Antioxidant Activity and Seasonal Variations in the Composition of Insoluble Fiber from the Cladodes of Opuntia ficus-indica (L.) Miller: Development of New Extraction Procedures to Improve Fiber Yield
Abstract
:1. Introduction
- (a)
- To compare the IF extracted from the cladodes of O. ficus-indica belonging to the same plant but collected in different seasonal periods (IF from CW and CS: IF-CW and IF-CS, respectively); in this respect, new extraction protocols that are able to improve the yield of the fiber were developed.
- (b)
- To evaluate the antioxidant potential of the fiber and study possible variations as a result of the extraction protocol chosen.
2. Results
2.1. Method of Fiber Extraction from O. ficus-indica Cladodes
2.2. Yield of Cladode Fiber Extraction
(1) Yield IF-CW = (26 g/412 g) × 100 = 6.31% ± 1.3%.
(2) Yeld IF-CS = (53 g/419 g) × 100 = 12.64% ± 2.1%.
2.3. Improvement of the IF Extraction Protocol
2.4. Antioxidant In Vitro Activity of IF Extracted from O. ficus-indica
2.5. The Activity of Primary Antioxidant Enzymes using Protocols Modified Compared to the Original Protocols
2.6. DPPH Free Radical Scavenging Activity
2.7. Total Polyphenol Content
2.8. Effects of IF-CW and IF-CS on Cell Proliferation
3. Materials and Methods
3.1. Plant Materials and Sample Preparation
3.2. Fiber Extraction Protocol
3.3. Extraction Yield
3.4. Oxygen Radical Absorption Capacity (ORAC) Assay
AUC = 1 + Σ f1/f0
i = 1
3.5. Cell Cultures
3.6. Measurement of ROS in Cells
3.7. Measurement of Cell Proliferation through the MTT Test
3.8. Catalase, Superoxide Dismutase, and Glutathione Peroxidase Activities
3.9. Antioxidant Activity through the DPPH Assay
3.10. Measurement of Total Polyphenols through the Folin–Ciocalteu Assay
4. Discussion
5. Conclusions
- (1)
- Cladodes are a source of fiber;
- (2)
- There are characteristics of the fiber extraction protocol that, if modified, may increase the fiber yield;
- (3)
- IF obtained from modified extraction protocols increases the antioxidant potential and reduces cellular oxidative damage.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Mostafa, K.; Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; Kebbaj, M.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health, and disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef]
- Pimienta-Barrios, E. Prickly pear (Opuntia spp.): A valuable fruit crop for the semiarid land of Mexico. J. Arid. Environ. 1994, 28, 1–11. [Google Scholar] [CrossRef]
- Piga, A. Cactus Pear: A fruit of nutraceutical and functional importance. J. Prof. Assoc. Cactus Dev. 2004, 6, 9–22. [Google Scholar]
- Aragona, M.; Lauriano, E.R.; Pergolizzi, S.; Faggio, C. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition. Nat. Prod. Res. 2018, 32, 2037–2049. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Baldino, N.; Ceramella, J.; Iacopetta, D.; Scali, E.; Basile, G.; Saturnino, C.; Catalano, A. Opuntia ficus indica (L.) Mill. An Ancient Plant Source of Nutraceuticals. Curr. Top. Med. Chem. 2022, 22, 1736–1749. [Google Scholar] [CrossRef]
- Perucini-Avendaño, M.; Nicolás-García, M.; Jiménez-Martínez, C.; Perea-Flores, M.J.; Gómez-Patiño, M.B.; Arrieta-Báez, D.; Dávila-Ortiz, G. Cladodes: Chemical and structural properties, biological activity, and polyphenols profile. Food Sci. Nutr. 2021, 9, 4007–4017. [Google Scholar] [CrossRef]
- Brulfert, J.; Kluge, M.; Guerrier, D.; Queiroz, O. Characterization of carbon metabolism in Opuntia ficus-indica Mill. exhibiting the idling mode of Crassulacean acid metabolism. Planta 1987, 170, 92–98. [Google Scholar] [PubMed]
