | 70647932 | 4.78 | C/T | |
14 | 8 | 77905708 | 5.11 | C/T | |
15 | 8 | 93109610 | 5.53 | T/G | |
16 | 8 | 83921201 | 5.04 | C/T | |
17 | 10 | 144634116 | 4.81 | G/C | |
18 | 10 | 87410402 | 4.91 | C/T | |
19 | 10 | 84908655 | 5.62 | C/T |
Chr | Position | Gene ID | PVE | Protein | Function |
---|---|---|---|---|---|
1 | 442415 | Zm00001d027254 | 10.41% | Uncharacterized | unknown |
1 | 282946785 | Zm00001d034064 | 8.90% | PAT complex subunit Asterix | protein insertion into ER membrane |
2 | 239027952 | Zm00001d007758 | 4.45% | Overlapping homologous superfamilies | intracellular protein transport |
3 | 50067223 | Zm00001d040563 | 5.54% | Uncharacterized | |
4 | 63379553 | Zm00001d050063 | 2.48% | Zinc finger, RING-type | overlapping homologous superfamilies |
4 | 63306693 | Zm00001d050062 | 6.57% | Uncharacterized | unknown |
5 | 147529611 | Zm00001d016156 | 7.59% | 1,3-beta-glucan synthase component FKS1-like, domain-1 InterPro entry | putative callose synthase 8 |
5 | 148963157 | Zm00001d016183 | 5.15% | Coatomer, epsilon subunit | retrograde vesicle-mediated transport, Golgi to endoplasmic reticulum |
5 | 147757336 | Zm00001d016161 | 5.08% | CRIB domain | overlapping homologous superfamilies |
5 | 217509599 | Zm00001d018257 | 3.45% | unknown | unknown |
Zm00001d018258 | SANT/Myb domain | overlapping homologous superfamilies | |||
Zm00001d018259 | Ubiquitin-like protein Atg12 | autophagosome assembly | |||
Zm00001d018260 | Glutamine-Leucine-Glutamine, QLQ | regulation of DNA-templated transcription | |||
6 | 42410465 | Zm00001d035715 | 7.54% | Transposase, Tnp1/En/Spm-like | unknown |
6 | 46848365 | Zm00001d035769 | 3.40% | Chorismate mutase, AroQ class, eukaryotic type InterPro entry | aromatic amino acid family biosynthetic process |
8 | 70647932 | Zm00001d009566 | 5.31% | FAS1 domain | bacterial immunogenic protein MPT70 (1 FAS1 domain) |
Zm00001d009567 | FAS1 domain | bacterial immunogenic protein MPT70 (1 FAS1 domain) | |||
8 | 77905708 | Zm00001d009723 | 7.54% | SET domain | protein binding |
8 | 83921201 | Zm00001d009823 | 5.01% | Lateral organ boundaries, LOB | unknown |
8 | 93109610 | Zm00001d009975 | 11.71% | PADRE domain | this domain is associated with plant defense upon diverse stress stimulus and has a role in disease resistance to fungus |
10 | 144634116 | Zm00001d026376 | 4.14% | WD40 repeat | protein binding |
10 | 87410402 | Zm00001d024778 | 6.10% | Proteolipid membrane potential modulator | transmembrane transport |
10 | 84908655 | Zm00001d024717 | 10.81% | unknown | unknown |
Parent | Pedigree | Heterotic Group | Ecotype | Disease Scale |
---|---|---|---|---|
Ye107 | Derived from US hybrid DeKalb XL80 | Reid | Temperate | 9 |
CML444 | P43C9-1-1-1-1-1-BBBB-1-1-2-5-1(DH) | nonReid | Tropical | 3 |
NK40-1 | Derived from US hybrid | Reid | Tropical | 3 |
Scale | Reaction Category | Disease Index | Symptoms |
---|---|---|---|
0 | Immune (IM) | 0 | Symptom-free throughout the entire plant |
1 | Highly Resistant (HR) | 0.1~20.0 | Disease manifestation on the fourth leaf sheath below the ear and subsequent lower leaf sheaths |
3 | Resistant (R) | 20.1~40.0 | Disease manifestation on the third leaf sheath below the ear and subsequent lower leaf sheaths |
5 | Moderately Resistant (MR) | 40.1~60.0 | Disease manifestation on the second leaf sheath below the ear and subsequent lower leaf sheaths |
7 | Susceptible (S) | 60.1~80.0 | Disease manifestation on the first leaf sheath below the ear and subsequent lower leaf sheaths |
9 | Highly Susceptible (HS) | 80.1~100.0 | Disease symptoms manifest in the leaf sheaths above the ear. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Jiang, F.; Bi, Y.; Yin, X.; Li, L.; Zhang, X.; Li, J.; Liu, M.; Shaw, R.K.; Fan, X. Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance. Plants 2024, 13, 456. https://doi.org/10.3390/plants13030456
Li S, Jiang F, Bi Y, Yin X, Li L, Zhang X, Li J, Liu M, Shaw RK, Fan X. Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance. Plants. 2024; 13(3):456. https://doi.org/10.3390/plants13030456
Chicago/Turabian StyleLi, Shaoxiong, Fuyan Jiang, Yaqi Bi, Xingfu Yin, Linzhuo Li, Xingjie Zhang, Jinfeng Li, Meichen Liu, Ranjan K. Shaw, and Xingming Fan. 2024. "Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance" Plants 13, no. 3: 456. https://doi.org/10.3390/plants13030456
APA StyleLi, S., Jiang, F., Bi, Y., Yin, X., Li, L., Zhang, X., Li, J., Liu, M., Shaw, R. K., & Fan, X. (2024). Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance. Plants, 13(3), 456. https://doi.org/10.3390/plants13030456