The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems
Abstract
:1. Introduction
2. Ochrobactrum spp.
3. Acinetobacter spp.
4. Arthrobacter spp.
5. Enterobacter spp.
6. Pseudomonas spp.
7. Rhodococcus spp.
8. Serratia
9. Streptomyces
10. Stenotrophomonas
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Shahrajabian, N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023, 12, 2469. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant bisotimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ali, A.; Li, Y.; Su, J.; Zhang, S. The performance and mechanism of simultaneous removal of calcium and heavy metals by Ochrobactrum sp. GMC12 with the chia seed (Salvia hispanica) gum as a synergist. Chemosphere 2022, 297, 134061. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; Pembroke, J.T. The genus Ochrobactrum as major opportunistic pathogens. Microorganisms 2020, 8, 1797. [Google Scholar] [CrossRef] [PubMed]
- Sipahutar, M.; Vanganai, A.S. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants. J. Hazard. Mater. 2017, 329, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Cieslik, M.; Harhala, M.; Orwat, F.; Dabrowska, K.; Gorski, A.; Jonczyk-Matysiak, E. Two newly isolated Enterobacter-specific bacteriphages: Biological properties and stability studies. Viruses 2022, 14, 1518. [Google Scholar] [CrossRef]
- Nikolouli, K.; Sassu, F.; Ntougias, S.; Stauffer, C.; Caceres, C.; Bourtzis, K. Enterobacter sp. AA26 as a protein source in the larval diet of Drosophila sucukii. Insects 2021, 12, 923. [Google Scholar] [CrossRef]
- Gorrasi, S.; Pasqualetti, M.; Franzatti, A.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Munoz-Palazon, B.; Fenice, M. Persistence of Enterobacteriaceae drawn into a marine saltern (Saline di Tarquinia, Italy) from the adjacent coastal zone. Water 2021, 13, 1443. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Senapati, A.; Sharma, L.; Nayak, A.K.; Kumar, A.; Kumar, U.; Prabhukarthikeyan, S.R.; Mitra, D.; Sagarika, M.S. Understanding rice growth-promoting potential of Enterobacter spp. isolated from long-term organic farming soil in India through a supervised learning approach. Curr. Res. Microb. Sci. 2021, 2, 100035. [Google Scholar] [CrossRef] [PubMed]
- Pasciak, M.; Sanchez-Carballo, P.; Duda-Madej, A.; Lindner, B.; Gamian, A.; Holst, O. Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae. Carbohydr. Res. 2010, 345, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Mukhia, S.; Khatri, A.; Acharya, V.; Kumar, R. Comparative genomics and molecular adaptational analysis of Arthrobacter from Sikkim Himalaya provides insights into its survivability under multiple high altitude stress. Genomics 2021, 113, 151–158. [Google Scholar] [CrossRef]
- Field, E.K.; Blaskovich, J.P.; Peyton, B.M.; Gerlach, R. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate. J. Hazard Mater. 2018, 355, 162–169. [Google Scholar] [CrossRef]
- Li, F.; Tang, K.; Cai, C.; Xu, X. Phytolacca acinosa roxb. with Arthrobacter echigonensis MN1405 enhances heavy metal phytoremediation. Int. J. Phytoremediat. 2016, 18, 956–965. [Google Scholar] [CrossRef]
- Anh, T.T.N.; Khanh, N.V.; Lee, Y.H. DnaJ, a heat shock protein 40 family member, is essential for the survival and virulence of plant pathogenic Pseudomonas cichorii JBC1. Res. Microbiol. 2023, 174, 104094. [Google Scholar] [CrossRef]
- Stroud, E.A.; Rikkerink, E.H.A.; Jayaraman, J.; Templeton, M.D. ActigardTM induces a defence response to limit Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. Chinensis Hort16A tissue culture plants. Sci. Hortic. 2022, 295, 110806. [Google Scholar] [CrossRef]
- Stratton, H.M.; Brooks, P.R.; Carr, E.L.; Seviour, R.J. Effects of culture conditions on the mycolic acid composition of isolates of Rhodococcus spp. from activated sludge foams. Syst. Appl. Microbiol. 2003, 26, 165–171. [Google Scholar] [CrossRef]
- Valdezate, S. Nocardia, Rhodococcus, Streptomyces and other aerobic actinomycetes. In Encyclopedia of Infection and Immunity; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, pp. 589–613. [Google Scholar] [CrossRef]
- Cheng, C.; Nie, Z.-W.; He, L.-Y.; Sheng, X.-F. Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil. Environ. Pollut. 2020, 259, 113832. [Google Scholar] [CrossRef] [PubMed]
- Youssef, S.A.; Tartoura, K.A.; Abdelraouf, G.A. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol. Control 2016, 100, 79–86. [Google Scholar] [CrossRef]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; You, Y.-H.; Hamayun, M.; Joo, G.-J.; Shahzad, R.; Choi, K.-S.; Lee, I.-J. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Eur. J. Soil. Biol. 2015, 68, 85–93. [Google Scholar] [CrossRef]
- Sambangi, P.; Gopalakrishnan, S. Streptomyces-mediated synthesis of silver nanoparticles for enhanced growth, yield, and grain nutrients in chickpea. Biocatal. Agric. Biotechnol. 2023, 47, 102567. [Google Scholar] [CrossRef]
- Kurm, V.; Schilder, M.T.; Haagsma, W.K.; Bloem, J.; Scholten, O.E.; Postma, J. Reduced tillage increases soil biological properties but not suppressiveness against Rhizoctonia solani and Streptomyces scabies. Appl. Soil Ecol. 2023, 181, 104646. [Google Scholar] [CrossRef]
- Han, L.; Sun, Y.; Zhou, X.; Hao, X.; Wu, M.; Zhang, X.; Feng, J. A novel glycoprotein from Streptomyces sp. Triggers early responses of plant defense. Pest. Biochem. Physiol. 2021, 171, 104719. [Google Scholar] [CrossRef] [PubMed]
- Huguet-Tapia, J.C.; Badger, J.H.; Loria, R.; Pettis, G.S. Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmic 2011, 65, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Laskaris, P.; Karagouni, A.D. Streptomyces, Greek habitats and novel pharmaceutical: A promising challenge. Microbiol. Res. 2021, 12, 840–846. [Google Scholar] [CrossRef]
- Patel, J.K.; Archana, G. Engineered production of 2,4-diacetylphloroglucinol in the diazotrophic endophytic bacterium Pseduomonas sp. WS and its beneficial effect in multiple plant-pathogen systems. Appl. Soil Ecol. 2018, 124, 34–44. [Google Scholar] [CrossRef]
- Kaari, M.; Joseph, J.; Manikkam, R.; Sreenivasan, A.; Venugopal, G. Biological control of Streptomyces sp. UT4A49 to suppress tomato bacterial wilt disease and its metabolite profiling. J. King Saud Uni. Sci. 2022, 34, 101688. [Google Scholar] [CrossRef]
- Elango, V.; Manjukarunambika, K.; Ponmurugan, P.; Marimuthu, S. Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants. Biol Control 2015, 89, 75–83. [Google Scholar] [CrossRef]
- Sousa, J.A.D.J.; Olivares, F.L. Plant growth promotion by Streptomycetes: Ecophysiology, mechanisms, and applications. Chem. Biol. Technol. Agric. 2016, 3, 24. [Google Scholar] [CrossRef]
- Olanreqaju, O.S.; Babalola, O.O. Streptomyces: Implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. 2019, 103, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Mohzari, Y.; Musawa, M.A.; Asdaq, S.M.B.; Alattas, M.; Qutub, M.; Bamogaddam, R.F.; Yamani, A.; Aldabbagh, Y. Candida utilis and Stenotrophomonas maltophilia causing nosocomial meningitis following a neurosurgical procedure: A rare co-infection. J. Infect. Public. Health 2021, 14, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, M.; Weng, Y.; Zhao, Y.; Li, C.; Kanwal, A. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci. 2021, 103, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Szapkowska, N.; Kowalczyk, A.; Jafra, S.; Kaczynski, Z. The chemical structure of polysacharides isolated from the Ochrobactrum rhizosphaerea PR17T. Carbohydr. Res. 2020, 497, 108136. [Google Scholar] [CrossRef] [PubMed]
- Gohil, K.; Rajput, V.; Dharne, M. Pan-genomics of Ochrobactrum species from clinical and environmental origins reveals distinct populations and possible links. Genomics 2020, 112, 3003–3012. [Google Scholar] [CrossRef]
- Bezza, F.A.; Beukes, M.; Chirwa, E.M.N. Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochem. 2015, 50, 1911–1922. [Google Scholar] [CrossRef]
- Kumar, C.G.; Suhitha, P.; Mamidyala, S.K.; Usharani, P.; Das, B.; Reddy, C.R. Ochrosin, a new biosurfactant produced by halophilic Ochrobactrum sp. strain BS-206 (MTCC 5720): Purification, characterization and its biological evaluation. Process. Biochem. 2014, 49, 1708–1717. [Google Scholar] [CrossRef]
- Lei, X.; Jia, Y.; Chen, Y.; Hu, Y. Simultaneous nitrification and dentrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81. Bioresour. Technol. 2019, 272, 442–450. [Google Scholar] [CrossRef]
- Villagrasa, E.; Ballesteros, B.; Obiol, A.; Millach, L.; Esteve, I.; Sole, A. Multi-approach analysis to assess the chromium(III) immobilization by Ochrobactrum anthropi DE2010. Chemosphere 2020, 238, 124663. [Google Scholar] [CrossRef]
- Abraham, J.; Silambarasan, S. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic. Biochem. Physiol. 2016, 126, 13–21. [Google Scholar] [CrossRef]
- Hahm, M.-S.; Sumayo, M.; Hwang, Y.-J.; Jeon, S.-A.; Park, S.-J.; Lee, J.Y.; Ahn, J.-H.; Kim, B.-S.; Ryu, C.-M.; Ghim, S.-Y. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J. Microbiol. 2012, 50, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Chen, R.; Zhao, L.; Duan, Y.; Wang, H.; Yan, Z.; Shen, X.; Chen, X.; Yin, C.; Mao, Z. Isolation of phloridzin-degrading, IAA-producing bacterium Ochrobactrum haematophilum and its effects on the appl replant soil environment. Hortic. Plant J. 2023, 9, 199–208. [Google Scholar] [CrossRef]
- Imran, A.; Saadalla, M.J.A.; Khan, S.-U.; Mirza, M.S.; Malik, K.A.; Hafeez, F.Y. Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann. Microbiol. 2014, 64, 1797–1806. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Survey on nitrogenase evolution by considering the importance of nitrogenase, its structure, and mechanism of nitrogenase. Not. Bot. Horti Agrobot. 2024, 52, 13157. [Google Scholar]
- Riaz, G.; Shoaib, A.; Javed, S.; Perveen, S.; Ahmed, W.; El-Sheikh, M.A.; Kaushik, P. Formulation of the encapsulated rhizospheric Ochrobactrum ciceri supplemented with alginate for potential antifungal activity against the chili collar rot pathogen. S. Afr. J. Bot. 2023, 161, 586–598. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Wang, J.; Yin, T.; Han, Y.; Wang, X.; Huang, Z. Isolation and potential of Ochrobactrum sp. NW-3 to increase the growth of cucumber. Int. J. Agric. Policy. Res. 2015, 3, 341–350. [Google Scholar] [CrossRef]
- Meng, X.; Yan, D.; Long, X.; Wang, C.; Liu, Z.; Rengel, Z. Colonization by endophytic Ochrobactrum anthropi Mn1 promotes growth of Jerusalem artichoke. Microb. Biotechnol. 2014, 7, 601–610. [Google Scholar] [CrossRef]
- Debnath, S.; Das, A.; Maheshwari, D.K.; Pandey, P. Treatment with atypical rhizobia, Parahizobium giardinii and Ochrobactrum sp. modulate the rhizospheric bacterial community, and enhances Lens culinaris growth in fallow-soil. Microbiol. Res. 2023, 267, 127255. [Google Scholar] [CrossRef]
- Mishra, S.K.; Khan, M.H.; Misra, S.; Dixit, V.K.; Gupta, S.; Tiwari, S.; Gupta, S.C.; Chauhan, P.S. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol. Biochem. 2020, 150, 1–14. [Google Scholar] [CrossRef]
- De Souza, R.; Meyer, J.; Schoenfeld, R.; da Costa, P.B.; Passaglia, L.M.P. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol. 2015, 65, 951–964. [Google Scholar] [CrossRef]
- Waranusantigul, P.; Lee, H.; Kruatrachue, M.; Pokethitiyook, P.; Auesukaree, C. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing leaf accumulation by Eucalytpus camaldulensis. Chemosphere 2011, 85, 584–590. [Google Scholar] [CrossRef]
- Liu, T.; Wei, L.; Qiao, M.; Zou, D.; Yang, X.; Lin, A. Mineralization of pyrene induced by interaction between Ochrobactrum sp. PW and ryegrass in spiked soil. Ecotoxicol. Environ. Saf. 2016, 133, 290–296. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Cui, Y.; Liu, R.; Li, Y.; Chen, Q.; Gu, Y.; Zhao, K.; Xiang, Q.; Xu, K.; et al. An indoleacetic acid-producing Ochrobactrum sp. MGJ11 counteracts cadmium effect on soybean by promoting plant growth. J. Appl. Microbiol. 2017, 122, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.N.; Afghan, S.; Hassan, Z.; Hafeez, F.Y. Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field condition. Phytopathol. Mediterr. 2014, 53, 229–239. [Google Scholar] [CrossRef]
- Sumayo, M.; Hahm, M.-S.; Ghim, S.-Y. Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp. carotovorum in tobacco leaves. Plant Pathol. J. 2013, 29, 174–181. [Google Scholar] [CrossRef]
- Rasul, M.; Yasmin, S.; Yahya, M.; Breitkreuz, C.; Tarkka, M.; Reitz, T. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiol. Res. 2021, 246, 126703. [Google Scholar] [CrossRef] [PubMed]
- Odsbu, I.; Khedkar, S.; Khedkar, U.; Nerkar, S.S.; Tamhankar, A.J.; Lundborg, C.S. High proportion of multidrug-resistant Acinetobaer spp. Isolates in a district in Western India: A four-year antibiotic susceptibility study of clinical isolates. Int. J. Environ. Res. Public Health 2018, 15, 153. [Google Scholar] [CrossRef] [PubMed]