- Ammar, I.; BenAmira, A.; Khemakem, I.; Attia, H.; Ennouri, M. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil. J. Food Sci. Technol. 2017, 54, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Benramdane, E.; Chougui, N.; Ramos, P.A.B.; Makhloufi, N.; Tamendjari, A.; Silvestre, A.J.D.; Santos, S.A.O. Lipophilic Compounds and Antibacterial Activity of Opuntia ficus indica Root Extracts from Algeria. Int. J. Mol. Sci. 2022, 23, 11161. [Google Scholar] [CrossRef] [PubMed]
- Méndez, L.P.; Flores, F.T.; Martín, J.D.; Rodríguez, E.M.R.; Romero, C.D. Physicochemical characterization of cactus pads from Opuntia dillenii and Opuntia ficus indica. Food Chem. 2015, 188, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Chiteva, R.; Wairagu, N. Chemical and nutritional content of Opuntia ficus-indica (L.). Afr. J. Biotechnol. 2013, 12, 3309–3312. [Google Scholar]
- El-Beltagi, H.S.; Mohamed, H.I.; Elemlegy, A.A.; Eldesoky, S.E.; Safwat, G. Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia ficus indica) pulp and peel. Fresenius Environ. Bull. 2019, 28, 1534–1551. [Google Scholar]
- Rykaczewski, K.; Jordan, J.S.; Linder, R.; Woods, E.T.; Sun, X.; Kemme, N.; Manning, K.C.; Cherry, B.R.; Yarger, J.L.; Majure, L.C. Microscale Mechanism of Age Dependent Wetting Properties of Prickly Pear Cacti (Opuntia). Langmuir 2016, 32, 9335–9341. [Google Scholar] [CrossRef]
- Belbahloul Mounir, B.; Younes, E.; Asmaa, M.; Abdeljalil, Z.; Abdellah, A. Physico-chemical changes in cladodes of Opuntia ficus-indica as a function of the growth stage and harvesting areas. J. Plant Physiol. 2020, 251, 15319. [Google Scholar]
- Nuñez-López, M.A.; Paredes-López, O.; Reynoso-Camacho, R. Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. J. Agric. Food Chem. 2013, 61, 10981–10986. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, S.; Martínez-Flores, H.E.; Chávez-Moreno, C.K.; Macías-Rodríguez, L.I.; Zavala-Mendoza, E.; Garnica-Romo, M.G.; Chacón-García, L. Extraction and characterization of mucilage from wild species of Opuntia. J. Food Process Eng. 2014, 37, 285–292. [Google Scholar] [CrossRef]
- Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Paredes-López, O.; Mondragón-Jacobo, C.; Reynoso-Camacho, R. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int. J. Food Prop. 2018, 21, 1728–1742. [Google Scholar] [CrossRef]
- López-Romero, P.; Pichardo-Ontiveros, E.; Avila-Nava, A.; Vázquez-Manjarrez, N.; Tovar, A.R.; Pedraza-Chaverri, J.; Torres, N. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J. Acad. Nutr. Diet. 2014, 114, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Fanaras, J.C. How much separation for LC–MS/MS quantitative bioanalysis of drugs and metabolites? J. Chromatogr. B 2018, 1084, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Avila-Nava, A.; Calderón-Oliver, M.; Medina-Campos, O.N.; Zou, T.; Gu, L.; Torres, N.; Tovar, A.R.; Pedraza-Chaverri, J. Extract of cactus (Opuntia ficus indica) cladodes scavenges reactive oxygen spe- cies in vitro and enhances plasma antioxidant capacity in humans. J. Funct. Foods 2014, 10, 13–24. [Google Scholar] [CrossRef]
- Petruk, G.; Di Lorenzo, F.; Imbimbo, P.; Silipo, A.; Bonina, A.; Rizza, L.; Piccoli, R.; Monti, D.M.; Lanzetta, R. Protective effect of Opuntia ficus-indica L. cladodes against UVA-induced oxidative stress in normal human keratinocytes. Bioorg Med. Chem. Lett. 2017, 27, 5485–5489. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, A.; De Wit, M.; Osthoff, G.; Hugo, A. Antioxidant properties of fresh and processed cactus pear cladodes from selected Opuntia ficus-indica and O. robusta cultivars. South Afr. J. Bot. 2018, 118, 44–51. [Google Scholar] [CrossRef]
- Abbas, E.Y.; Ezzat, M.I.; El Hefnawy, H.M.; Abdel-Sattar, E. An overview and update on the chemical composition and potential health benefits of Opuntia ficus-indica (L.) Miller. J. Food Biochem. 2022, 46, e14310. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Vieira, É.; Alves Alcântara, M.; Albuquerque Dos Santos, N.; Duarte Gondim, A.; Iacomini, M.; Mellinger, C.; Tribuzy de Magalhães Cordeiro, A.M. Mucilages of cacti from Brazilian biodiversity: Extraction, physicochemical and technological properties. Food Chem. 2021, 346, 128892. [Google Scholar] [CrossRef] [PubMed]
