Difference in Germination Traits between Congeneric Native and Exotic Species May Affect Invasion
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rejmánek, M.; Richardson, D.M.; Higgins, S.I.; Pitcairn, M.J.; Grotkopp, E. Ecology of invasive plants: State of the art. In Invasive Alien Species: A New Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Pyšek, P.; Richardson, D.M. The biogeography of naturalization in alien plants. J. Biogeogr. 2006, 33, 2040–2050. [Google Scholar] [CrossRef]
- Küster, E.C.; Kühn, I.; Bruelheide, H.; Klotz, S. Trait interactions help explain plant invasion success in the German flora. J. Ecol. 2008, 96, 860–868. [Google Scholar] [CrossRef]
- Grman, E.; Suding, K.N. Within-Year Soil Legacies Contribute to Strong Priority Effects of Exotics on Native California Grassland Communities. Restor. Ecol. 2010, 18, 664–670. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Pergl, J.; Randall, R.; Chytrý, M.; Kühn, I.; Tichý, L.; Danihelka, J.; Jun, J.C.; Sádlo, J. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 2009, 15, 891–903. [Google Scholar] [CrossRef]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Pearson, D.E.; Ortega, Y.K.; Eren, Ö.; Hierro, J.L. Community Assembly Theory as a Framework for Biological Invasions. Trends Ecol. Evol. 2018, 33, 313–325. Available online: https://www.sciencedirect.com/science/article/pii/S0169534718300533 (accessed on 30 July 2023). [CrossRef]
- Pyšek, P.; Manceur, A.M.; Alba, C.; McGregor, K.F.; Pergl, J.; Štajerová, K.; Chytrý, M.; Danihelka, J.; Kartesz, J.; Klimešová, J.; et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 2015, 96, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Gioria, M.; Carta, A.; Baskin, C.C.; Dawson, W.; Essl, F.; Kreft, H.; Pergl, J.; van Kleunen, M.; Weigelt, P.; Winter, M.; et al. Persistent soil seed banks promote naturalisation and invasiveness in flowering plants. Ecol. Lett. 2021, 24, 1655–1667. [Google Scholar] [CrossRef]
- Grubb, P.J. The Maintenance of Species-Richness in Plant Communities: The Importance of the Regeneration Niche. Biol. Rev. 1977, 52, 107–145. [Google Scholar] [CrossRef]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Koch, M.; Huthmann, M.; Bernhardt, K.-G. Cardamine amara L. (Brassicaceae) in dynamic habitats: Genetic composition and diversity of seed bank and established populations. Basic Appl. Ecol. 2003, 4, 339–348. Available online: https://www.sciencedirect.com/science/article/pii/S1439179104701280 (accessed on 30 July 2023). [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1977. [Google Scholar]
- Donohue, K.; Rubio De Casas, R.; Burghardt, L.; Kovach, K.; Willis, C.G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 293–319. [Google Scholar] [CrossRef]
- Donohue, K. Seeds and seasons: Interpreting germination timing in the field. Seed Sci. Res. 2005, 15, 175–187. [Google Scholar] [CrossRef]
- Donohue, K. Setting the Stage: Phenotypic Plasticity as Habitat Selection. Int. J. Plant Sci. 2003, 164, S79–S92. [Google Scholar] [CrossRef]
- Van Couwenberghe, R.; Gégout, J.C.; Lacombe, E.; Collet, C. Light and competition gradients fail to explain the coexistence of shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings. Ann. Bot. 2013, 112, 1421–1430. [Google Scholar] [CrossRef]
- Lu, J.J.; Tan, D.Y.; Baskin, C.C.; Baskin, J.M. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual. Sci. Rep. 2016, 6, 25076. [Google Scholar] [CrossRef]
- Leverett, L.D. Germination phenology determines the propensity for facilitation and competition. Ecology 2017, 98, 2437–2446. [Google Scholar] [CrossRef]
- Gentili, R.; Ambrosini, R.; Augustinus, B.A.; Caronni, S.; Cardarelli, E.; Montagnani, C.; Müller-Schärer, H.; Schaffner, U.; Citterio, S. High Phenotypic Plasticity in a Prominent Plant Invader along Altitudinal and Temperature Gradients. Plants 2021, 10, 2144. [Google Scholar] [CrossRef]
- Eyster, H.N.; Wolkovich, E.M. Comparisons in the native and introduced ranges reveal little evidence of climatic adaptation in germination traits. Clim. Chang. Ecol. 2021, 2, 100023. Available online: https://www.sciencedirect.com/science/article/pii/S266690052100023X (accessed on 30 July 2023). [CrossRef]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Cleland, E.E. Exotic species display greater germination plasticity and higher germination rates than native species across multiple cues. Biol. Invasions 2013, 15, 2253–2264. [Google Scholar] [CrossRef]
- Huebner, C.D. Chapter 18—Effects of global climate change on regeneration of invasive plant species from seeds. In Plant Regeneration from Seeds; Baskin, C.C., Baskin, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 243–257. Available online: https://www.sciencedirect.com/science/article/pii/B9780128237311000068 (accessed on 30 July 2023).