- Kiskova, J.; Juhas, A.; Galuskova, S.; Malinicova, L.; Kolesarova, M.; Piknova, M.; Pristas, P. Antibiotic resistance and genetic variability of Acinetobacter spp. from wastewater treatment plant in Koksov-Baksa (Kosice, Slovakia). Microorganisms 2023, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Kittinger, C.; Kirschner, A.; Lipp, M.; Baumert, R.; Mascher, F.; Farnleitner, A.H.; Zarfel, G.E. Antibiotic resistance of Acinetobacter spp. Isolates from the river Danube: Susceptibility stays high. Int. J. Environ. Res. Public Health 2018, 15, 52. [Google Scholar] [CrossRef] [PubMed]
- Cirino, I.C.D.S.; Santana, C.F.D.; Bezerra, M.J.R.; Rocha, I.V.; Luz, A.C.D.O.; Coutinho, H.D.M.; Figueiredo, R.C.B.Q.D.; Raposo, A.; Lho, L.H.; Han, H.; et al. Comparative transcriptomics analysis of multidrug-resistant Acinetobacter baumannii in reponse to treatment with the terpenic compounds thymol and carvacrol. Biomec. Pharmacother. 2023, 165, 115189. [Google Scholar] [CrossRef]
- Guerra, F.Q.S.; Mendes, J.M.; Sousa, J.P.D.; Morais-Braga, M.F.B.; Santos, B.H.C.; Coutinho, H.D.M.; Lima, E.D.O. Increasing antibiotic activity against a multidrug-resistant Acinetobacter spp. By essential oils of Citrus limon and Cinnamomum zeylanicum. Nat. Prod. Res. 2012, 26, 2235–2238. [Google Scholar] [CrossRef] [PubMed]
- Khaksar, G.; Treesubsuntorn, C.; Thiravetyan, P. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions. Plant Physiol. Biochemc. 2017, 114, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Almasaudi, S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.M.; Naz, R.; Naz, S.; Zahoor, S.; Nosheen, A.; Shahid, M.; Anwar, Z.; Keyani, R. Incorporation of zinc sulfide nanoparticles, Acinetobacter pittii, and Bacillus velezensis to improve tomato plant growth, biochemical attributes and resistance against Rhizoctonia solani. Plant Physiol. Biochem. 2023, 202, 107909. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wei, H.; Ke, T.; Fu, Y.; Zeng, Y.; Chen, C.; Chen, L. Characterization and genome analysis of Acinetobacter oleivorans S4 as an efficient hydrocarbon-degrading and plan growth promoting rhizobacterium. Chemosphere 2023, 331, 138732. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Liu, C.; Tang, S.-Q.; Guo, T.-T.; Pan, L.; Xue, Y.-P.; Zheng, Y.-G. Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant. Bioresour. Technol. 2022, 347, 126423. [Google Scholar] [CrossRef] [PubMed]
- Karn, S.K.; Pan, X. Role of Acinetobacter sp. in arsenite As(III) oxidation and reducing its mobility in soil. Chem. Ecol. 2016, 32, 460–471. [Google Scholar] [CrossRef]
- Prashant, S.; Makarand, R.; Bhushan, C.; Sudhir, C. Siderophoregenic Acineotobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malays. J. Microbiol. 2009, 5, 6–12. [Google Scholar] [CrossRef]
- Patel, P.; Shah, R.; Modi, K. Isolation and characterization of plant growth promoting potential of Acineotobacter sp. RSC7 isolated from Saccharum officinarum cultivar Co 671. J. Ecp. Biol. Agric. Sci. 2017, 5, 483–491. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Lai, X. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz. J. Microbiol. 2018, 49, 269–278. [Google Scholar] [CrossRef]
- Xue, Q.-Y.; Chen, Y.; Li, S.-M.; Chen, L.-F.; Ding, G.-C.; Guo, D.-W.; Guo, J.-H. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol. Control 2009, 48, 22–28. [Google Scholar] [CrossRef]
- Abbas, S.; Javed, M.T.; Shahdi, M.; Hussain, I.; Haider, M.Z.; Chaudhary, H.J.; Tanwir, K.; Maqsood, A. Acinetobacter sp. SG-5 inoculation alleviates cadmium toxicity in differentially Cd tolerant maize cultivars as deciphered by improved physio-biochemical attributes, antioxidants, and nutrient physiology. Plant Physiol. Biochem. 2020, 155, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Hu, Y.; Li, J.; Yang, G.; Kang, D.; Li, H.; Wang, J. Potential degradation of swainsonine by intracellular enzymes of Arthrobacter sp. HW08. Toxins 2013, 5, 2161–2171. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, R.; Li, J.; Tang, X.; Li, R.; Wang, M.; Huang, Z.; Zhou, J. Characterization of an exo-indulinase from Arthobacter: A novel NaCl-tolerant exo-inulinase with high molecular mass. Bioengineered 2015, 6, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Daengbussadee, C.; Laopaiboon, L.; Kaewmaneewat, A.; Sirisantimethakom, L.; Laopaiboon, P. Novel methods using an Arthrobacter sp. to create anaerobic conditions for biobutanol production from sweet sorghum juice by Clostridium beijerinckii. Processes 2021, 9, 178. [Google Scholar] [CrossRef]
- Nazirkar, A.; Wagh, M.; Qureshi, A.; Bodade, R.; Kutty, R. Development of tracking tool for p-nitrophenol monooxygenase genes from soil augmented with p-nitrophenol degrading isolates: Bacillus, Pseudomonas, and Arthrobacter. Bioremediat. J. 2020, 24, 71–79. [Google Scholar] [CrossRef]
- Xiao, W.; Ye, X.; Yang, X.; Zhu, Z.; Sun, C.; Zhang, Q.; Xu, P. Isolation and characterization of chromium(VI)-reducing Bacillus sp. FY1 and Arthrobacter sp. WZ2 and their bioremediation potential. Bioremediat. J. 2017, 21, 100–108. [Google Scholar] [CrossRef]
- Issifu, M.; Songoro, E.K.; Onguso, J.; Ateka, E.M.; Ngumi, V.W. Potential of Pseudarthrobacter chlorophenolicus BF2P4-5 as a biofertilizer for the growth promotion of tomato plants. Bacteria 2022, 1, 191–206. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, F.; Feng, C.; Bai, S.; Yang, J.; Wang, L. Complete genome sequence of Arthobacter sp. ZXY-2 associated with effective atrazine degradation and salt adaptation. J. Biotechnol. 2017, 248, 43–47. [Google Scholar] [CrossRef]
- Zhao, L.; Islam, M.S.; Song, P.; Zhu, L.; Dong, W. Isolation and optimization of a broad-spectrum synthetic antimicrobial peptide, Ap920-WI, from Arthrobacter sp. H5 for the biological control of plant diseases. Int. J. Mol. Sci. 2023, 24, 10598. [Google Scholar] [CrossRef]
- Platamone, G.; Procacci, S.; Maccioni, O.; Borromeo, I.; Rossi, M.; Bacchetta, L.; Forni, C. Arthrobacter sp. inoculation improves cactus pear growth, quality of fruits and nutraceutical properties of cladodes. Curr. Micrbiol. 2023, 80, 266. [Google Scholar] [CrossRef]
- Vanissa, T.T.G.; Beger, B.; Patz, S.; Becker, M.; Tureckova, V.; Novak, O.; Tarkowska, D.; Henri, F.; Ruppel, S. The response of maize to inoculation with Arthrobacter sp. and Bacillus sp. in phosphorus-deficient, salinity-affected soil. Microorganisms 2020, 8, 1005. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tang, K.; Xu, X.; Cai, C. Interaction of Fe-Mn Plaque and Arthrobacter echigonensis MN1405 and uptake and translocation of Cd by Phytolacca acinosa Roxb. Chemosphere 2017, 174, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Semenzato, G.; Duca, S.D.; Vassallo, A.; Bechini, A.; Calonico, C.; Delfino, V.; Berti, F.; Vitali, F.; Mocali, S.; Frascella, A.; et al. Genomic, molecular, and phenotypic characterization of Arthrobacter sp. OVS8, an endophytic bacterium isolated from the contributing to the bioactive compound content of the essential oil of the medicinal plant Origanum vulgare L. Int. J. Mol. Sci. 2023, 24, 4845. [Google Scholar] [CrossRef] [PubMed]
- Barnawal, D.; Bharti, N.; Maji, D.; Chanotiya, C.S.; Kalra, A. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 2014, 171, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Stassinos, P.M.; Rossi, M.; Borromeo, I.; Capo, C.; Beninati, S.; Forni, C. Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2021, 156, 370–383. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J.S.; Cho, W.; Jun, K.M.; Du, X.; Kim, K.D.; Kim, Y.-K.; Lee, G.-S. A cold-shock protein from the South pole-dwelling soil bacterium Arthrobacter sp. confers cold tolerance to rice. Genes 2021, 12, 1589. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, G.; Kim, I.; Kang, M.; So, Y.; Kim, J.; Seo, T. An isolated Arthrobacter sp. enhances rice (Oryza sativa L.) plant growth. Microorganisms 2022, 10, 1187. [Google Scholar] [CrossRef]
- Hernandez-Soberano, C.; Ruiz-Herrera, L.F.; Valencia-Cantero, E. Endophytic bacteria Arthrobacter agilis UMCV2 and Bacillus methylotrophicus M4-96 stimulate achene germination, in vitro growth, and green-house yield of strawberry (Fragaria × ananassa). Sci. Hortic. 2020, 261, 109005. [Google Scholar] [CrossRef]
- Jiang, Z.; Shao, Q.; Li, Y.; Cao, B.; Li, J.; Ren, Z.; Qu, J.; Zhang, Y. Noval bio-organic fertilizer containing Arthrobacter sp. NDS10 alleviates atrazine-induced growth inhibition on soybean by improving atrazine removal and nitrogen accumulation. Chemosphere 2023, 313, 137575. [Google Scholar] [CrossRef] [PubMed]
- Getenga, Z.; Dorfler, U.; Iwobi, A.; Schmid, M.; Schroll, R. Atrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from sugarcane-cultivated soil in Kenya. Chemosphere 2009, 77, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Palit, R.; Sengupta, C.; Standing, D. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust. J. Crop Sci. 2010, 4, 378–383. [Google Scholar]
- Fan, P.; Chen, D.; He, Y.; Zhou, Q.; Tian, Y.; Gao, L. Alleviating salt stress in tomato seedling using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. Int. J. Phytoremediat. 2016, 18, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; He, S.; Li, X.; Shi, L.; Wang, F.; Yu, S.; Xu, S.; Ju, C.; Fang, H.; Yu, Y. Characterization, genome functional analysis, and detoxification of atrazine by Arthrobacter sp. C2. Chemosphere 2021, 264, 128514. [Google Scholar] [CrossRef] [PubMed]
- Nyenje, M.R.; Green, E.; Ndip, R.N. Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterbacter cloacae strains isolated from food samples in South Africa. Molecules 2013, 18, 9582–9593. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, A.; Kadhim, M.M.; Taban, T.Z.; Baigenzhenov, O.; Ivanets, A.; Lal, B.; Kumar, N.; Hosseini-Bandegharaei, A. Adsorption performance of Enterobacter colacae towards U(VI) ion and application of Enterobacter cloacae/carbon nanotubes to preconcentration and determination of low-levels of U(VI) in water samples. Chemosphere 2023, 311, 136804. [Google Scholar] [CrossRef]
- Maikalu, R.B.; Igere, B.E.; Odjadjar, E.E.O. Enterobacter species distribution, emerging virulence and multiple antibiotic resistance dynamics in effluents: A countrified spread-hub and implications of abattior release. Total Environ. Res. Them. 2023, 8, 100074. [Google Scholar] [CrossRef]
- Moon, S.H.; Udaondo, Z.; Li, X.; Yang, X.; Jun, S.-R.; Huang, E. Isolation and characterisation of carbapenemase-producing and polymyxin B-reistant Enterobacter bugandensis from a vegetable. J. Glob. Antimicrob. Resist. 2021, 26, 264–265. [Google Scholar] [CrossRef]
- Ngigi, A.N.; Getenga, Z.M.; Boga, H.I.; Ndalut, P.K. Biodegradation of s-triazine herbicide atrazine by Enterobacter cloacae and Burkholderia cepacia sp. from long-term treated sugarcane-cultivated soils in Kenya. J. Environ. Sci. Health B 2012, 47, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.-J.; Li, D.-P.; Singh, R.K.; Singh, P.; Verma, K.K.; Sharma, A.; Qin, Y.; Khan, Q.; Song, X.-P.; Malviya, M.K.; et al. Comparative transcriptome analysis of two sugarcane varieties in response to diazotrophic plant growth promoting endophyte Enterobacter roggenkampii ED5. J. Plant Interact. 2022, 17, 75–84. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Stimulation of the growth of tomato, pepper, and mung bean plants by the plant growth-promoting bacterium Enterobacter cloacae CAL3. Biol. Agric. Hortic. 2001, 19, 261–274. [Google Scholar] [CrossRef]
- Ullah, A.; Farooq, M.; Hussain, M. Improving the productivity, profitability and grain quality of kabuli chickpea with co-application of zinc and endophyte bacteria Enterobacter sp. MN17. Arch. Agron. Soil Sci. 2020, 66, 897–912. [Google Scholar] [CrossRef]
- Utkhede, R.S.; Smith, E.M. Effectiveness of dry formulations of Enterobacter agglomerans for control of crown and root rot of apple trees. Cand. J. Plant Pathol. 1997, 19, 397–401. [Google Scholar] [CrossRef]
- Zakria, M.; Udonishi, K.; Ogawa, T.; Yamamoto, A.; Saeki, Y.; Akao, S. Influence of inoculation technique on the endophytic colonization or rice by Pantoea sp. isolated from sweet potato and by Enterobacter sp. isolated from sugarcane. Soil Sci. Plant Nutr. 2008, 54, 224–236. [Google Scholar] [CrossRef]
- Abiala, M.A.; Odebode, A.C. Rhizospheric Enterobacter enhanced maize seedling health and growth. Biocontrol Sci. Technol. 2015, 25, 359–372. [Google Scholar] [CrossRef]
- Bendaha, M.E.A.; Belaouni, H.A. Tomato growth and resistance promotion by Enterobacter hormaechei subsp. steigerwaltti EB8D. Arch. Phytopahtol. Plant Protect. 2019, 52, 318–332. [Google Scholar] [CrossRef]
- Zakria, M.; Ohsako, A.; Saeki, Y.; Yamamoto, A.; Akao, S. Colonization and growth promotion characteristics of Enterobacter sp. and Herbaspirillum sp. on Brassica oleraceae. Soil Sci. Plant Nutr. 2008, 54, 507–516. [Google Scholar] [CrossRef]