- Dick, M.; Dal Magro, L.; Rodrigues, R.C.; Rios, A.O.; Flôres, S.H. Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance. Int. J. Biol. Macromol. 2019, 123, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, H.; Shao, S.; Zhao, L.; Zhang, R.; Zhang, S. Anthocyanins from Opuntia ficus-indica Modulate Gut Microbiota Composition and Improve Short-Chain Fatty Acid Production. Biology 2022, 11, 1505. [Google Scholar] [CrossRef] [PubMed]
- Akanni, G.B.; du Preez, J.C.; Steyn, L.; and Kilian, S.G. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus. J. Sci. Food Agric. 2015, 95, 1094–1102. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Habib, M.M.; Alaizari, A.A.; Malik, J.A.; Al-Ali, A.M.; Al-Qarawi, A.A.; Alwahibi, M.S. Promising Application of Automated Liquid Culture System and Arbuscular Mycorrhizal Fungi for Large-Scale Micropropagation of Red Dragon Fruit. Plants 2023, 12, 1037. [Google Scholar] [CrossRef]
- Hernandez-Becerra, E.; Mendoza-Avila, M.; Jiménez-Mendoza, D.; Gutierrez-Cortez, E.; Rodríguez-García, M.E.; Rojas-Molina, I. Effect of Nopal (Opuntia ficus indica) Consumption at Different Maturity Stages as an Only Calcium Source on Bone Mineral Metabolism in Growing Rats. Biol. Trace Elem. Res. 2020, 194, 168–176. [Google Scholar] [CrossRef]
- Peña-Valdivia, C.B.; Trejoa, C.; Arroyo-Peña, V.B.; Sanchez Urdanetac, A.B.; Morales, R.B. Diversity of Unavailable Polysaccharides and Dietary Fiber in Domesticated Nopalito and Cactus Pear Fruit (Opuntia spp.). Chem. Biodivers. 2012, 9, 1599–1610. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef]
- Rodrigues, C.; de Paula, C.D.; Lahbouki, S.; Meddich, A.; Outzourhit, A.; Rashad, M.; Pari, L.; Coelhoso, I.; Fernando, A.L.; Souza, V.G.L. Opuntia spp.: An Overview of the Bioactive Profile and Food Applications of This Versatile Crop Adapted to Arid Lands. Foods 2023, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; DeVries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Okuma, K. Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J. AOAC Int. 2012, 95, 824–844. [Google Scholar] [CrossRef] [PubMed]
- Song, R.J.; Pu, F.P.; Zhou, J.; Sun, J.B.; Zeng, P.; Zhang, Q. Three-phase hollow fiber liquid-phase microextraction based on a magnetofluid for the analysis of aristolochic acids in plasma by high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.E.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fiber. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- Legentil, A.; Guichard, I.; Piffaut, B.; Haluk, J.P. Characterization of strawberry pectin extracted by chemical means. LWT Food Sci. Technol. 1995, 28, 569–576. [Google Scholar] [CrossRef]
- Sun, X.F.; Xu, F.; Sun, R.C.; Wang, Y.X.; Fowler, P.; Baird, M.S. Characteristics of degraded lignins obtained from steam-exploded wheat straw. Polym. Degrad. Stab. 2004, 86, 245–256. [Google Scholar] [CrossRef]
- Cheikh Rouhou, M.; Abdelmoumen, S.; Thomas, S.; Attia, H.; Ghorbel, D. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies. Int. J. Biol. Macromol. 2018, 116, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Roy, M.K.; Koide, M.; Rao, T.P.; Okubo, T.; Ogasawara, Y.; Juneja, L.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J. Food Sci. Nutr. 2010, 61, 109–124. [Google Scholar] [CrossRef]