- Gioria, M.; Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 2017, 19, 1055–1080. [Google Scholar] [CrossRef]
- Muñoz, M.C.; Ackerman, J.D. Spatial distribution and performance of native and invasive Ardisia (Myrsinaceae) species in Puerto Rico: The anatomy of an invasion. Biol. Invasions 2011, 13, 1543–1558. [Google Scholar] [CrossRef]
- Beckmann, M.; Bruelheide, H.; Erfmeier, A. Germination responses of three grassland species differ between native and invasive origins. Ecol. Res. 2011, 26, 763–771. [Google Scholar] [CrossRef]
- Xu, X.; Wolfe, L.; Diez, J.; Zheng, Y.; Guo, H.; Hu, S. Differential germination strategies of native and introduced populations of the invasive species Plantago virginica. NeoBiota 2019, 43, 101–118. [Google Scholar] [CrossRef]
- Bouteiller, X.P.; Moret, F.; Ségura, R.; Klisz, M.; Martinik, A.; Monty, A.; Pino, J.; van Loo, M.; Wojda, T.; Porté, A.J.; et al. The seeds of invasion: Enhanced germination in invasive European populations of black locust (Robinia pseudoacacia L.) compared to native American populations. Plant Biol. 2021, 23, 1006–1017. [Google Scholar] [CrossRef]
- Forbis, T.A. Germination phenology of some Great Basin native annual forb species. Plant Species Biol. 2010, 25, 221–230. [Google Scholar] [CrossRef]
- Gioria, M.; Osborne, B.A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 2014, 5, 501. [Google Scholar] [CrossRef]
- Pucheta, E.; García-Muro, V.J.; Rolhauser, A.G.; Quevedo-Robledo, L. Invasive potential of the winter grass Schismus barbatus during the winter season of a predominantly summer-rainfall desert in Central-Northern Monte. J. Arid. Environ. 2011, 75, 390–393. [Google Scholar] [CrossRef]
- Winn, A.A.; Miller, T.E. Effect of density on magnitude of directional selection on seed mass and emergence time in Plantago wrightiana Dcne. (Plantaginaceae). Oecologia 1995, 103, 365–370. [Google Scholar] [CrossRef]
- Brändle, M.; Stadler, J.; Klotz, S.; Brandl, R. Distributional range size of weedy plant species is correlated to germination patterns. Ecology 2003, 84, 136–144. [Google Scholar] [CrossRef]
- Venable, D.L. Bet hedging in a guild of desert annuals. Ecology 2007, 88, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Flora of North America Editorial Committee. Flora of North America North of Mexico, Eragrostis Mexicana. Available online: http://floranorthamerica.org/Eragrostis_mexicana (accessed on 30 July 2023).