- Mowafy, A.M.; Fawzy, M.M.; Gebreil, A.; Elsayed, A. Endophytic Bacillus, Enterobacter, and Klebsiella enhance the growth and yield of maize. Acta Agric. Scand. Sec. B Soil Plant Sci. 2021, 71, 237–246. [Google Scholar] [CrossRef]
- Ajibade, O.A.; Oladipo, E.K.; Kwenda, S.; Khumalo, Z.; Ismail, A.; Oloke, J.K.; Oyawoye, O.M.; Onyeaka, H. Whole genomic sequence of Enterobacter sichuanensis AJI 2411—A plant growth promoting rhizobacteria. Gene 2023, 887, 147725. [Google Scholar] [CrossRef]
- Ji, C.; Liu, Z.; Hao, L.; Song, X.; Wang, C.; Liu, Y.; Li, C.; Gao, Q.; Liu, X. Effects of Enterobacter cloacae HG-1 on the nitrogen community structure of wheat rhizosphere soil and on salt tolerance. Front Plant Sci. 2020, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, T.; Saenz-Hidalgo, H.K.; Silva-Rojas, H.V.; Morales-Nieto, C.; Vancheva, T.; Koebnik, R.; Avila-Quezada, G.D. Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathol. J. 2018, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abedinzadeh, A.; Charkhabi, N.F.; Aeini, M.; Amani, M. Enterobacter species, emerging plant pathogenic bacteria, associated with decline and offshoot rot of date palm in Iran. Eur. J. Plant Pathol. 2023, 166, 341–351. [Google Scholar] [CrossRef]
- Taha, K.; El-Attar, I.; Hnini, M.; Raif, A.; Bena, G.; Aurag, J.; Berraho, E.B. Beneficianl effect of Rhizobium laguerreae co-inoculated with native Bacillus sp. and Enterobacter aerogenes on lentil growth under drought stress. Rhizosphere 2022, 22, 100523. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, D.; Huang, X.; Wang, S.; Qiu, R.; Zhang, Z.; Ming, J. Effect of Enterobacter sp. EG16 on selenium biofortification and speciation in pak choi (Brassica rapa spp. Chinensis). Sci. Hortic. 2023, 310, 111723. [Google Scholar] [CrossRef]
- Pattnaik, S.; Dash, D.; Mohapatra, S.; Pattnaik, M.; Marandi, A.K.; Das, S.; Samantaray, D.P. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 2020, 240, 124895. [Google Scholar] [CrossRef]
- Naseem, Z.; Naveed, M.; Asghar, H.N.; Hameed, M. Metal resistant Enterobacter cloacae ZA14 enhanced seedling vigor and metal tolerance through improved growth, physiology, and antioxidants in tomato (Solanum lycopersicum) irrigated with textile effluents. Sustainability 2022, 14, 13619. [Google Scholar] [CrossRef]
- Zhou, C.; Ge, N.; Guo, J.; Zhu, L.; Ma, Z.; Cheng, S.; Wang, J. Enterobacter asburiae reduces cadmium toxicity in maize plants by repressing iron uptake-associated pathways. J. Agric. Food Chem. 2019, 67, 10126–10136. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, X.; Liu, Y.; Li, S.; Liu, H.; Xu, H. Enhanced cadmium phytoextraction efficiency of ryegras (Lolium perenne L.) by porous media immobilized Enterobacter sp. TY-1. Chemosphere 2023, 337, 139409. [Google Scholar] [CrossRef]
- Gao, H.; Yang, D.; Yang, L.; Han, S.; Liu, G.; Tang, L.; Chen, J.; Wang, D.; Guo, C. Con-inoculation with Sinorhizobium meliloti and Entreobacter ludwigii improves the yield, nodulation, and quality of alfalfa (Medicago sativa L.) under saline-alkali environments. Ind. Crops. Prod. 2023, 199, 116818. [Google Scholar] [CrossRef]
- Panigrahi, S.; Rath, C.C. In vitro characterization of antimicrobial activity of an endophytic bacterium Enterobacter cloacae (MG001451) isolated from Ocimum sanctum. S. Afr. J. Bot. 2021, 143, 90–96. [Google Scholar] [CrossRef]
- Rani, N.; Kaur, G.; Kaur, S.; Upadhyay, S.K.; Tripathi, M. Development of Zn biofertilizer microbeads encapsulating Enterobacter ludwigii-PS10 mediated alginate, starch, poultry waste and its efficacy in Solanum lycopersicum growth enhancement. Int. J. Biol. Macromol. 2023, 240, 124381. [Google Scholar] [CrossRef] [PubMed]
- Safara, S.; Harighi, B.; Amini, J.; Bahramnejad, B. Screening of endophytic bacteria isolated from Beta vulgaris and Beta maritima plants for suppression of postharvest sugar beet soft rot agent, Enterobacter roggenkampii. Physiol. Mol. Plant Pathol. 2022, 121, 101892. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Chen, Y.; Luo, S.; Qin, Z.; Chen, S.; Wu, Y.; Yu, F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. EM-1: Comparison of different growth stages. Enviorn. Pollut. 2023, 336, 122513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Q.; Wang, G.; Shi, K. Mixed Enterobacter and Klebsiella bacteria enhance soybean biological nitrogen fixation ability when combined with rhizobia inoculation. Soil Biol. Biochem. 2023, 184, 109100. [Google Scholar] [CrossRef]
- Anand, G.; Shrivas, V.L.; Dubey, S.; Bhattacharjee, A. Stress-buster Enterobacter sp. alleviates salinity stress in Cajanus cajan together with impacting its rhizospheric microbiome. S. Afr. J. Bot. 2023, 156, 202–212. [Google Scholar] [CrossRef]
- Li, A.; Lu, Y.; Zhen, D.; Guo, Z.; Wang, G.; Shi, K.; Liao, S. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic. Chemosphere 2023, 329, 138663. [Google Scholar] [CrossRef] [PubMed]
- Dayel, M.F.A.; Sherif, F.E. Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield, and active compound compositions of Moringa oleifera under salinity stress. Saudi J. Biol. Sci. 2021, 28, 1687–1696. [Google Scholar] [CrossRef]
- Prajapati, K.; Modi, H.A. Growth promoting effect of potassium solubilizng Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Int. J. Adv. Res. Biol. Sci. 2016, 3, 168–173. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, V.; Usmani, Z.; Rani, A.; Chandra, A.; Gupta, V.K. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). J. Hazard Mater. 2019, 377, 391–398. [Google Scholar] [CrossRef]
- Pramanik, K.; Mitra, S.; Sarkar, A.; Maiti, T.K. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J. Hazard. Mater. 2018, 351, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Kumkaew, P.; Suaisom, P.; Mukkata, K.; Koonaphapdeelert, S.; Sawatdeenarunat, C.; Nitayavardhana, S. Biodecolorization of biogas plant effluent derived from anaerobically digested distillery wastewater by naturally selected Pseudomonas putida. Environ. Res. 2023, 236, 116807. [Google Scholar] [CrossRef] [PubMed]
- Tumewu, S.A.; Matsui, H.; Yamamoto, M.; Noutoshi, Y.; Toyoda, K.; Ichinose, Y. Identification of chemoreceptor proteins for amino acids involved in host plant infection in Pseduomonoas syringae pv. tabaci 6605. Microbiol. Res. 2021, 253, 126869. [Google Scholar] [CrossRef] [PubMed]
- Samarzija, D.; Zamberlin, S. Psychrotrophic bacteria Pseudomonas spp. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 375–383. [Google Scholar] [CrossRef]
- Alymanes, M.R.; Taheri, P.; Tarighi, S. Pseudomonas a frequent and important quorum quenching bacterium with biocontrol capability against many phytopathogens. Biocontrol Sci. Technol. 2016, 26, 1719–1735. [Google Scholar] [CrossRef]
- Gu, Y.-L.; Li, J.-Z.; Li, Y.; Cong, S.; Wang, J.; Ma, Y.-N.; Wei, H.-L. Pseudomonas cyclic lipopetide medpeptin: Biosynthesis and modulation of plant immunity. Engineering 2023, 28, 153–165. [Google Scholar] [CrossRef]
- Rojas-Solis, D.; Vences-Guzman, M.A.; Sohlenkamp, C.; Santoyo, G. Cardiolipin synthesis in Pseudomonas fluorescens UM270 plays a relevant role in stimulating plant growth under salt stress. Microbiol. Res. 2023, 268, 127295. [Google Scholar] [CrossRef]
- Jagtap, R.R.; Mali, G.V.; Waghmare, S.R.; Nadaf, N.H.; Nimbalkar, M.S.; Sonawane, K.D. Impact of plant growth promoting rhizobacteria Serratia nematodiphila RGK and Pseudomonas plecoglossicida RGK on secondary metabolites of turmeric rhizome. Biocatal. Agric. Biotechnol. 2023, 47, 102622. [Google Scholar] [CrossRef]
- Kaleh, A.M.; Singh, P.; Mazumdar, P.; Wong, G.R.; Chua, K.O.; Harikrishna, J.A. A halotolerant plant growth promoting consortium of Bacillus sp. RB3 and Pseudomonas sp. EB3 primes banana, Musa acuminata cv. Berangan, against salinity and Foc-TR4 stresses. Curr. Plant Biol. 2023, 35–36, 100294. [Google Scholar] [CrossRef]
- Guerra, M.; Carrasco-Fernandez, J.; Vales, J.H.; Panichini, M.; Castro, J.F. Draft genome of Pseudomonas sp. RGM 2987 isolated from Stevia philippiana roots reveals its potential as a plant biostimulant and potentially constitutes a novel species. Electron. J. Biotechnol. 2023, 61, 9–13. [Google Scholar] [CrossRef]
- Ghadamgahi, F.; Tarigi, S.; Taheri, P.; Saripella, G.V.; Anzalone, A.; Kalyandurg, P.B.; Catara, V.; Ortiz, R.; Vetukuri, R.R. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato, and taro pathogens. Biology 2022, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Chandra, H.; Kumari, P.; Bisht, R.; Prasad, R.; Yadav, S. Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phtyopathogenic fungi. Mol. Biol. Rep. 2020, 47, 6015–6026. [Google Scholar] [CrossRef] [PubMed]
- Sahebani, N.; Gholamrezaee, N. The biocontrol potential of Pseudomonas fluorescens CHA0 against root knot nematode (Meloidogyne javanica) is dependent on the plan species. Biol. Control 2021, 152, 104445. [Google Scholar] [CrossRef]
- Patel, J.K.; Madaan, S.; Archana, G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 2018, 215, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Dignam, B.E.A.; O’Callaghan, M.; Condron, L.M.; Raaijmakers, J.M.; Kowalchuk, G.A.; Wakelin, S.A. Impacts of long-term plant residue management on soil organic matter quality, Pseudomonas community structure and disease suppressiveness. Soil Biol. Biochem. 2019, 135, 396–406. [Google Scholar] [CrossRef]
- Hu, J.; Wei, Z.; Weidner, S.; Friman, V.-P.; Xu, Y.-C.; Shen, Q.-R.; Jousset, A. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 2017, 113, 122–129. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Ogwu, M.C.; Fawehinmi, F.O.; Adekunle, I.J. Comparative growth responses of Amaranthus (L.) species in Humus and Ferruginous Ultisols using plant growth promoting Rhizobacteria (Pseudomonas species). S. Afr. J. Bot. 2021, 137, 10–18. [Google Scholar] [CrossRef]
- Wallace, R.L.; Hirkala, D.L.; Nelsn, L.M. Pseudomonas fluorescens and low doses of chemicals inhibit postharvest decay of apples in commercial storage. Can. J. Plant Pathol. 2019, 41, 355–365. [Google Scholar] [CrossRef]
- Li, L.; Kim, P.; Yu, L.; Cai, G.; Chen, S.; Alfano, J.R.; Zhou, J.-M. Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell Host Microbe 2016, 20, 504–514. [Google Scholar] [CrossRef]
- Liffourrena, A.; Lucchesi, G.I. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. J. Biotechnol. 2018, 278, 28–33. [Google Scholar] [CrossRef]
- Modolo, L.V.; Augusto, O.; Almeida, I.M.G.; Pinto-Maglio, C.A.F.; Oliveira, H.C.; Seligman, K.; Salgado, I. Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci. 2006, 171, 34–40. [Google Scholar] [CrossRef]
- Maulidah, N.I.; Tseng, T.-S.; Chen, G.-H.; Hsieh, H.-Y.; Chang, S.-F.; Chuang, H.-W. Transcriptome analysis revealed cellular pathways associated with abiotic stress tolerance and disease resistance induced by Pseduomonas aeruginosa in banana plants. Plant Gene 2021, 27, 100321. [Google Scholar] [CrossRef]
- Bensidhoum, L.; Nabti, E.; Tabli, N.; Kupferschmied, P.; Weiss, A.; Rothballer, M.; Schmid, M.; Keel, C.; Hartmann, A. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur. J. Soil Biol. 2016, 75, 38–46. [Google Scholar] [CrossRef]
- Amijee, F.; Waterhouse, R.N.; Glover, L.A.; Paton, A.M. Non-pathogenic association of L-form bacteria (Pseudomonas syringae pv. Phaseolicola) with bean plants (Phaseolus vulgaris L.) and its potential for biocontrol of halo blight disease. Biocontrol Sci. Technol. 1992, 2, 203–214. [Google Scholar] [CrossRef]
- Sheoran, N.; Nadakkakath, A.V.; Munjal, V.; Kundu, A.; Subaharan, K.; Venugopal, V.; Rajamma, S.; Eapen, S.J.; Kumar, A. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemoprofiling of its antimicrobial volatile organic compounds. Microbiol. Res. 2015, 173, 66–78. [Google Scholar] [CrossRef]
- Al-Sman, M.; Abo-Elyousr, K.A.M.; Eraky, A.; El-Zawahry, A. Efficiency of Pseudomonas spp.-based formulation for controlling root rot disease of black cumin under greenhouse and field conditions. Arch Phytopathol. Pflanzenschutz 2019, 15, 1313–1325. [Google Scholar] [CrossRef]
- Fuloria, A.; Saraswat, S.; Rai, J.P.N. Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chem. Ecol. 2009, 25, 385–396. [Google Scholar] [CrossRef]
- Kurniawan, O.; Wilson, K.; Mohamed, R.; Avis, T.J. Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit. Biol. Control 2018, 126, 136–141. [Google Scholar] [CrossRef]
- Hernandez-Rodriguez, A.; Miguelez-Sierra, Y.; Guerrero, Y.A.; Osa, A.D.D.I.; Casanova, M.A. A practical guide to isolation of fluorescent Pseudomonas antagonic to Phytophthora palmivora (Butler) in Theobroma cacao L. Physiol. Mol. Plant Pathol. 2023, 127, 102061. [Google Scholar] [CrossRef]
- Tanveer, S.; Akhtar, N.; Ilyas, N.; Sayyed, R.Z.; Fitriatin, B.N.; Perveen, K.; Bukhari, N.A. Interactive effects of Pseudomonas putida and salicylic acid for mitigating drought tolerance in canola (Brassica napus L.). Heliyon 2023, 9, e14193. [Google Scholar] [CrossRef] [PubMed]