- Del Prete, C.; Stout, T.; Montagnaro, S.; Pagnini, U.; Uccello, M.; Florio, P.; Ciani, F.; Tafuri, S.; Palumbo, V.; Pasolini, M.P.; et al. Combined addition of superoxide dismutase, catalase and glutathione peroxidase improves quality of cooled stored stallion semen. Anim. Reprod. Sci. 2019, 210, 106195. [Google Scholar] [CrossRef]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Shembe, P.S.; Ngobese, N.Z.; Siwela, M.; Kolanisi, U. The potential repositioning of South African underutilised plants for food and nutrition security: A scoping review. Heliyon 2023, 9, e17232. [Google Scholar] [CrossRef]
- Muzaffar, H.; Metcalfe, J.J.; Fiese, B. Narrative Review of Culinary Interventions with Children in Schools to Promote Healthy Eating: Directions for Future Research and Practice. Curr. Dev. Nutr. 2018, 2, nzy016. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef]
- Tesoriere, L.; Butera, D.; Pintaudi, A.M.; Allegra, M.; Livrea, M.A. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: A comparative study with vitamin C. Am. J. Clin. Nutr. 2004, 80, 391–395. [Google Scholar] [CrossRef]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Morsel, J.-T. Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 2003, 82, 339–345. [Google Scholar] [CrossRef]
- Medina, E.M.; Rodriguez, E.M.; Diaz Romero, C. Chemical characterization of Opuntia dillenii and Opuntia ficus-indica fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- Maiuolo, J.; Musolino, V.; Gliozzi, M.; Carresi, C.; Scarano, F.; Nucera, S.; Scicchitano, M.; Oppedisano, F.; Bosc, F.; Macri, R.; et al. Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients 2022, 29, 2711. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Bosco, F.; Guarnieri, L.; Nucera, S.; Ruga, S.; Oppedisano, F.; Tucci, L.; Muscoli, C.; Palma, E.; Giuffrè, A.M.; et al. Protective Role of an Extract Waste Product from Citrus bergamia in an In Vitro Model of Neurodegeneration. Plants 2023, 12, 2126. [Google Scholar] [CrossRef]
- Mollace, R.; Macrì, R.; Nicita, M.; Musolino, V.; Gliozzi, M.; Carresi, C.; Bava, I.; Maiuolo, J.; Tavernese, A.; Cardamone, A.; et al. Bergamot Polyphenolic Extract Combined with Albedo and Pulp Fibres Counteracts Changes in Gut Microbiota Associated with High-Fat Diet: Implications for Lipoprotein Size Re-Arrangement. Int. J. Mol. Sci. 2023, 24, 12967. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Padilla-Camberos, E.; Flores-Fernández, J.M.; Fernandez-Flores, O.; Gutierrez-Mercado, Y.; Carmona-de la Luz, J.; Sandoval-Salas, F.; Mendez-Carreto, C.; Allen, K. Hypocholesterolemic effect and in vitro pancreatic lipase inhibitory activity of an Opuntia ficus-indica extract. BioMed Res. Int. 2015, 2015, 837452. [Google Scholar] [CrossRef] [PubMed]
- Clarisse, D.; Pelotier, B.; Piva, O.; Fache, F. Green chemistry: Solvent- and metal-free Prins cyclization. Application to sequential reactions. Chem. Commun. 2012, 48, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, S.; Paonessa, R.; Costanzo, P.; Salerno, R.; Maiuolo, J.; Nardi, M.; Procopio, A.; Manuela, O. Peracetylation as a strategy to improve oleuropein stability and its affinity to fatty foods. Food Funct. 2018, 9, 5759–5767. [Google Scholar] [CrossRef] [PubMed]
- Nardi, M.; Bonacci, S.; De Luca, G.; Maiuolo, J.; Oliverio, M.; Sindona, G.; Procopio, A. Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate]. Food Chem. 2014, 162, 89–93. [Google Scholar] [CrossRef]
- Rebeira, S.P.; Prasantha, B.D.R.; Jayatilake, D.V.; Dunuwila, G.R.; Piyasiri, C.H.; Herath, H.M.K.W.P. A comparative study of dietary fiber content, In vitro starch digestibility and cooking quality characteristics of pigmented and non-pigmented traditional and improved rice (Oryza sativa L.). Food Res. Int. 2022, 157, 111389. [Google Scholar] [CrossRef]