- Calderón, G.; Rzedowski, J. Flora fanerogámica del Valle de México; Instituto de Ecología: Coyoacán, Mexico, 2001. [Google Scholar]
- Jung, M.J.; Veldkamp, J.F.; Kuoh, C.S. Notes on Eragrostis wolf (Poaceae) for the flora of Taiwan. Taiwania 2008, 53, 96–102. [Google Scholar]
- POWO. Botanic Gardens, Kew. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. E. tenuifolia. 2023. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:1064189-2#other-data (accessed on 11 December 2023).
- Ackerman, B.A.; Manrique, F.E.; Jaramillo, L.V.; Guerrero, S.P.; Miranda, S.J.A.; INúñez, T.I. Las Gramíneas de México, Tomo II. México, D.F.: Secretaría de Agricultura y Recursos Hidráulicos; Comisión Técnico Consultiva de Coeficientes de Agostadero: Tlalpan, Mexico, 1987.
- Njuguna, J.G.M.; Gordon, D.T.; Louie, R. Wild grass hosts of maize streak virus and its Cicadulina leafhopper vectors in Kenya. In Proceedings of the Eastern and Southern Africa Regional Maize Conference, Arusha, Tanzania, 3–7 June 1996; CIMMYT: El Batan, Mexico, 1997. [Google Scholar]
- Sanchez-Muñoz, A.d.J. Invasive Lehmann Lovegrass (Eragrostis lehmanniana) in Chihuahua, Mexico: Consequences of Invasion. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2009. [Google Scholar]
- Bittencourt, H.v.H.; Bonome, L.T.d.S.; Pagnoncelli, F.d.B.; Lana, M.A.; Trezzi, M.M. Seed germination and emergence of Eragrostis tenuifolia (A. Rich.) Hochst. ex Steud. in response to environmental factors. J. Plant. Prot. Res. 2016, 56, 32–38. [Google Scholar] [CrossRef]
- Goulart, I.C.G.R.; Merotto Junior, A.; Perez, N.B.; Kalsing, A. Controle de capim-annoni-2 (Eragrostis plana) com herbicidas pré-emergentes em associação com diferentes métodos de manejo do campo nativo. Planta Daninha 2009, 27, 181–190. [Google Scholar] [CrossRef]
- Fournier, A.; Penone, C.; Pennino, M.G.; Courchamp, F. Predicting future invaders and future invasions. Proc. Natl. Acad. Sci. USA 2019, 116, 7905–7910. [Google Scholar] [CrossRef]
- Csontos, P. Seed banks: Ecological definitions and sampling considerations. Community Ecol. 2007, 8, 75–85. [Google Scholar] [CrossRef]
- Iglesias-Fernández, R.; del Carmen Rodríguez-Gacio, M.; Matilla, A.J. Progress in research on dry afterripening. Seed Sci. Res. 2011, 21, 69–80. Available online: https://www.cambridge.org/core/article/progress-in-research-on-dry-afterripening/625592962A4C54D0D21520C13BA6A9E6 (accessed on 30 July 2023). [CrossRef]
- Gioria, M.; Hulme, P.E.; Richardson, D.M.; Pyšek, P. Why Are Invasive Plants Successful? Annu. Rev. Plant Biol. 2023, 74, 635–670. [Google Scholar] [CrossRef]
- Chrobock, T.; Kempel, A.; Fischer, M.; van Kleunen, M. Introduction bias: Cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. Basic Appl. Ecol. 2011, 12, 244–250. [Google Scholar] [CrossRef]
- Goergen, E.; Daehler, C.C. Reproductive Ecology of a Native Hawaiian Grass (Heteropogon contortus; Poaceae) versus Its Invasive Alien Competitor (Pennisetum setaceum; Poaceae). Int. J. Plant Sci. 2001, 162, 317–326. [Google Scholar] [CrossRef]
- Callaway, J.C.; Josselyn, M.N. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries 1992, 15, 218–226. [Google Scholar] [CrossRef]
- Díaz-Segura, O.; Golubov, J.; Mandujano, M.C.; Zavala-Hurtado, J.A. Reproductive characteristics that favor invasiveness in Leonotis nepetifolia (L.) R. Br. Plant Species Biol. 2020, 35, 270–282. [Google Scholar] [CrossRef]