- Sandilya, S.P.; Bhuyan, P.M.; Nageshappa, V.; Gogoi, D.K.; Kardong, D. Impact of Pseudomonas aeruginosa MAJPIA-3 affecting the growth and phytonutrient production of castor, a primary host-plant of Samia ricini. J. Soil Sci. Plant Nutr. 2017, 17, 499–515. [Google Scholar] [CrossRef]
- Wasule, D.L.; Shinde, R.M.; Shingote, P.R.; Parlawar, N.D. Characterization of phosphate solubilizing Pseudomonas stutzeri for nodulation in chickpea. J. Plant Nutr. 2023, 46, 3018–3030. [Google Scholar] [CrossRef]
- Adhikary, A.; Kumar, R.; Pandir, R.; Bhardwaj, P.; Wusirika, R.; Kumar, S. Pseudomonas citronellolis; a multi-meta resistant and potential plant growth promoter against arsenic (V) stress in chickpea. Plant Physiol. Biochem. 2019, 142, 179–192. [Google Scholar] [CrossRef]
- Adhikary, A.; Saini, R.; Kumar, R.; Singh, I.; Ramakrishna, W.; Kumar, S. Pseudomonas citronellolis alleviates arsenic toxicity and maintains cellular homeostasis in chickpea (Cicer arietinum L.). Plant Physiol. Biochem. 2022, 184, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Oves, M.; Khan, M.S.; Zaidi, A. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur. J. Soil Biol. 2013, 56, 72–83. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Song, J.; Zhao, W.; He, X.; Chen, J.; Xiao, M. Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol. Biochem. 2011, 43, 915–922. [Google Scholar] [CrossRef]
- Ke, X.; Feng, S.; Wang, J.; Lu, W.; Zhang, W.; Chen, M.; Lin, M. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 2019, 42, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, S.; Hafeez, F.Y.; Rasul, G. Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedlings disease caused by Fusarium oxysporum. Biocontrol Sci. Technol. 2014, 24, 1227–1242. [Google Scholar] [CrossRef]
- Chang, C.-L.; Fu, X.-P.; Zhou, X.-G.; Guo, M.-Y.; Wu, F.-Z. Effects of seven different companion plants on cucumber productivity, soil chemical characteristics and Pseudomonas community. J. Integr. Agric. 2017, 16, 2206–2214. [Google Scholar] [CrossRef]
- Zohara, F.; Akanda, M.A.M.; Paul, N.C.; Rahman, M.; Islam, M.T. Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocatal. Agric. Biotechnol. 2016, 5, 69–77. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, C.; Ding, N.; Lin, Y.; Guo, B. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric. Water Manag. 2010, 97, 1994–2000. [Google Scholar] [CrossRef]
- Ran, L.X.; Liu, C.Y.; Wu, G.J.; van Loon, L.C.; Bakker, P.A.H.M. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol. Control 2005, 32, 111–120. [Google Scholar] [CrossRef]
- Andreolli, M.; Zapparoli, G.; Angelini, E.; Lucchetta, G.; Lampis, S.; Vallini, G. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol. Res. 2019, 219, 123–131. [Google Scholar] [CrossRef]
- Jin, S.; Liu, L.; Liu, Z.; Long, X.; Shao, H.; Chen, J. Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Ind. Crops. Prod. 2013, 43, 556–561. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Jones, E.E.; Casonato, S.; Monk, J.; Ridgway, H.J. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol. Control 2018, 116, 103–112. [Google Scholar] [CrossRef]
- Hatami, M.; Khanizadeh, P.; Bovand, F.; Aghaee, A. Silicon nanoparticles-mediated seed primsing and Pseudomonas spp. inoculation augment growth, physiology and antioxidant metabolic status in Melissa officinalis L. Ind. Crops Prod. 2021, 162, 113238. [Google Scholar] [CrossRef]
- Erdemci, I. Effect of Pseudomonas fluorescent rhizobacteria on growth and seed quality in lentil (Lens culianris Medik.). Commun. Soil Sci. Plant Anal. 2020, 51, 1852–1858. [Google Scholar] [CrossRef]
- Diaz, P.R.; Merlo, F.; Carrozzi, L.; Valverd, C.; Creus, C.M.; Maroniche, G.A. Lettuce growth improvement by Azospirillum argentinense and fluorescent Pseudomonas co-inoculation depends on strain compatibility. Appl. Soil Ecol. 2023, 189, 104969. [Google Scholar] [CrossRef]
- Khan, W.U.; Ahmad, S.R.; Yasin, N.A.; Ali, A.; Ahmad, A. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soil. Int. J. Phytoremed. 2017, 19, 514–521. [Google Scholar] [CrossRef]
- Tiyaghi, S.A.; Mahmood, I.; Khan, Z.; Ahmad, H. Biological control of soil-pathogenic nematodes infecting mungbean using Pseudomonas fluorescens. Arch. Phytopahtol. Plant Proect. 2011, 44, 1770–1778. [Google Scholar] [CrossRef]
- Sharma, A.; Johri, B.N. Combat of iron-deprivation through a plant growth promotion fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol. Res. 2003, 158, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Johri, B.N.; Sharma, A.K.; Glick, B.R. Plant growth-promoting bacterium Pseudomonas sp. Strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem. 2003, 35, 887–894. [Google Scholar] [CrossRef]
- Mercado-Blanco, J.; Rodriguez-Jurado, D.; Hervas, A.; Jimenez-Diaz, R.M. Suppression of Verticillium wilt olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol. Control 2004, 30, 474–486. [Google Scholar] [CrossRef]
- Zhao, M.; Tyson, C.; Chen, H.-C.; Gitaitis, R.; Kvitko, B.; Dutta, B. Pseudomonas alliivorans sp. Nov., a plant-pathogenic bacterium isolated from onion foliage in Georgia, USA. Syst. Appl. Microbiol. 2022, 45, 126278. [Google Scholar] [CrossRef] [PubMed]
- Shetty, K.; Curtis, O.F.; Levin, R.E.; Witkowsky, R.; Ang, W. Prevention of vitrification associated with in vitro shoot culture of oregano (Origanum vulgare) by Pseudomonas spp. J. Plant Physiol. 1995, 147, 447–451. [Google Scholar] [CrossRef]
- Shetty, K.; Carpenter, T.L.; Curtis, O.F.; Potter, T. Reduction of hyperhydricity tissue culture of oregano (Origanum vulgare) by extracellular polysaccharide isolated from Pseudomonas spp. Plant Sci. 1996, 120, 175–183. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Qureshi, A.; Akhtar, M.S. Biocontrol of root-knot nematode Meloidogyne incognita by Pseudomonas and Bacillus isolates on Pisum sativum. Arch. Phytopathol. Plant Protect. 2009, 42, 1154–1164. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, G.N.; Buch, A. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulate peanut (Arachis hypogaea L.) growth, defense physiology, and root system functioning to benefit the root-rhizobacterial interface. J. Plant Physiol. 2020, 248, 153144. [Google Scholar] [CrossRef]
- Raj, S.N.; Shetty, N.P.; Shetty, H.S. Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pear millet plants and induces resistance against downy mildew. Int. J. Pest Manag. 2004, 50, 41–48. [Google Scholar] [CrossRef]
- Nakkeeran, S.; Kavitha, K.; Chandrasekar, G.; Renukadevi, P.; Fernando, W.G.D. Induction of plant defence compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci. Technol. 2006, 16, 403–416. [Google Scholar] [CrossRef]
- Linu, M.S.; Asok, A.K.; Thampi, M.; Sreekumar, J.; Jisha, M.S. Plant growth promotion traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Commun. Soil Sci. Plant Anal. 2019, 50, 444–457. [Google Scholar] [CrossRef]
- Agisha, V.N.; Eapen, S.J.; Monica, V.; Sheoran, N.; Munjal, V.; Suseelabhai, R.; Kumar, A. Plant endophytic Pseudomonas putida BP25 induces expression of defense genes in black pepper roots: Deciphering through suppression subtractive hybridization analysis. Physiol. Mol. Plant Pathol. 2017, 100, 106–116. [Google Scholar] [CrossRef]
- Kumar, G.P.; Desai, S.; Reddy, G.; Amalraj, E.L.D.; Rasul, A.; Ahmed, S.K.M.H. Seed bacterization with fluorescent Pseudomonas spp. Enhances nutrient uptake and growth of Cajanus cajan L. Commun Soil Sci. Plant Anal. 2015, 46, 652–665. [Google Scholar] [CrossRef]
- Kharamidoost, Z.; Jamali, S.; Moradi, M.; Riseh, R.S. Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes spp. on Pistachios. Biocontrol Sci. Technol. 2015, 25, 291–301. [Google Scholar] [CrossRef]
- Seenivasan, N.; David, P.M.M.; Vivekanandan, P.; Samiyappan, R. Biological control of rice root-knot nematode, Meloidogyne graminicola through mixture of Pseudomonas fluorescens strains. Biocontrol Sci. Technol. 2012, 22, 611–632. [Google Scholar] [CrossRef]
- Deshwal, V.K.; Kumar, P. Plant growth promoting activity of Pseudomonas in rice crop. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 152–157. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Liu, Q.; Topalovic, O.; Wang, Q.; Yang, X.; Feng, Y. Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfredii. Chemosphere 2020, 256, 127156. [Google Scholar] [CrossRef] [PubMed]
- Sabannavar, S.J.; Lakshman, H.C. Synergistic interactions among Azotobacter, Pseudomonas, and Arbuscular mycorrhizal fungi on two varieties of Sesamum indicum L. Commun. Soil Sci. Plant Anal. 2011, 42, 2122–2133. [Google Scholar] [CrossRef]
- Kumar, G.P.; Desai, S.; Leo Daniel Amalraj, D.; Ahmed, M.H.S.K.; Reddy, G. Plant growth promoting Pseudomonas spp. from divrse agro-ecosystems of India for Sorghum bicolor L. J. Biofertil. Biopestic. 2012, S7, 1–8. [Google Scholar] [CrossRef]
- Shim, J.; Babu, A.G.; Velmurugan, P.; Shea, P.J.; Oh, B.-T. Pseudomonas fluorescens JH 70-4 promotes Pb stabilization and early seedling growth of Sudan grass in contaminated mining site soil. Environ. Technol. 2014, 35, 2589–2596. [Google Scholar] [CrossRef]
- Costa-Gutierrez, S.; Raimondo, E.E.; Lami, M.J.; Vincent, P.A.; Espinosa-Urgel, M.; Cristobal, R.E.D. Inoculation of Pseudomonas mutant strains can improve growth of soybean and corn plants in soils under salt stress. Rhizosphere 2020, 16, 100255. [Google Scholar] [CrossRef]
- Kakembo, D.; Lee, Y.H. Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biol. Control 2019, 134, 72–81. [Google Scholar] [CrossRef]
- Kang, S.-M.; Radhakrishnan, R.; Khan, A.L.; Kim, M.-J.; Park, J.-M.; Kim, B.-R.; Shin, D.-H.; Lee, I.-J. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought condition. Plant Physiol. Biochem. 2014, 84, 115–124. [Google Scholar] [CrossRef]
- Viswanathan, R.; Samiyappan, R. Bio-formulation of fluorescent Pesudomonas spp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane. Arch. Phytopathol. Plant Protect. 2008, 41, 377–388. [Google Scholar] [CrossRef]
- Moin, S.; Ali, S.A.; Hasan, K.A.; Tariq, A.; Sultana, V.; Ara, J.; Ehteshamul-Haque, S. Managing the root rot disease of sunflower with endophytic fluorescent Pseudomonas associated with healthy plants. Crop Protect. 2020, 130, 105066. [Google Scholar] [CrossRef]
- Arif, M.S.; Riaz, M.; Shahzad, S.M.; Yasmeen, T.; Akhtar, M.J.; Riaz, M.A.; Jassey, V.E.J.; Bragazza, L.; Buttler, A. Associative interplay of plant growth promoting rhizobacteria (Pseudomonas aeruginosa S40) with nitrogen fertilizers improves sunflower (Helianthus annuus L.) productivity and fertility of aridisol. Appl. Soil Ecol. 2016, 108, 238–247. [Google Scholar] [CrossRef]
- Kumar, A.; Tripti; Voropaeva, O.; Maleva, M.; Panikovskaya, K.; Borisova, G.; Rajkumar, M.; Bruno, L.B. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain E0026 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere 2021, 266, 128983. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Abbasi, M.K.; Hameed, S.; Yasmin, S.; Hanif, M.K.; Naqqash, T.; Imran, A. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol. Res. 2018, 216, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Solis-Ortiz, C.S.; Gonzalez-Bernal, J.; Kido-Diaz, H.A.; Pena-Uribe, C.A.; Lopez-Bucio, J.S.; Lopez-Bucio, J.; Guevara-Garcia, A.A.; Garcia-Pineda, E.; Villegas, J.; Campos-Garcia, J.; et al. Bacterial cyclodipeptides elicit Arabidopsis thaliana immune responses reducing the pathogenic effects of Pseudomonas aeruginosa PA01 strains on plant development. J. Plant Physiol. 2022, 275, 153738. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-Y.; Ni, H.-T.; Li, T.; Lay, K.-D.; Liu, D.-S.; He, X.-Y.; Ou, K.; Tang, X.-Y.; Wang, X.-B.; Qiu, L.-J. Pseudomonas sp. TK35-L enhances tobacco root development and growth by inducing HRGPnt3 expression in plant lateral root formation. J. Integr. Agric. 2020, 19, 2549–2560. [Google Scholar] [CrossRef]
- Giles, C.D.; Hsu, P.-C.; Richardson, A.E.; Hurst, M.R.H.; Hill, J.E. Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp. Soil Biol. Biochem. 2014, 68, 263–269. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Matsi, T.; Kamou, N.; Avdouli, D.; Mellidou, I.; Karamanoli, K. Decoding the potential of a new Pseudomonas putida strain for inducing drought tolerance of tomato (Solanum lycopersicum) plants through seed biopriming. J. Plant Physiol. 2022, 271, 153658. [Google Scholar] [CrossRef] [PubMed]
- Karnwal, A. Pseudomonas spp., a zinc-solubilizing vermicompost bacteria with plant growth-promoting activity moderates zinc biofortification in tomato. Int. J. Veg. Sci. 2021, 27, 398–412. [Google Scholar] [CrossRef]
- Hsu, C.-K.; Micallef, S.A. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth promotion rhizobacteria. Int. J. Food Microbiol. 2017, 259, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Olanya, O.M.; Taylor, J.; Ukuku, D.O.; Malik, N.S.A. Inactivation of Salmonella serovars by Pseudomonas chlororaphis and Pseudomonas fluorescens strains on tomatoes. Biocontrol Sci. Technol. 2015, 25, 399–413. [Google Scholar] [CrossRef]