- Gioxari, A.; Amerikanou, C.; Nestoridi, I.; Gourgari, E.; Pratsinis, H.; Kalogeropoulos, N.; Andrikopoulos, N.K.; Kaliora, A.C. Carob: A Sustainable Opportunity for Metabolic Health. Foods 2022, 11, 2154. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.M.; Frelka, J.C.; Heldman, D.R. Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models. J. Food Sci. 2017, 82, 6–15. [Google Scholar] [CrossRef]
- Chougui, N.; Louaileche, H.; Mohedeb, S.; Mouloudj, Y.; Hammoui, Y.; Tamendjari, A. Physico-chemical characterisation and antioxidant activity of some Opuntia ficus-indica varieties grown in North Algeria. Afr. J. Biotechnol. 2013, 12, 299–307. [Google Scholar] [CrossRef]
- Zupančič, Š.; Lavrič, Z.; Krist, J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur. J. Pharm. Biopharm. 2015, 93, 196–204. [Google Scholar] [CrossRef]
- Qi, L.; Shi, Y.; Terzaghi, W.; Yang, S.; Li, J. Integration of light and temperature signaling pathways in plants. J. Integr. Plant Biol. 2022, 64, 393–411. [Google Scholar] [CrossRef]
- Du Toit, A.; de Wit, M.; Hugo, A. Cultivar and Harvest Month Influence the Nutrient Content of Opuntia spp. Cactus Pear Cladode Mucilage Extracts. Molecules 2018, 23, 916. [Google Scholar] [CrossRef]
- Gori, A.; Boucherle, B.; Rey, A.; Rome, M.; Fuzzati, N.; Peuchmaur, M. Development of an innovative maceration technique to optimize extraction and phase partition of natural products. Fitoterapia 2021, 148, 104798. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.M.; Basak, A. Human catalase: Looking for complete identity. Protein Cell 2010, 1, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway. Oxid. Med. Cell Longev. 2019, 2019, 7591840. [Google Scholar] [CrossRef] [PubMed]
ORIGINAL PROTOCOL | Temperature of the Solvent | Time of Maceration | Stirring Speed during Maceration |
---|---|---|---|
60 °C | 3 h | 120 rpm |
Temperature of the Solvent | Time of Maceration | Stirring Speed during Maceration | |
---|---|---|---|
Method 1: | 70–180 °C | 3 h | 120 rpm |
Method 2: | 60 °C | 4–8 h | 120 rpm |
Method 3: | 60 °C | 3 h | 130–250 rpm |
MODIFIED PROTOCOL | Temperature of the Solvent | Time of Maceration | Stirring Speed during Maceration |
---|---|---|---|
120 °C | 6 h | 120 rpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caminiti, R.; Serra, M.; Nucera, S.; Ruga, S.; Oppedisano, F.; Scarano, F.; Macrì, R.; Muscoli, C.; Palma, E.; Musolino, V.; et al. Antioxidant Activity and Seasonal Variations in the Composition of Insoluble Fiber from the Cladodes of Opuntia ficus-indica (L.) Miller: Development of New Extraction Procedures to Improve Fiber Yield. Plants 2024, 13, 544. https://doi.org/10.3390/plants13040544
Caminiti R, Serra M, Nucera S, Ruga S, Oppedisano F, Scarano F, Macrì R, Muscoli C, Palma E, Musolino V, et al. Antioxidant Activity and Seasonal Variations in the Composition of Insoluble Fiber from the Cladodes of Opuntia ficus-indica (L.) Miller: Development of New Extraction Procedures to Improve Fiber Yield. Plants. 2024; 13(4):544. https://doi.org/10.3390/plants13040544
Chicago/Turabian StyleCaminiti, Rosamaria, Maria Serra, Saverio Nucera, Stefano Ruga, Francesca Oppedisano, Federica Scarano, Roberta Macrì, Carolina Muscoli, Ernesto Palma, Vincenzo Musolino, and et al. 2024. "Antioxidant Activity and Seasonal Variations in the Composition of Insoluble Fiber from the Cladodes of Opuntia ficus-indica (L.) Miller: Development of New Extraction Procedures to Improve Fiber Yield" Plants 13, no. 4: 544. https://doi.org/10.3390/plants13040544
APA StyleCaminiti, R., Serra, M., Nucera, S., Ruga, S., Oppedisano, F., Scarano, F., Macrì, R., Muscoli, C., Palma, E., Musolino, V., Statti, G., Mollace, V., & Maiuolo, J. (2024). Antioxidant Activity and Seasonal Variations in the Composition of Insoluble Fiber from the Cladodes of Opuntia ficus-indica (L.) Miller: Development of New Extraction Procedures to Improve Fiber Yield. Plants, 13(4), 544. https://doi.org/10.3390/plants13040544