Rapid Visual Detection of Peronophythora litchii on Lychees Using Recombinase Polymerase Amplification Combined with Lateral Flow Assay Based on the Unique Target Gene Pl_101565
Abstract
:1. Introduction
2. Results
2.1. Bioinformatical Characterizations of the Specific Target Gene Pl_101565 from P. litchii
2.2. Establishment of the RPA-LF Assay for P. litchii Based on the Pl_101565 Gene
2.3. Optimal Conditions for the RPA-LF Assay
2.4. Specificity of the RPA-LF Assay
2.5. Detection Sensitivity of the RPA-LF Assay
2.6. Detection of P. litchii in Artificially Inoculated Lychee Leaves and Fruits Using the RPA-LF Assay
3. Discussion
4. Materials and Methods
4.1. Pathogen Cultivation and DNA Extraction
4.2. Identification of the Specific Target Gene for P. litchii
4.3. Primers and Probe Design
4.4. RPA-LF Assay
4.5. Optimization of the RPA-LF Conditions
4.6. Specificity of the RPA–LF Assay
4.7. Sensitivity of the RPA–LF and PCR Assays
4.8. Detection of P. litchii in Artificially Inoculated Lychee Leaves and Fruits Using the RPA-LF Assay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Punia, S.; Kumar, M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci. Technol. 2021, 108, 58–70. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wang, K.; Zhu, J.; Hu, Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2139–2163. [Google Scholar] [CrossRef]
- Hu, G.; Feng, J.; Xiang, X.; Wang, J.; Salojärvi, J.; Liu, C.; Wu, Z.; Zhang, J.; Liang, X.; Jiang, Z. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nat. Genet. 2022, 54, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Wang, Y.; Shen, D.; Li, D.; Pu, T.; Jiang, Z.; Zhang, Z.; Zheng, X.; Tyler, B.M.; Wang, Y. Sequencing of the litchi downy blight pathogen reveals it is a Phytophthora species with downy mildew-like characteristics. Mol. Plant-Microbe Interact. 2016, 29, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-H.; Wang, H.-C.; Hou, Y.-P.; Zhang, S.-P.; Wang, J.-X.; Zhou, M.-G. Baseline and differential sensitivity to mandipropamid among isolates of Peronophythora litchii, the causal agent of downy blight on litchi. Crop Prot. 2011, 30, 354–359. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Zhu, X.R.; Li, Y.B. Postharvest Control of Litchi Fruit Rot by Bacillus subtilis. LWT—Food Sci. Technol. 2001, 34, 430–436. [Google Scholar] [CrossRef]
- Xu, D.; Deng, Y.; Xi, P.; Zhu, Z.; Kong, X.; Wan, L.; Situ, J.; Li, M.; Gao, L.; Jiang, Z. Biological activity of pterostilbene against Peronophythora litchii, the litchi downy blight pathogen. Postharvest Biol. Technol. 2018, 144, 29–35. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Wang, Y.; Song, L.; Liu, H.; Lichter, A.; Kerdchoechuen, O.; Joyce, D.C.; Shi, J. Postharvest characteristics and handling of litchi fruit—An overview. Aust. J. Exp. Agric. 2006, 46, 1541–1556. [Google Scholar] [CrossRef]
- Wang, T.; Gao, C.; Cheng, Y.; Li, Z.; Chen, J.; Guo, L.; Xu, J. Molecular Diagnostics and Detection of Oomycetes on Fiber Crops. Plants 2020, 9, 769. [Google Scholar] [CrossRef]
- Lévesque, C.A. Molecular methods for detection of plant pathogens—What is the future? Can. J. Plant Pathol. 2001, 23, 333–336. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.; Ai, G.; Xu, H.; Dou, D.; Shen, D. Development of multiplex PCR assay for simultaneous detection of five cucumber pathogens based on comparative genomics. Australas. Plant Pathol. 2019, 48, 369–372. [Google Scholar] [CrossRef]
- Kong, G.; Li, T.; Huang, W.; Li, M.; Shen, W.; Jiang, L.; Hsiang, T.; Jiang, Z.; Xi, P. Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Prot. 2021, 139, 105370. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- James, A.; Macdonald, J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev. Mol. Diagn. 2015, 15, 1475–1489. [Google Scholar] [CrossRef] [PubMed]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Tan, M.; Liao, C.; Liang, L.; Yi, X.; Zhou, Z.; Wei, G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front. Cell. Infect. Microbiol. 2022, 12, 1019071. [Google Scholar] [CrossRef]