- Mekureyaw, M.F.; Pandey, C.; Hennessy, R.C.; Nicolaisen, M.H.; Liu, F.; Nybroe, O.; Roitsch, T. The cytokinin-producing plant beneficial bacterium Pseduomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J. Plant Physiol. 2022, 270, 153629. [Google Scholar] [CrossRef] [PubMed]
- Cantabella, D.; Dolcet-Sanjuan, R.; Solsona, C.; Vilanova, L.; Torres, R.; Teixido, N. Optimization of a food industry-waste-based medium for the production of the plant growth promoting microorganism Pseudomonas oryzihabitans PGP01 based on agro-food industries by-products. Biotechnol. Rep. 2021, 32, e00675. [Google Scholar] [CrossRef] [PubMed]
- Brilli, F.; Pollastri, S.; Raio, A.; Baraldi, R.; Neri, L.; Bartolini, P.; Podda, A.; Loreto, A.; Loreto, F.; Maserti, B.E.; et al. Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J. Plant Physiol. 2019, 232, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.M.; Romero, F.M.; Rossi, F.R.; Marina, M.; Maiale, S.J.; Calzadilla, P.I.; Pickenstain, F.L.; Ruiz, O.A.; Garriz, A. Modulation of plant and bacterial polyamine metabolism during the compatible interaction between tomato and Pseudomonas syringae. J. Plant. Physiol. 2018, 231, 281–290. [Google Scholar] [CrossRef]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Raguchander, T. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol. Res. 2018, 210, 65–73. [Google Scholar] [CrossRef]
- Afzal, A.; Saleem, S.; Iqbal, Z.; Jan, G.; Malik, M.F.A.; Asad, S.A. Interaction of Rhizobium and Pseudomonas with wheat (Triticum aestivum L.) in potted soil with or withour P2O5. J. Plant Nutr. 2014, 37, 2144–2156. [Google Scholar] [CrossRef]
- Margesin, R.; Fonteyne, P.-A.; Redl, B. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 2005, 156, 68–75. [Google Scholar] [CrossRef]
- Gibu, N.; Linh, D.V.; Suzuki, N.; Ngan, N.T.N.; Fukuda, M.; Anh, T.K.; Huong, N.L.; Kasai, D. Identification and transcriptional analysis of poly(cis-1,4-isoprene) degradation gene in Rhodococcus sp. strain RDE2. J. Biosci. Bioengin. 2022, 133, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Fan, J.; Jia, Y.; Tang, X.; Chen, J.; Shen, C. Phenotype and metabolism alterations in PCB-degrading Rhodococcus biphenylivorans TG9T under acid stress. J. Environ. Sci. 2023, 127, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Patek, M.; Grulich, M.; Nesvera, J. Stress response in Rhodococcus strains. Biotechnol. Adv. 2021, 53, 107698. [Google Scholar] [CrossRef] [PubMed]
- Gurtler, V.; Mayall, B.C.; Seviour, R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol. Rev. 2004, 28, 377–403. [Google Scholar] [CrossRef] [PubMed]
- Tancsics, A.; Benedek, T.; Szoboszlay, S.; Veres, P.G.; Farkas, M.; Mathe, I.; Marialigeti, K.; Kukolya, J.; Lanyi, S.; Kriszt, B. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus. Syst. Appl. Microbiol. 2015, 38, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Jiao, S.; Wang, M.; Yu, H.; Shen, Z. A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metabol. Engin. 2020, 57, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Qiu, L.; Liang, Z.; Lu, Q.; Wang, S.; Shim, H. Isolation and characterization of Rhodococcus sp. GG1 for metabolic degradation of chloroxylenol. Chemosphere 2023, 338, 139462. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, S.; Hamdane, A.M.; Rhouma, A. Isolation and characterization of Rhodococcus spp. from pistachio and almond rootstocks and trees in Tunisia. Agronomy 2021, 11, 355. [Google Scholar] [CrossRef]
- Abraham, J.; Silambarasan, S. Biodegradation of carbendazim by Rhodococcus erythropolis and its plant growth-promoting traits. Biol. Environ. 2018, 118B, 69–80. [Google Scholar] [CrossRef]
- Trivedi, P.; Pandey, A.; Sa, T. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7,905. J. Basic. Microbiol. 2007, 47, 513–517. [Google Scholar] [CrossRef]
- Safronova, V.I.; Stepanok, V.V.; Engqvist, G.L.; Alekseyev, Y.V.; Belimov, A.A. Root-associated bacteria containing 1-amiocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. 2006, 42, 267–272. [Google Scholar] [CrossRef]
- Vereecke, D.; Zhang, Y.; Francis, I.M.; Lambert, P.Q.; Venneman, J.; Stamler, R.A.; Kilcrease, J.; Randall, J.J. Functional genomics insights into the pathogenecity, habitat fitness, and mechanisms modifying plant development of Rhodococcus sp. PBTS1 and PBTS2. Front. Microbiol. 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, T.; Felder, M.; Nussbaumer, T.; Fischer, D.; Kublik, S.; Chowdhury, S.P.; Schloter, M.; Rothballer, M. De Novo genome assembly of a plant-associated Rhodococcus qingshengii strain (RL1) isolated from Eruca sativa Mill. and showing plant growth promoting properties. Microbiol. Resour. Announc. 2019, 8, e01106-19. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent Pat. Food Nutr. Agric. 2022, 13, 72–92. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat. Food Nutr. Agric. 2023, 17, 206–244. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr. Org. Synth. 2023, 20, 1–11. [Google Scholar] [CrossRef]
- John, C.J.; Bibishna, A.V.; Mallikarjunaswamy, G.E. Antimycotic effects of a prodigiosin producing Serratia marcescens rhizobacteria. Rhizosphere 2021, 18, 100336. [Google Scholar] [CrossRef]
- Grimont, P.A.D.; Grimont, F.; Starr, M.P. Serratia species isolated from plants. Curr. Microbiol. 1981, 5, 317–322. [Google Scholar] [CrossRef]
- Jung, B.K.; Khan, A.R.; Hong, S.-J.; Park, G.-S.; Park, Y.-J.; Park, C.E.; Jeon, H.-J.; Lee, S.-E.; Shin, J.-H. Genomic and phenotypic analyses of Serratia fonticola strain GS2: A rhizobacterium isolated from sesame rhizosphere that promotes plant growth and produces N-acyl homoserine lactone. J. Biotechnol. 2017, 241, 158–162. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett. Drug Des. Discov. 2023, 2023, 1–16. [Google Scholar] [CrossRef]
- Lim, Y.-L.; Yong, D.; Ee, R.; Krishnan, T.; Tee, K.-K.; Yin, W.-F.; Chan, K.-G. Complte genome sequence of Serratia fonticola DSM 4576T, a potential plant growth promoting bacterium. J. Biotechnol. 2015, 214, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Kumar, V.; Bhatnagar, A.; Vithaage, M.; Selvasembian, R.; Ambade, B.; Meers, E.; Chaudhuri, P.; Biswas, J.K. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. Environ. Res. 2022, 214, 113937. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Sun, Y.; Zhang, Z.; Zhao, D.; Wang, N.; Wang, L.; Guo, H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol. Res. 2022, 256, 126956. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, A.; Mirza, B.S.; Mclean, J.E.; Yasmin, S.; Shah, T.M.; Malik, K.A.; Mira, M.S. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Res. Microbiol. 2016, 167, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.A.; Pandey, P.; Sharma, G.D. Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI J. Biosci. 2016, 23, 173–180. [Google Scholar] [CrossRef]
- Tanwir, K.; Javed, M.T.; Abbas, S.; Shahid, M.; Akram, M.S.; Chaudhary, H.J.; Iqbal, M. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicol. Environ. Saf. 2021, 208, 111584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, X.; Huang, C.; Zhou, J.; Shi, J.; Zhao, L. Temperature-regulatd metabolites of Serratia marcescens inhibited reproduction of pinewood nematode Bursaphelenchus xylophilus. iScience 2023, 26, 107082. [Google Scholar] [CrossRef] [PubMed]
- Obi, L.U.; Tekere, M.; Roopnarain, A.; Sanko, T.; Maguvu, T.E.; Bezuidenhout, C.C.; Adeleke, R.A. Whole genome sequence of Serratia marcescens 39-H1, a potential hydrolytic and acidogenic strain. Biotechnol. Rep. 2020, 28, eoo542. [Google Scholar] [CrossRef]
- Bhatta, D.; Adhikari, A.; Kang, S.-M.; Kwon, E.-H.; Jan, R.; Kim, K.-M.; Lee, I.-J. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. Ecotoxicol. Environ. Saf. 2023, 263, 115377. [Google Scholar] [CrossRef]
- Ting, A.S.Y.; Meon, S.; Kadir, J.; Radu, S.; Singh, G. Induction of host defense enzymes by the endophytic bacterium Serratia marcescens, in banana plantlets. Int. J. Pest Manag. 2010, 56, 183–188. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, W.; Sun, K.; Lin, X.; Li, S.; Waigi, M.G.; Ling, W. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination. Int. J. Phytoremed. 2017, 19, 718–724. [Google Scholar] [CrossRef]
- Borgi, M.A.; Saidi, I.; Moula, A.; Rhimi, S.; Rhimi, M. The attractive Serratia plymuthica BMA1 strain with high rock phosphate-solubilizing activity and its effect on the growth and phosphorus uptake by Vicia faba L. plants. Geomicrobiol. J. 2020, 37, 437–445. [Google Scholar] [CrossRef]
- Someya, N.; Nakajima, M.; Watanabe, K.; Hibi, T.; Akutsu, K. Potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Sci. Technol. 2005, 15, 105–109. [Google Scholar] [CrossRef]
- Restrepo, S.R.; Henao, C.C.; Galvis, L.M.A.; Perez, J.C.B.; Sanchez, R.A.H.; Garcia, S.D.G. Siderophore containing extract from Serratia plymuthica AED38 as an efficient strategy against avocado root rot caused by Phytophthora cinnamomi. Biocontrol Sci. Technol. 2021, 31, 284–298. [Google Scholar] [CrossRef]
- Turhan, E.; Kiran, S.; Ates, C.; Ates, O.; Kusvuran, S.; Ellialtioglu, S.S. Ameliorative effects of inoculation with Serratia marcescens and grafting on growth of eggplant seedlings under salt stress. J. Plant Nutr. 2020, 43, 594–603. [Google Scholar] [CrossRef]
- Prischmann, D.A.; Lehman, R.M.; Christie, A.A.; Dashiell, K.E. Characterization of bacteria isolated from maize roots: Emphasis on Serratia and infestation with corn rootworms (Chrysomelidae: Diabrotica). Appl. Soil. Ecol. 2008, 40, 417–431. [Google Scholar] [CrossRef]
- Youssef, S.A.; Tartoura, K.A.; Greash, A.G. Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiol. Mol. Plant Pathol. 2018, 103, 16–22. [Google Scholar] [CrossRef]
- Sriwati, R.; Maulidia, V.; Intan, N.; Oktarina, H.; Syamsuddin; Khairan, K.; Skala, L.; Mahmud, T. Endophytic bacteria as biological agents to control fusarium wilt disease and promote tomato plant growth. Physiol. Mol. Plant Pathol. 2023, 125, 101994. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H. The effectiveness of rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12560. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. The roles of a light-dependent protochlorophyllide oxidoreductase (LPOR), and ATP-dependent dark operative protochlorophyllide oxidoreductase (DPOR) in chlorophyll biosynthesis. Not. Bot. Horti. Agrobot. Cluj-Napoca 2021, 49, 12456. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Archaea, bacteria and termite, nitrogen fixation and sustainable plants production. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12172. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Hata, E.M.; Zulperi, D.; Ismail, S.I.; Ismail, M.R.; Zainudin, N.A.I.M.; Saido, N.B.; Yusof, M.T. Streptomyces-mediated growth enhancement and bacterial panicle blight disease suppression in rice plants under greenhouse conditions. J. Biotechnol. 2022, 359, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Fox, B.G.; Takasuka, T.E. Consolidated bioprocessing of plant biomass to polyhydroxyalkanoate by co-culture of Streptomyces sp. SirexAA-E and Priestia megaterium. Bioresour. Technol. 2023, 376, 128934. [Google Scholar] [CrossRef]
- Kinkel, L.L.; Schlatter, D.C.; Bakker, M.G.; Arenz, B.E. Streptomyces competition and co-evolution in relation to plant disease suppression. Res. Micrbiol. 2012, 163, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Bekiesch, P.; Oberhofer, M.; Sykora, C.; Urban, E.; Zotchev, S.B. Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonna. Nat. Prod. Res. 2019, 35, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Ngalimat, M.S.; Hata, E.M.; Zulperi, D.; Ismail, S.I.; Ismail, M.R.; Zainudin, N.A.I.M.; Saidi, N.B.; Yusof, M.T. Induction of systemic resistance in rice plants against Burkholderia glumae infection by bioformulation of Streptomyces spp. under greenhouse conditions. Biol. Control 2023, 184, 105286. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Chen, Z.; Zhang, H.; Wang, Z.; Zhu, Y.; Liu, B. A Streptomyces sp. strain: Isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants. Biol. Control 2019, 136, 104004. [Google Scholar] [CrossRef]
- Kaur, T.; Manhas, R.K. Evaluation of ACC deaminase and indole acetic acid production by Streptomyces hydrogenans DH16 and its effect on plant growth promotion. Biocatal. Agric. Biotechnol. 2022, 42, 102321. [Google Scholar] [CrossRef]
- Niu, Z.; Yue, Y.; Su, D.; Ma, S.; Hu, L.; Hou, X.; Zhang, T.; Dong, D.; Zhang, D.; Lu, C.; et al. The characterization of Streptomyces algalfae strain 11F and its effect on seed germination and growth promotion in switchgrass. Biomass Bioenerg. 2022, 158, 106360. [Google Scholar] [CrossRef]
- Wang, H.; Fu, L.; Meng, J.; Ding, R.; Wang, Y.; Wang, X.; Han, C.; Li, L.; Zhu, C. Antagonistic activity and biocontrol effects of Streptomyces sp. CX3 cell-free supernatant against blueberry canker caused by Botryosphaeria dothidea. Crop Prot. 2022, 162, 106072. [Google Scholar] [CrossRef]