- Navarrete-Sauza, E.; Rojas-Arechiga, M. Germination of the exotic Calotropis procera (Aiton) W.T. (Apocynaceae) in Mexico. Bot. Sci. 2023, 101, 854–864. [Google Scholar] [CrossRef]
- Hsu, H.M.; Kao, W.Y. Vegetative and reproductive growth of an invasive weed Bidens pilosa L. var. radiata and its noninvasive congener Bidens bipinnata in Taiwan. Taiwania 2014, 59, 119–126. [Google Scholar]
- Dyer, A.R.; Fenech, A.; Rice, K.J. Accelerated seedling emergence in interspecific competitive neighbourhoods. Ecol. Lett. 2000, 3, 523–529. [Google Scholar] [CrossRef]
- Porceddu, M.; Pritchard, H.W.; Mattana, E.; Bacchetta, G. Differential Interpretation of Mountain Temperatures by Endospermic Seeds of Three Endemic Species Impacts the Timing of In Situ Germination. Plants 2020, 9, 1382. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Cardina, J. Germination patterns and implications for invasiveness in three Taraxacum (Asteraceae) species. Weed Res. 2012, 52, 112–121. [Google Scholar] [CrossRef]
- Rzedowski, J.; Calderon de Rzedowski, G. Sinopsis numérica de la flora fanerogámica del Valle de México. Acta Bot. Mex. 1989, 8, 15–30. [Google Scholar] [CrossRef]
- Villaseñor, J.L.; Espinosa-Garcia, F.J. The alien flowering plants of Mexico. Divers Distrib. 2004, 10, 113–123. [Google Scholar] [CrossRef]
- Naturalista. Naturalista. 2023. Available online: https://www.naturalista.mx/ (accessed on 30 July 2023).
- Royal Botanical Garden. Royal Botanical Garden. 2023. Available online: https://powo.science.kew.org/ (accessed on 30 July 2023).
- Van Kleunen, M.; Johnson, S.D. South African Iridaceae with rapid and profuse seedling emergence are more likely to become naturalized in other regions. J. Ecol. 2007, 95, 674–681. [Google Scholar] [CrossRef]
- Vibrans. Haike. Malezas de México. Ficha Eragrostis tenuifolia (A. Rich.) Hochst. ex Steud. 2010. Available online: http://www.conabio.gob.mx/malezasdemexico/poaceae/eragrostis-tenuifolia/fichas/ficha.htm (accessed on 30 July 2023).
- Lozano-Isla, F.; Benites-Alfaro, O.E.; Pompelli, M.F. GerminaR: An R package for germination analysis with the interactive web application “GerminaQuant for R”. Ecol. Res. 2019, 34, 339–346. [Google Scholar] [CrossRef]
- Ranal, M.A.; de Santana, D.G. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salomé-Díaz, J.; Golubov, J.; Eguiarte, L.E.; Búrquez, A. Difference in Germination Traits between Congeneric Native and Exotic Species May Affect Invasion. Plants 2024, 13, 478. https://doi.org/10.3390/plants13040478
Salomé-Díaz J, Golubov J, Eguiarte LE, Búrquez A. Difference in Germination Traits between Congeneric Native and Exotic Species May Affect Invasion. Plants. 2024; 13(4):478. https://doi.org/10.3390/plants13040478
Chicago/Turabian StyleSalomé-Díaz, Julieta, Jordan Golubov, Luis E. Eguiarte, and Alberto Búrquez. 2024. "Difference in Germination Traits between Congeneric Native and Exotic Species May Affect Invasion" Plants 13, no. 4: 478. https://doi.org/10.3390/plants13040478
APA StyleSalomé-Díaz, J., Golubov, J., Eguiarte, L. E., & Búrquez, A. (2024). Difference in Germination Traits between Congeneric Native and Exotic Species May Affect Invasion. Plants, 13(4), 478. https://doi.org/10.3390/plants13040478