- Strayer-Scherer, A.; Jones, J.B.; Paret, M.L. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 2019, 109, 690–700. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Q.; Yang, Y.; Zhuang, Q.; Xi, D. Recombinase polymerase amplification-lateral flow (RPA-LF) assay for rapid visual detection of Pseudomonas syringae pv. actinidiae in kiwifruit. Crop Prot. 2023, 172, 106315. [Google Scholar] [CrossRef]
- Jia-cheng, X.; San-lian, W.; Yue, L.; Yuan-di, X.; Jing, Y.; Ting, Z.; Jia-jia, C.; Zheng-guang, Z.; Dan-yu, S.; Hai-feng, Z. Rapid detection of the rice false smut fungus Ustilaginoidea virens by lateral flow strip-based recombinase polymerase amplification assay1. J. Integr. Agric. 2023; in press. [Google Scholar]
- Kim, N.-K.; Lee, H.-J.; Kim, S.-M.; Jeong, R.-D. Rapid and visual detection of barley yellow dwarf virus by reverse transcription recombinase polymerase amplification with lateral flow strips. Plant Pathol. J. 2022, 38, 159. [Google Scholar] [CrossRef]
- Dai, T.; Yang, X.; Hu, T.; Jiao, B.; Xu, Y.; Zheng, X.; Shen, D. Comparative Evaluation of a Novel Recombinase Polymerase Amplification-Lateral Flow Dipstick (RPA-LFD) Assay, LAMP, Conventional PCR, and Leaf-Disc Baiting Methods for Detection of Phytophthora sojae. Front. Microbiol. 2019, 10, 1884. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, Y.; Zhang, F.; Yu, J.; Dai, T.; Wang, R.; Tian, Y.; Xu, H.; Shen, D.; Dou, D. A Rapid, Equipment-Free Method for Detecting Phytophthora infestans in the Field Using a Lateral Flow Strip-Based Recombinase Polymerase Amplification Assay. Plant Dis. 2020, 104, 2774–2778. [Google Scholar] [CrossRef]
- Yu, J.; Shen, D.; Dai, T.; Lu, X.; Xu, H.; Dou, D. Rapid and equipment-free detection of Phytophthora capsici using lateral flow strip-based recombinase polymerase amplification assay. Lett. Appl. Microbiol. 2019, 69, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, R.; Meng, Y.; Zheng, J.; Lu, W.; Yang, Y.; Yang, J.; Wu, Y.; Shan, W. Specific detection of Phytophthora parasitica by recombinase polymerase amplification (RPA) assays based on a unique multi-copy genomic sequence. Plant Dis. 2023; ahead-of-print. [Google Scholar]
- Jeevalatha, A.; Zumaila, F.; Biju, C.N.; Punya, K.C. Duplex recombinase polymerase amplification assay for simultaneous detection of Pythium spp. and Ralstonia pseudosolanacearum from ginger rhizomes. Crop Prot. 2022, 161, 106057. [Google Scholar] [CrossRef]
- Mayer, M.; Schaaf, G.; Mouro, I.; Lopez, C.; Colin, Y.; Neumann, P.; Cartron, J.-P.; Ludewig, U. Different Transport Mechanisms in Plant and Human AMT/Rh-type Ammonium Transporters. J. Gen. Physiol. 2006, 127, 133–144. [Google Scholar] [CrossRef]
- Andrade, S.L.A.; Einsle, O. The Amt/Mep/Rh family of ammonium transport proteins (Review). Mol. Membr. Biol. 2009, 24, 357–365. [Google Scholar] [CrossRef]
- Lu, X.; Xu, H.; Song, W.; Yang, Z.; Yu, J.; Tian, Y.; Jiang, M.; Shen, D.; Dou, D. Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification–lateral flow strip assay. Phytopathol. Res. 2021, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Kousik, C.S.; Parada, C.; Quesada-Ocampo, L. First report of Phytophthora fruit rot on bitter gourd (Mormodica charantia) and sponge gourd (Luffa cylindrica) caused by Phytophthora capsici. Plant Health Prog. 2015, 16, 93–94. [Google Scholar] [CrossRef]
- Shen, D.; Li, Q.; Yu, J.; Zhao, Y.; Zhu, Y.; Xu, H.; Dou, D. Development of a loop-mediated isothermal amplification method for the rapid detection of Pythium ultimum. Australas. Plant Pathol. 2017, 46, 571–576. [Google Scholar] [CrossRef]
- Dai, T.; Wang, A.; Yang, X.; Yu, X.; Tian, W.; Xu, Y.; Hu, T. PHYCI_587572: An RxLR Effector Gene and New Biomarker in A Recombinase Polymerase Amplification Assay for Rapid Detection of Phytophthora cinnamomi. Forests 2020, 11, 306. [Google Scholar] [CrossRef]