- Kadaikunnan, S.; Alharbi, N.S.; Khaled, J.M.; Alobaidi, A.S. Biocontrol property of Streptomyces parvulus VRR3 in green gram plant (Vigna radiata L.) against Fusarium solani in greenhouse. Physiol. Mol. Plant Pathol. 2023, 128, 102128. [Google Scholar] [CrossRef]
- Park, E.-J.; Jang, H.-J.; Park, J.-Y.; Yang, Y.K.; Kim, M.J.; Park, C.S.; Lee, S.; Yun, B.-S.; Lee, S.-J.; Lee, S.W.; et al. Efficacy evaluation of Streptomyces nigrescens KA-1 against the root-knot nematode Meloidogyne incognita. Biol. Control. 2023, 179, 105150. [Google Scholar] [CrossRef]
- Ruangwong, O.-U.; Kunasakdakul, K.; Daengsuwan, W.; Wonglom, P.; Pitija, K.; Sunpapao, A. Streptomyces rhizobacterium with antifungal properties against spadix rot in flamino flowers. Physiol. Mol. Plant Pathol. 2022, 117, 101784. [Google Scholar] [CrossRef]
- Puppala, K.R.; Bhavsar, K.; Sonalkar, V.; Khire, J.M.; Dharne, M.S. Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatal. Agric. Biotechnol. 2019, 18, 101020. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, C.; Wang, S.; Zhang, M.; Li, Y.; Xue, Q.; Guo, Q.; Lai, H. Widely targeted metabolomic, transcriptomic, and metagenomic profiling reveal microbe-plant-metabolic reprogramming patterns mediated by Streptomyces pactum Act12 enhance the fruit quality of Capsicum annuum L. Food Res. Int. 2023, 166, 112587. [Google Scholar] [CrossRef]
- Abbasi, S.; Kafi, S.A.; Karimi, E.; Sadeghi, A. Streptomyces consortium improved quality attributes of bell pepper fruits, induced plant defense priming, and changed microbial communities of rhizosphere under commercial greenhouse conditions. Rhizosphere 2022, 23, 100570. [Google Scholar] [CrossRef]
- Djuidje, P.F.K.; Asultan, W.; Beaulieu, C.; Wong, M.Y.; Boudjeko, T. Characterization of endophytic Streptomyces strains from roots of cocoyam (Xanthosoma sagittifolium L. Schott) in the South West region of Cameroon, their in vitro plant growth promoting abilities and biocontrol efficacy against Pythium myriotylum. S. Afr. J. Bot. 2022, 144, 145–155. [Google Scholar] [CrossRef]
- Ankati, S.; Srinivas, V.; Pratyusha, S.; Gopalakrishnan, S. Streptomyces consortia-mediated plant defense against Fusarium wilt and plant growth-promotion in chickpea. Microb. Pathogen. 2021, 157, 104961. [Google Scholar] [CrossRef]
- Awla, H.K.; Kadir, J.; Othman, R.; Rashid, T.S.; Hamid, S.; Wong, M.-Y. Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biol Control. 2017, 112, 55–63. [Google Scholar] [CrossRef]
- Veilumuthu, P.; Nagarajan, T.; Sasikumar, S.; Siva, R.; Jose, S.; Godwin Christopher, J. Streptomyces sp. VITGV100: An endophyte from Lycopersicon esculentum as new source of indole type compounds. Biochem. Syst. Ecol. 2022, 105, 104523. [Google Scholar] [CrossRef]
- Umurzokov, M.; Lee, Y.-M.; Kim, H.J.; Cho, K.M.; Kim, Y.S.; Choi, J.S.; Park, K.W. Herbicidal characteristics and structural identification of a potential active compound produced by Streptomyces sp. KRA18-249. Pest. Biochem. Physiol. 2022, 187, 105213. [Google Scholar] [CrossRef]
- Selvaraj, J.N.; Ganapathi, U.; Vincent, S.G.P.; Ramamoorthy, S.; Thavasimuthu, C. Statistical optimization of media components for antibiotic production in Streptomyces sp. CMSTAAHAL-3. Electron. J. Biotechnol. 2023, 65, 1–13. [Google Scholar] [CrossRef]
- Ruanpanun, P.; Nimnoi, P. Evaluation on the efficiency and persistence of Streptomyces jietaisiensis strain A034 in controlling root know disease and promoting plant growth in the plant-parasitic nematode infested soils. Biol. Control. 2020, 144, 104221. [Google Scholar] [CrossRef]
- Cao, L.; Gao, Y.; Yu, J.; Niu, S.; Zeng, J.; Yao, Q.; Wang, X.; Bu, Z.; Xu, T.; Liu, X.; et al. Streptomyces hygroscopicus OsiSh-2-induced mitigation of Fe deficiency in rice plants. Plant Physiol. Biochem. 2021, 158, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Cornejo, P.; Sipahutar, M.K.; Pugazhendhi, A. Amelioration of aluminum phytotoxicity in Solanum lycopersicum by co-inoculation of plant growth promoting Kosakonia radicincitans strain CABV2 and Streptomyces corchorusii strain CASL5. Sci. Total Environ. 2022, 832, 154935. [Google Scholar] [CrossRef] [PubMed]
- Nimnoi, P.; Ruanpanum, P. Suppression of root-knot nematode and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biol. Control. 2020, 145, 104244. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, L.-J.; Pan, S.-Y.; Li, X.-W.; Xu, M.-J.; Zhang, C.-M.; Xing, K.; Qin, S. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP084. Rhizosphere 2020, 16, 100262. [Google Scholar] [CrossRef]
- Nozari, R.M.; Ramos, L.M.; Luz, L.A.D.; Almeida, R.N.; Lucas, A.M.; Cassel, E.; Oliveira, S.D.D.; Astarita, L.V.; Santarem, E.R. Halotolerant Streptomyces spp. Induce salt tolerance in maize through systemic induction of the antioxidant system and accumulation or proline. Rhizosphere 2022, 24, 100623. [Google Scholar] [CrossRef]
- Diaz-Diaz, M.; Bernal-Cabrera, A.; Trapero, A.; Gonzalez, A.J.; Medina-Marrero, R.; Cupull-Santana, R.D.; Aguila-Jimenez, E.; Agusti-Brisach, C. Biocontrol of root rot complex disease of Phaseolus vulgaris by Streptomyces sp. strains in the field. Crop Prot. 2023, 165, 106164. [Google Scholar] [CrossRef]
- Nimnoi, P.; Pongsilp, N.; Ruanpanun, P. Monitoring the efficiency of Streptomyces galilaeus strain KPS-C004 against root knot disease and the promotion of plant growth in the plant-parasitic nematode infested soils. Biol. Control. 2017, 114, 158–166. [Google Scholar] [CrossRef]
- Tamreihao, K.; Ningthoujam, D.S.; Nimaichand, S.; Singh, E.S.; Reena, P.; Singh, S.H.; Nongthomba, U. Biocontrol and plants growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol. Res. 2016, 192, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Nwet, T.T.; Ge, B.; Zhao, W.; Liu, B.; Cui, H.; Zhang, K. Antigunfal and plant growth-promoting activities of Streptomyces roseoflavus strain NKZ-259. Biol Control 2018, 125, 57–64. [Google Scholar] [CrossRef]
- Toumatia, O.; Compant, S.; Yekkour, A.; Goudjal, Y.; Sabaou, N.; Mathieu, F.; Sessitsch, A.; Zitouni, A. Biocontrol and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. S. Afr. J. Bot. 2016, 105, 234–239. [Google Scholar] [CrossRef]
- Aallam, Y.; Dhiba, D.; El-Rasafi, T.; Abbas, Y.; Haddioui, A.; Tarkka, M.; Hamdali, H. Assessment of two endemic rock phosphate solubilizing Streptomyces spp. on sugar beet (Beta vulgaris L.) growth under field conditions. Sci. Hortic. 2023, 316, 112033. [Google Scholar] [CrossRef]
- Fu, X.; Liu, S.; Ru, J.; Tang, B.; Zhai, Y.; Wang, Z.; Wang, L. Biological control of potato late blight by Streptomyces sp. FXP04 and potential role of secondary metabolites. Biol. Control 2022, 169, 104891. [Google Scholar] [CrossRef]
- Devi, S.; Diksha; Verma, J.; Sohal, S.K.; Manhas, R.K. Insecticidal potential of endophytic Streptomyces sp. against Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) and biosafety evaluation. Toxicon 2023, 233, 107246. [Google Scholar] [CrossRef]
- Sharma, M.; Manhas, R.K. Biocontrol potential of Streptomyces sp. M4 and salvianolic acid B produced by it against Alternaria black leaf spot. Microb. Pathogen. 2022, 173, 105869. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, D.S.; Kumar, R.S.; Nagaraja, S.K.; Perumal, K.; Nayaka, S. Exogenous application of antagonistic Streptomyces sp. SND-2 triggers defense response in Vigna radiata (L.) R. Wilczek (mung bean) against anthracnose infection. Environ. Res. 2023, 231, 116212. [Google Scholar] [CrossRef]
- Pusparajah, P.; Letchumanan, V.; Law, J.W.-F.; Mutalib, N.-S.A.; Ong, Y.S.; Goh, B.-H.; Tan, L.T.-H.; Lee, L.-H. Streptomyces sp.—A treasure trove of weapons to combat methicillin-resistant Staphylococcus aureus biofilm associated with biomedical devices. Int. J. Mol. Sci. 2021, 22, 9360. [Google Scholar] [CrossRef]
- Boykova, I.; Yuzikhin, O.; Novikova, I.; Ulianich, P.; Eliseev, I.; Shaposhnikov, A.; Yakimov, A.; Belimov, A. Strain Streptomyces sp. P-56 produces nonactin and possesses insecticidal, acaricidal, antimicrobial and plant growth-promoting traits. Microorganisms 2023, 11, 764. [Google Scholar] [CrossRef]
- Samac, D.A.; Willert, A.M.; McBride, M.J.; Kinkel, L.L. Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Appl. Soil Ecol. 2003, 22, 55–66. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Zhou, D.; Zhang, M.; Qi, D.; Jing, T.; Zang, X.; Qi, C.; Wang, W.; Xie, J. Biological control of banana wilt disease caused by Fusarium oxyspoum f. sp. Cubense using Streptomyces sp. H4. Biol. Control 2021, 155, 104524. [Google Scholar] [CrossRef]
- Singh, S.P.; Gaur, R. Endophytic Streptomyces pp. Underscore induction of defense regulatory genes and confers resistance against Scleortium rolfsii in chickpea. Biol. Control 2017, 104, 44–56. [Google Scholar] [CrossRef]
- Vijayabharathi, R.; Gopalakrishnan, S.; Sathya, A.; Kumar, M.V.; Srinivas, V.; Mamta, S. Streptomyces sp. as plant growth-promoters and host-plant resistance inducers against Botrytis cinerea in chickpea. Biocontrol Sci. Technol. 2018, 28, 1140–1163. [Google Scholar] [CrossRef]
- Anusha, B.G.; Gopalakrishnan, S.; Naik, M.K.; Sharma, M. Evaluation of Streptomyces spp. and Bacillus spp. for biocontrol of Fusarium wilt in chickpea (Cicer arietinum L.). Arch. Phytopathol. Plant Protect. 2019, 52, 5–6. [Google Scholar] [CrossRef]
- Ali, A.; Li, Y.; Jeyasundar, P.G.S.A.; Azeem, M.; Su, J.; Wahid, F.; Mahar, A.; Shah, M.Z.; Li, R.; Zhang, Z. Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributed of Symphytum officinale in smelter/mining polluted soil. Environ. Pollut. 2021, 291, 118237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, T.; Xue, Z.; Liu, Y.; Li, Y.; Li, Y.; Chen, Q. Streptomyces application triggers reassembly and optimization of the rhizosphere microbiome of cucumber. Diversity. 2021, 13, 413. [Google Scholar] [CrossRef]
- Faheem, M.; Raza, W.; Zhong, W.; Nan, Z.; Shen, Q.; Xu, Y. Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol. Control 2015, 81, 101–110. [Google Scholar] [CrossRef]
- Sadeghy, B.; Hatamy, N. Isolation and investigation of extracellular metabolites of Streptomyces sp. for biological control of Fusarium subjlutinans, the causal agent of wilting cucumber greenhouse. Arch. Phytopathol. Plant Protect. 2014, 47, 171–177. [Google Scholar] [CrossRef]
- Qi, Y.; Li, X.; Wang, J.; Wang, C.; Zhao, S. Efficacy of plant growth-promoting bacteria Streptomyces werraensis F3 for chemical modification of diseases soil of ginseng. Biocontrol Sci. Technol. 2021, 31, 219–233. [Google Scholar] [CrossRef]
- Kim, J.D.; Kang, J.E.; Kim, B.S. Postharvest disease control efficacy of the polyene macrolide lucensomycin produced by Streptomyces plumbeus strain CA5 against gray mold on grapes. Postharvest Biol. Technol. 2020, 162, 111115. [Google Scholar] [CrossRef]
- Ziedan, E.-S.H.; Farrag, E.S.; El-Mohamedy, R.S.; Abd Alla, M.A. Streptomyces alni as a biocontrol agent to root-rot of grapevine and increasing their efficiency by biofertilisers inocula. Arch. Phytopathol. Plant Protect. 2010, 43, 634–646. [Google Scholar] [CrossRef]
- Benimeli, C.S.; Fuentes, M.S.; Abate, C.M.; Amoroso, M.J. Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int. Biodeterior. Biodegrad. 2008, 61, 233–239. [Google Scholar] [CrossRef]
- Zhao, J.; Xue, Q.-H.; Shen, G.-H.; Xue, L.; Duan, J.-L.; Wang, D.-S. Evaluation of Streptomyces spp. for biocontrol of gummy stem blight (Didymella bryoniae) and growth promotion of Cucumis melo L. Biocontrol Sci. Technol. 2012, 22, 23–37. [Google Scholar] [CrossRef]
- Jaemsaeng, R.; Jantasuriyarat, C.; Thamchipenet, A. Positive role of 1-aminocyclopropane-1-carboxylate deaminase-producing endophytic Streptomyces sp. GMKU 336 on flooding resistance of mung bean. Agric. Nat. Resour. 2018, 52, 330–334. [Google Scholar] [CrossRef]
- Adhilakshmi, M.; Paranidharan, V.; Balachandar, D.; Ganesamurthy, K.; Velazhahan, R. Suppression of root rot of mung bean (Vigna radiata L.) by Streptomyces sp. is associated with induction of peroxidase and polyphenol oxidase. Arch. Phytopahtol. Plant Protect. 2014, 47, 571–583. [Google Scholar] [CrossRef]
- Shariffah, S.A.; Idris, A.S.; Nur-Rashyeda, R.; Naidu, Y.; Hilmi, N.H.Z.; Norman, K. Impact of pre-inoculating soil with Streptomyces sp. GanoSA1 on oil palm growth and Ganoderma disease development. Biocatal. Agric. Biotechnol. 2020, 29, 101814. [Google Scholar] [CrossRef]
- Sunpapao, A.; Chairin, T.; Ito, S.-I. The biocontrol by Streptomyces and Trichoderma of leaf spot disease caused by Curvularia oryzae in oil palm seedlings. Biol. Control 2018, 123, 36–42. [Google Scholar] [CrossRef]
- Sujarit, K.; Pathom-aree, W.; Mori, M.; Dobashi, K.; Shiomi, K.; Lumyong, S. Streptomyces palmae CMU-AB204T, and antifungal producing-actinomycete, as a potential biocontrol agent to protect palm oil producing trees from basal stem rot disease fungus, Ganoderma boninense. Biol. Control 2020, 148, 104307. [Google Scholar] [CrossRef]