- Zhou, J.; Dai, H.; Dai, T.; Liu, T. Rapid Detection of Phytophthora cambivora Using Recombinase Polymerase Amplification Combined with CRISPR/Cas12a. Forests 2023, 14, 2141. [Google Scholar] [CrossRef]
- Chen, Z.; Jiao, B.; Zhou, J.; He, H.; Dai, T. Rapid detection of Phytophthora cinnamomi based on a new target gene Pcinn13739. Front. Cell. Infect. Microbiol. 2022, 12, 923700. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Hu, T.; Yang, X.; Shen, D.; Jiao, B.; Tian, W.; Xu, Y. A recombinase polymerase amplification-lateral flow dipstick assay for rapid detection of the quarantine citrus pathogen in China, Phytophthora hibernalis. PeerJ 2019, 7, e8083. [Google Scholar] [CrossRef] [PubMed]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Li, W.; Yang, C.; Zhang, X.; Luo, M.; Chen, T.; Wang, X.; Wang, R.; Chen, Q. PlAtg8-mediated autophagy regulates vegetative growth, sporangial cleavage, and pathogenesis in Peronophythora litchii. Microbiol. Spectr. 2023, 12, e0353123. [Google Scholar] [CrossRef]
- Schena, L.; Hughes, K.J.D.; Cooke, D.E.L. Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol. Plant Pathol. 2006, 7, 365–379. [Google Scholar] [CrossRef]
No. | Species | Host | Origin | Number of Isolates | RPA-LFD |
---|---|---|---|---|---|
1 | Peronophythora litchii | Litchi chinensis | Fujian | 2 | + |
Hainan | 1 | + | |||
Guangdong | 3 | + | |||
Guangxi | 1 | + | |||
2 | Phytophthora citrophthora | Citrus reticulata Blanco | Shanxi | 1 | - |
3 | P. sojae | Glycine max | Fujian | 1 | - |
4 | P. capasici | Capsicum frutescent | Fujian | 1 | - |
5 | P. drechsleri | Beta vularis | Fujian | 1 | - |
6 | P. cinnamomi | Cinnamonmum cassia | Shanxi | 1 | - |
7 | P. infestans | Solanum tuberosum | Fujian | 1 | - |
8 | P. cactorum | Malus pumila | Shanxi | 1 | - |
9 | P. colocasiae | Colocasia esculenta | Fujian | 1 | - |
10 | Pythium aphanidermatum | Cucumis sativus | Fujian | 1 | - |
11 | Colletotrichum gloeosporioides | Litchi chinensis | Fujian | 1 | - |
12 | Colletotrichum truncatum | Vigna unguiculata | Fujian | 1 | - |
13 | Fusarium oxysporum | Musa paradisiacal | Fujian | 1 | - |
14 | Botrytis cinerea | Solanum lycopersicum | Fujian | 1 | - |
15 | Alternaria solani | Solanum lycopersicum | Fujian | 1 | - |
16 | Rhizoctonia solani | Oryza glaberrima | Fujian | 1 | - |
17 | Sclerotinia sclerotiorum | Brassica napus | Fujian | 1 | - |
Primer Name | Sequences (5′~3′) | Purpose |
---|---|---|
PlRPALF-F | GAAGACACTGTCAGCACTCTAAACTACTAC | RPA-LF |
PlRPALF-R | [Biotin]-GAACCAATCTGGTGAGCCATCGTGACGCAA | |
PlRPALF-P | [FAM]-CTACTACCCCATGTACATGGATGTCCACGT-[THF]-ATGATCTACATTGGT-[C3 spacer] | |
Yph1F | CGACCATKGGTGTGGACTTT | PCR |
Yph2R | ACGTTCTCMCAGGCGTATCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Li, B.; Shi, M.; Zhao, Y.; Lin, J.; Chen, Q.; Liu, P. Rapid Visual Detection of Peronophythora litchii on Lychees Using Recombinase Polymerase Amplification Combined with Lateral Flow Assay Based on the Unique Target Gene Pl_101565. Plants 2024, 13, 555. https://doi.org/10.3390/plants13040555
Wang R, Li B, Shi M, Zhao Y, Lin J, Chen Q, Liu P. Rapid Visual Detection of Peronophythora litchii on Lychees Using Recombinase Polymerase Amplification Combined with Lateral Flow Assay Based on the Unique Target Gene Pl_101565. Plants. 2024; 13(4):555. https://doi.org/10.3390/plants13040555
Chicago/Turabian StyleWang, Rongbo, Benjin Li, Mingyue Shi, Yumei Zhao, Jinlong Lin, Qinghe Chen, and Peiqing Liu. 2024. "Rapid Visual Detection of Peronophythora litchii on Lychees Using Recombinase Polymerase Amplification Combined with Lateral Flow Assay Based on the Unique Target Gene Pl_101565" Plants 13, no. 4: 555. https://doi.org/10.3390/plants13040555
APA StyleWang, R., Li, B., Shi, M., Zhao, Y., Lin, J., Chen, Q., & Liu, P. (2024). Rapid Visual Detection of Peronophythora litchii on Lychees Using Recombinase Polymerase Amplification Combined with Lateral Flow Assay Based on the Unique Target Gene Pl_101565. Plants, 13(4), 555. https://doi.org/10.3390/plants13040555