- Cinkocki, R.; Lipkova, N.; Javorekova, S.; Petrova, J.; Makova, J.; Medo, J.; Ducsay, L. The impact of growth-promoting streptomycetes isolated from rhizosphere and bulk soil on oilseed rape (Brassica napus L.) growth parameters. Sustainability 2021, 13, 5704. [Google Scholar] [CrossRef]
- Shakeel, Q.; Lyu, A.; Zhang, J.; Wu, M.; Chen, S.; Chen, W.; Li, G.; Yang, L. Optimization of the cultural medium and conditions for production of antifungal substances by Streptomyces platensis 3–10 and evaluation of its efficacy in suppression of clubroot disease (Plasmodiophora brassicae) of oilseed rape. Biol. Control 2016, 101, 59–68. [Google Scholar] [CrossRef]
- Mohamed, B.; Benali, S. The talc formulation of Streptomyces antagonist against Mycosphaerella foot rot in pea (Pisum sativum L.) seedlings. Arch. Phytopathol. Plant Protect. 2010, 43, 438–445. [Google Scholar] [CrossRef]
- Jacob, S.; Sajjalaguddam, R.R.; Sudini, H.K. Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. J. Integr. Agric. 2018, 17, 892–900. [Google Scholar] [CrossRef]
- Sanogo, S.; Lujan, P. Seed, plant, and soil treatment with selected commercial Bacillus-based and Streptomyces-based biofungicides and chemical fungicides and development of phytophthora blight on child pepper. Arch. Phytopathol. Plant Protect. 2022, 55, 331–343. [Google Scholar] [CrossRef]
- Wang, H.; Han, L.; Fng, J.; Zhang, X. Evaluation of two Streptomyces spp. and compost for growth promotion and biocontrol potential against Rhizoctonia solani on pepper. Biocotrol. Sci. Technol. 2015, 25, 852–857. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Selvakumar, G.; Ganeshamurthy, A.N.; Mitra, D.; Senapati, A. Enhancing pomegranate (Punica granatum L.) plant health through the intervention of a Streptomyces consortium. Biocontrol Sci. Technol. 2021, 31, 430–442. [Google Scholar] [CrossRef]
- Hastuti, R.D.; Lestari, Y.; Suwanto, A.; Saraswati, R. Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. Oryzae). Hayati J. Biosci. 2012, 19, 155–162. [Google Scholar] [CrossRef]
- Soltani Nejad, M.; Samandari Najafabadi, N.; Aghighi, S.; Bonjar, A.H.S.; Murtazova, K.M.-S.; Nakhaev, M.R.; Zargar, M. Investigating the potential of Streptomyces spp. In suppression of Rhizoctonia solani (AG1-IA) causing rice shealth blight disease in Northern Iran. Agronomy 2022, 12, 2292. [Google Scholar] [CrossRef]
- Niu, S.; Gao, Y.; Zi, H.; Liu, Y.; Liu, X.; Xiong, X.; Yao, Q.; Qin, Z.; Chen, N.; Guo, L.; et al. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance inrice via a multi-level mechanism. Crop J. 2022, 10, 375–386. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, A.-N.; Liu, Y.-J.; Liu, Z.; Liu, Y.; Wu, X.-J. Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9. Ecotoxicol. Environ. Saf. 2021, 225, 112789. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Cao, L.; Zeng, J.; Franco, C.M.M.; Yang, Y.; Hu, X.; Liu, Y.; Wang, X.; Gao, Y.; Bu, Z.; et al. The antifungal action mode of the rice endophyte Stremptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pest. Biochem. Physiol. 2019, 160, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Ohno, T.; Suzuki, H.; Kitamura, H.; Kuroda, K.; Shimizu, M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol. Res. 2020, 234, 126428. [Google Scholar] [CrossRef]
- Li, X.; Jing, T.; Zhou, D.; Zhang, M.; Qi, D.; Zang, X.; Zhao, Y.; Li, K.; Tang, W.; Chen, Y.; et al. Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biol. Technol. 2021, 175, 111401. [Google Scholar] [CrossRef]
- Shen, T.; Wang, C.; Yang, H.; Deng, Z.; Wang, S.; Shen, B.; Shen, Q. Identification, solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot. Appl. Soil Ecol. 2016, 103, 36–43. [Google Scholar] [CrossRef]
- Karimi, E.; Sadeghi, A.; Dahaji, P.A.; Dalvand, Y.; Omidvari, M.; Kauei Nezhad, M. Biocontrol activity of salt tolerant Streptomyces isolates against phtyopathogens causing root rot of sugar beet. Biocontrol. Sci. Technol. 2012, 22, 33–349. [Google Scholar] [CrossRef]
- Chen, J.; Xue, Q.; Ma, Y.; Chen, L.; Tan, X. Streptomyces pactum may control Phelipanche aergyptiaca in tomato. Appl. Soil Ecol. 2020, 146, 103369. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Li, Y.-L.; Lai, H.-X.; Guo, Q.; Xue, Q.-H. Effects of two strains of Streptomyces on root-zone microbes and nematodes for biocontrol of root-knot nematode disease in tomato. Appl. Soil Ecol. 2017, 112, 34–41. [Google Scholar] [CrossRef]
- Dominguez-Gonzalez, K.; Robledo-Medrano, J.J.; Valdez-Alarcon, J.J.; Hernandez-Cristobal, O.; Martinez-Flores, H.; Cerna-Cortes, J.; Garnica-Romo, M.G.; Cortes-Martinez, R. Streptomyces spp. Biofilmed soild inoculant improves microbial survival and plant-growth efficiency of Triticum aestivum. Appl. Sci. 2022, 12, 11425. [Google Scholar] [CrossRef]
- Ali, A.; Guo, D.; Li, Y.; Shaheen, S.M.; Wahid, F.; Antoniadis, V.; Abdelrahman, H.; Al-Solaimani, S.G.; Li, R.; Tsang, D.C.W.; et al. Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere 2021, 273, 129692. [Google Scholar] [CrossRef]
- Kumar, P.; Brar, S.K.; Pandove, G.; Aulakh, C.S. Bioformulation of Azotobacter spp. and Streptomyces badius on the productivity economics and energetics of wheat (Triticum aestivum L.). Energy 2021, 232, 120868. [Google Scholar] [CrossRef]
- Banerjee, R.; Roy, D. Codon usage and gene expression pattern of Stenotrophomoas maltophilia R551-3 for pathogenic mode of living. Biochem. Biophys. Res. Commun. 2009, 390, 177–181. [Google Scholar] [CrossRef]
- Deredjian, A.; Alliot, N.; Blanchard, L.; Brothier, E.; Anane, M.; Cambier, P.; Jolivet, C.; Khelil, M.N.; Nazaret, S.; Saby, N.; et al. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res. Microbiol. 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, Y.; Zhang, W.; Yu, C.; Ji, W.; Xu, W.; Ni, J.; Yuan, S. Biotransformation ot thianicotinyl neonicotinoid insecticides: Diverse molecular substitutes response to metabolism by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Bioresour. Technol. 2010, 101, 3838–3843. [Google Scholar] [CrossRef]
- Hasan-Beikdashti, M.; Forootanfar, H.; Safiarian, M.S.; Ameri, A.; Ghahremani, M.H.; Khoshayand, M.R.; Faramarzi, M.A. Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. J. Taiwan. Institut. Chem. Engin. 2012, 43, 670–677. [Google Scholar] [CrossRef]
- Gupta, S.; Goel, S.S.; Siebner, H.; Ronen, Z.; Ramanathan, G. Transformation of 2,4,6-trinitrotoluene by Stenotrophomonas strain SG1 under aerobic and anaerobic conditions. Chemosphere 2023, 311 Pt 1, 137085. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Raju, S.C.; Kapley, A.; Kalia, V.C.; Daginawala, H.F.; Purohit, H. Evaluation of genetic and functional diversity of Stenotrophomonas isolates from diverse effluent treatment plants. Bioresour. Technol. 2010, 101, 7744–7753. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, T.A.; Aldawood, E.; Albloshi, A.; Alghamdi, S.S.; Mubaraki, M.A.; Alyami, A.S.; Aldriwesh, M.G. Stentrophomonas maltophilia epidemiology, resistance characteristics, and clinical outcomes: Understanding of the recent three years, trends. Microorganisms 2022, 10, 2506. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-H.; Lee, O.-M.; Jeon, Y.-D.; Kim, J.-D.; Lee, N.-R.; Lee, C.-Y.; Son, H.-J. Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promting activity. Process Biochem. 2010, 45, 1738–1745. [Google Scholar] [CrossRef]
- Xiao, H.; Tan, J.; Li, M.; Yuan, Z.; Zhou, H. The mechanism of Se(IV) multisystem resistance in Stenotrophomonas sp. EGS12 and its prospect selenium-contaminated environment remediation. J. Hazard. Mat. 2023, 452, 131358. [Google Scholar] [CrossRef]
- Kashyap, P.; Shirkot, P.; Das, R.; Pandey, H.; Singh, D. Biosynthesis and characterization of copper nanoparticles from Stenotrophomonas maltophilia and its effect on plant pathogens and pesticide degradation. J. Agric. Food Res. 2023, 13, 100654. [Google Scholar] [CrossRef]
- Gao, J.; Wu, S.; Liu, Y.; Wu, S.; Jiang, C.; Li, X.; Wang, R.; Bai, Z.; Zhuang, G.; Zhuang, X. Characterization and transcriptomic analysis of a highly Cr(VI)-resistant and -reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila DSM14405T. Environ. Pollut. 2020, 263, 114622. [Google Scholar] [CrossRef]
- Alijani, Z.; Amini, J.; Ashengroph, M.; Bahramnejad, B. Volatile compounds mediated effects of Stenotrophomonas maltophilia strain UN1512 in plant growth promotion and its potential for the biocontrol of Colletotrichum nymphaeae. Physiol. Mol. Plant Pathol. 2020, 112, 101555. [Google Scholar] [CrossRef]
- Giesler, L.; Yuen, G.Y. Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot. 1998, 17, 509–513. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.-R.; Xu, G.; Wu, J.-P. Highligh diastereoselective acylation of L-menthol by a lipase from Stenotrophomonas maltophilia CGMCC 4254. Biochem. Engin. J. 2016, 109, 81–87. [Google Scholar] [CrossRef]
- Ercole, T.G.; Kava, V.M.; Aluizio, R.; Pauletti, V.; Hungria, M.; Galli-Terasawa, L. Co-inoculation of Bacillus velezensis and Stenotrophomonas maltophilia strains improves growth and salinity tolerance in maize (Zea mays L.). Rhizosphere 2023, 27, 100752. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Sun, X.; Jiang, W.; Ma, L.; Wang, Y.; Sheng, H.; Li, Y.; Yu, X. Stenotrophomonas pavanii DJL-M3 inoculated biochar stabilizes the rhizosphere soil homeostasis of carbendazim-stressed rice. Environ. Pollut. 2023, 329, 121723. [Google Scholar] [CrossRef]
- Song, F.; Zhang, G.; Li, H.; Ma, L.; Yang, N. Comparative transcriptomic analysis of Stenotrophomonas sp. MNB17 revealed mechanisms of manganese tolerance at different concentrations and the role of histidine biosynthesis in manganese removal. Ecotoxicol. Environ. Saf. 2022, 244, 114056. [Google Scholar] [CrossRef]
- Hashidoko, Y.; Nakayama, T.; Homma, Y.; Tahara, S. Structure elucidation of xanthobaccin A, a new antibiotic produced from Stenotrophomonas sp. Strain SB-K88. Tetrahedron Lett. 1999, 40, 2957–2960. [Google Scholar] [CrossRef]
- Fariman, A.B.; Abbasiliasi, S.; Abdullah, S.N.A.; Saud, H.M.; Wong, M.-Y. Stenotrophomonas maltophilia isolate UPMKH2 with the abilities suppress rice blast disease and increase yield a promising biocontrol agent. Physiol. Mol. Plant Pathol. 2022, 121, 101872. [Google Scholar] [CrossRef]
- Nigam, B.; Dubey, R.S.; Rathore, D. Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas sp.) on spinach and soybean cultivars grown under salt stress. Sci. Hortic. 2022, 293, 110654. [Google Scholar] [CrossRef]
- Alexander, A.; Singh, V.K.; Mishra, A.; Jha, B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS ONE 2019, 14, e0222405. [Google Scholar] [CrossRef]
- Messiha, N.A.S.; van Diepeningen, A.D.; Farag, N.S.; Abdallah, S.A.; Janse, J.D.; van Bruggen, A.H.C. Stenotrophomonas maltophilia: A new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur. J. Plant Pathol. 2007, 118, 211–225. [Google Scholar] [CrossRef]
- Grossi, C.E.M.; Fantino, E.; Serral, F.; Zawoznik, M.S.; Porto, D.A.F.D.; Ulloa, R.M. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front. Plant Sci. 2020, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Jimenez-Rios, L.; Iniesta-Pallares, M.; Jurado-Flores, A.; Molina-Heredia, F.P.; Ng, C.K.Y.; Mariscal, V. Symbiosis between cyanobacteria and plants: From molecular studies to agronomic applications. J. Exp. Bot. 2023, 74, 6145–6157. [Google Scholar] [CrossRef]
- Gomez-Godinez, L.J.; Fernandez-Valverde, S.L.; Romero, J.C.M.; Martinez-Romero, E. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantelets inoculated with a group of PGPRs. Syst. Appl. Microbiol. 2019, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Llamas, A.; Leon-Miranda, E.; Tejada-Jimenez, M. Microalgal and nitrogen-fixing bacterial consortia: From interaction to biotechnological potential. Plants 2023, 12, 2476. [Google Scholar] [CrossRef] [PubMed]
- Gharib, F.A.E.L.; Osama, K.; El-Sattar, A.M.A.; Ahmed, E.Z. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield, and antioxidant capacity. Sci. Rep. 2024, 14, 1398. [Google Scholar] [CrossRef]
- Sumbul, A.; Ansari, R.A.; Rizvi, R.; Mahmood, I. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi J. Biol. Sci. 2020, 27, 3634–36340. [Google Scholar] [CrossRef]
- Abdel-Aziez, S.; Ewea, W.E.; Girgis, M.G.Z.; Ghany, B.F.A. Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Ann. Agric. Sci. 2014, 59, 95–108. [Google Scholar] [CrossRef]
- Ahmed, B.; Syed, A.; Rizvi, A.; Shahid, M.; Bahkali, A.H.; Khan, M.S.; Musarrat, J. Impact of metal-oxide nanoparticles on growth, physiology, and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM. Environ. Poll. 2021, 269, 116218. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Naqvi, S.D.Y.; Kaushik, P.; Khojah, E.; Amir, M.; Alam, P.; Samra, B.N. Rhizophagus irregularis and nitrogen fixing azotobacter enhances greater yam (Dioscorea alata) biochemical profile and upholds yield under reduced fertilization. Saudi J. Biol. Sci. 2022, 29, 3694–3703. [Google Scholar] [CrossRef] [PubMed]
- Kiran, S.; Furtana, G.B.; Ellialtioglu, S.S. Physiological and biochemical assay of drought stress responses in eggplant (Solanum melongena L.) inoculated with commercial inoculant of Azotobacter chroococcum and Azotobacter vinelandii. Sci. Hortic. 2022, 305, 111394. [Google Scholar] [CrossRef]
- Sharma, S.D.; Kumar, P.; Raj, H.; Bhardwaj, S.K. Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcm from local litchi orchards and evaluation of their activity in the air-layers system. Sci. Hortic. 2009, 123, 117–123. [Google Scholar] [CrossRef]
- Kashyap, S.; Sharma, S.; Vasudevan, P. Role of bioinoculants in development of salt-resistant samplings of Morus alba (var. Sujanpuri) in vivo. Sci. Hortic. 2004, 100, 291–307. [Google Scholar] [CrossRef]
- Kisvarga, S.; Farkas, D.; Boronkay, G.; Nemenyi, A.; Orloci, L. Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy 2022, 12, 1043. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; El-Enshasy, H.; Gafur, A.; et al. Bacterial plant biostimulants: A sustainable way towards improving growth, productivity, and health of crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
Plant | Plant Family | Ochrobactrum spp. Type | Key Point | Reference |
---|---|---|---|---|
Apple (Malus domestica) | Rosaceae | Ochrobactrum haematophilum | It can increase apple growth and degrade phenolic acids, being one of the best treatments for the reduction of apple replant disease. | [44] |
Common bean (Phaseolus vulgaris L.) | Fabaceae | Ochrobactrum sp. Pv2Z2 | The inoculation can increase dry and fresh weight, plant height, and nitrogen uptake. | [45,46] |
Chili (Capsicum annuum L.) | Solanaceae | Ochrobactrum ciceri | It is capable of inhibiting the growth of collar rot disease (Sclerotium rolfsii) via deteriorating hypha and suppressing the sclerotial formation on broth medium and agar plates. | [47] |
Cucumber (Cucumis sativus L.) | Cucurbitaceae | Ochrobactrum sp. NW-3 | It showed a high ability to increase growth and promote plant growth. | [48] |
Jerusalem artichoke (Helianthus tuberosus L.) | Asteraceae | Ochrobactrum anthropi Mn1 | It has an important role in root morphological optimization, symbiotic nitrogen fixation, and increased nutrient uptake. | [49] |
Lentil (Lens culinaris) | Fabaceae | Ochrobactrum sp. 42S | It can positively modulate rhizospheric community structure and improve lentil growth. | [50] |
Maize (Zea mays L.) | Poaceae | Ochrobactrum sp. NBRISH6 | It can increase overall plant health specially under abiotic stress. | [51] |
Rice (Oryza sativa L.) | Poaceae | Ochrobactrum spp. | It can increase plant growth, as well as improve the nutrient uptake of rice. | [52] |
River red gum (Eucalyptus camaldulensis Dehnh.) | Myrtaceae | Ochrobactrum intermedium BN-3 | It has shown high tolerance to Zn, Cd, and Pb, and it can improve the biomass of Pb accumulation. | [53] |
Ryegrass (Lolium perenne L.) | Poaceae | Ochrobactrum sp. PW | It can improve the degradation of pyrene in soil. It can increase the dry weight of ryegrass shoot and root. | [54] |
Soybean (Glycine max L.) | Fabaceae | Ochrobactrum sp. MGJ11 | It can secrete IAA and increase tolerance against Cd. It can improve the shoot and root length as well as biomass. | [55] |
Sugarcane (Saccharum officinarum L.) | Poaceae | Ochrobactrum intermedium NG-5 | It has shown good biocontrol activity, and it suppresses red rot. | [56] |
Tobacco (Nicotiana tabacum L.) | Solanaceae | Ochrobactrum lupini KUDC1013 | It indicated high potential as a biological control against phytopathogens. | [57] |
Wheat (Triticum aestivum L.) | Poaceae | Ochrobactrum spp. | It is the best choice for the solubilization of different P sources. | [58] |
Plant | Plant Family | Type of Arthrobacter spp. | Key Points | Reference |
---|---|---|---|---|
Cactus pear (Opuntia ficus-indica (L.) Mill.) | Cactaceae | Arthrobacter sp. | It can improve nutritional and nutraceutical properties of cactus pear, as well as improve growth, yield, and cladode quality. | [83] |
Corn (Zea mays L.) | Poaceae | Arthrobacter sp. | It can support growth in salinity-affected and P-deficient soils. | [84] |
Indian pokeweed (Phytolacca acinosa Roxb.) | Phytolaccaceae | Arthrobacter sp. | It can increase the enhancement of Cd tolerance, as well as improve growth. | [85] |
Oregano (Origanum vulgare L.) | Lamiaceae | Arthrobacter sp. OVS8 | It is appropriate in terms of increasing yield and improving the quality of a plant. | [86] |
Pea (Pisum sativum L.) | Fabaceae | Arthrobacter protophormiae (SA3) | It can improve the colonization of beneficial microbes and alleviate salt stress effects and ethylene-induced damage. | [87] |
Rapeseed (Brassica napus L.) | Brassicaceae | Arthrobacter globiformis | It can boost superoxide dismutase enzymatic activities, phenolic compounds, and phenylalanine ammonia-lyase under salt stress. | [88] |
Rice (Oryza sativa L.) | Poaceae | Arthrobacter sp. A2–5 | A cold-shock protein (ArCspA) from the soil bacterium Arthrobacter sp. A2-5 might be involved in the induction of cold-responsive genes and provide cold tolerance. | [89] |
Arthrobacter sp. | It can increase rice plant growth. | [90] | ||
Strawberry (Fragaria × ananassa) | Rosaceae | Arthrobacter agilis UMCV2 | Its volatile components increase strawberry achene germination and significantly improve strawberry growth in vitro. | [91] |
Soybean | Fabaceae | Arthrobacter sp. DNS10 | It has an important role in terms of the growth, root surface structure, root physiological properties, and leaf nitrogen accumulation of soybean seedlings. | [92] |
Sugarcane (Saccharum officinarum L.) | Poaceae | Arthrobacter sp. strain GZK-1 | It can be considered as the best choice for the remediation of s-triazine-polluted agricultural soils. | [93] |
Tomato (Lycopersicon esculentum L.) | Solanaceae | Arthrobacter sp. | It indicated high phosphate solubilizing ability, with great biological activities, and it is an appropriate plant growth promoter. | [94] |
Arthrobacter strains TF1 and TF7 | It can increase seed germination, vigor index, seedling length, and dry and fresh weight under salt stress. | [95] | ||
Wheat (Triticum aestivum L.) | Poaceae | Arthrobacter sp. strain C2 | It can positively degrade atrazine in mineral salt medium and soil. It can reduce the toxicity of atrazine. | [96] |
Plant | Plant Family | Type of Pseudomonas spp. | Key Points | Reference |
---|---|---|---|---|
Amaranthus (Amaranthus viridis L.) | Amaranthaceae | Pseudomonas putida; Pseudomonas fluorescence | It can increase the growth, development, and stress tolerance of plants in humus soil. | [148] |
Apple (Malus domestica) | Rosaceae | Pseudomonas fluorescens | It has the potential to control common postharvest fungal pathogens during storage. | [149] |
Arabidopsis (Arabidopsis thaliana) | Brassicaceae | Pseudomonas syringae effector HopB1 | It can increase virulence, but not disease resistance. | [150] |
Pseudomonas putida A (ATCC 12633) | It can increase the amounts of proteins in leaf and root biomass. | [151] | ||
Pseudomonas syringae | It has a positive effect on growth and growth development. | [152] | ||
Banana (Musa acuminata) | Musaceae | Pseudomonas aeruginosa strain Y1 (PaY1) | It is an important activator of banana genes associated with cellular pathways and the hormonal signaling pathway such as detoxification, as well as antioxidant defense, which can increase plant growth and biotic and abiotic tolerance in plants. | [153] |
Barley (Hordeum vulgare) | Poaceae | Pseudomonas protegens | It can significantly improve shoot length, root and shoot fresh weight, and root and shoot dry weight. | [154] |
Bean (Phaseolus vulgaris L.) | Fabaceae | Pseudomonas syringae pv. phaseolicola | It is the potential for the biocontrol of halo blight disease. | [155] |
Black pepper (Piper nigrum) | Piperaceae | Pseudomonas putida BP25 | It can inhibit a broad range of pathogens such as Pythium myriotylum, Phytophthora capsici, Rhizoctonia solani, Colletotrichum gloeosporioides, Athelia rolfsii, and Gibberella moniliformis, as well as plant parasitic nematode. | [156] |
Black cumin (Nigella sativa L.) | Ranunculaceae | Pseudomonas fluorescens PF1 and PF2 | Increases seed production and prevents root rot disease. | [157] |
Black mustard seed (Brassica juncea (L.) Czern.) | Brassicaceae | Pseudomonas fluorescens | Improves plant growth | [158] |
Blueberry (Vaccinium corymbosum L.) | Ericaceae | Pseudomonas spp. | As an important biocontrol agent, it stimulated arthrofactin lipopeptides. | [159] |
Cacao tree (Theobroma cacao L.) | Malvaceae | Pseudomonas antagonic | It is useful in controlling black pod rot caused by Phytophthora palmivora (Butler). | [160] |
Canola (Brassica napus L.) | Brassicaceae | Pseudomonas putida | The inoculation can increase proline content, phenols, and flavonoids; boost glutathione, ascorbate peroxidase, and superoxide dismutase; and improve plant growth in drought stress. | [161] |
Castor (Ricinus communis L.) | Euphorbiaceae | Pseudomonas aeruginosa MAJPJA03 | It can increase plant growth and leaf nutrition. | [162] |
Chickpea (Cicer arietinum L.) | Fabaceae | Pseudomonas stutzeri | The inoculation can increase nodule fresh weight, nodulation, and phosphorus uptake. | [163] |
Pseudomonas citronellolis KM594397 | It increased plant growth and dry biomass under As5+ stress. | [164,165] | ||
Pseudomonas aeruginosa strain OSG41 | It can increase chemical and biological characteristics in chromium-treated soils. | [166] | ||
Corn (Zea mays L.) | Poaceae | Pseudomonas fluorescens strain P13 | It can increase the growth of corn and degraded phenol in contaminated water and field soils. | [167] |
Pseudomonas stutzeri A1501 | It can increase the population of indigenous diazotrophs and ammonia oxidizers and functional gene transcripts. | [168] | ||
Cotton (Gossypium hirsutum L.) | Malvaceae | Pseudomonas aeruginosa Z5 | It is the best choice to control the growth of cotton-root-associated fungal pathogens. | [169] |
Cucumber (Cucumis sativus L.) | Cucurbitaceae | Pseudomonas spp. | It can increase cucumber productivity. | [170] |
Pseudomonas spp. | Treated seeds showed increased resistance to the damping-off disease caused by Phytophthora capsici. | [171] | ||
Eggplant (Solanum melongena L.) | Solanaceae | Pseudomonas sp. DW1 | It can increase SOD activity of the leaves and it can be used as a plant-growth-promoting rhizobacterium. | [172] |
Eucalyptus (Eucalyptus globulus Labill.) | Myrtaceae | Pseudomonas fluorescens ECS417 | It can control bacterial wilt caused by Ralstonia solanacearum. | [173] |
Grapevine (Vitis vinifera) | Vitaceae | Pseudomonas protegens MP12 | It has inhibitory effects against phytopathogens such as Neofusicoccum parvum, Penicillium expansum, Aspergillus niger, Alternaria alternata, and Botrytis cinerea. | [174] |
Jerusalem artichoke (Helianthus tuberosus L.) | Asteraceae | Pseudomonas spp. Strain JK2 | It has a significant fungicidal impact on Aspergillus fumigatus, Fusarium solani, and Aspergillus tamari. | [175] |
Kiwifruit (Actinidia deliciosa) | Actinidiaceae | Pseudomonas syringae pv. Actinidiae (Psa) | It is the causal agent of bacterial canker in kiwifruit. | [176] |
Lemon balm (Melissa officinalis L.) | Lamiaceae | Pseudomonas putida; Pseudomonas fluorescens | The seedling inoculation can increase both secondary and primary metabolites. | [177] |
Lentil (Lens culinaris Medik.) | Fabaceae | Pseudomonas fluorescens | It can cause the significant growth of yield and yield components, as well as boost seed nutrient content. | [178] |
Lettuce (Lactuca sativa) | Asteraceae | Pseudomonas spp. | It can increase lettuce growth and improve final yield. | [179] |
Madagascar Periwinkle (Catharanthus roseus L.) | Apocynaceae | Pseudomonas fluorescens RB4 | It can result in a higher accumulation of Pb and Cu in shoots, as well as improve the translocation and metal bioconcentration factors. | [180] |
Mung bean (Vigna radiata L. Wilzeck) | Fabaceae | Pseudomonas fluorescens | It can be considered as a biological control of soil-pathogenic nematodes. | [181] |
Pseudomonas strain GRP3A | It is an appropriate plant growth promotion under iron-limited conditions. | [182,183] | ||
Olive (Olea europaea) | Oleaceae | Pseudomonas spp. | Root treatment can help in the biocontrol of Verticillium wilt of olives. | [184] |
Onion (Allium cepa) | Amaryllidaceae | Pseudomonas alliivorans sp. | It can improve the plant growth and yield of plants. | [185] |
Organo (Origanum vulgare L.) | Lamiaceae | Pseudomonas spp. | It can improve yield and increase the efficiency of in vitro plant tissue propagation. | [186,187] |
Pea (Pisum sativum L.) | Fabaceae | Pseudomonas spp. | It can control root-knot nematode Meloidogyne incognita. | [188] |
Peanut (Arachis hypogaea L.) | Fabaceae | Pseudomonas aeruginosa P4 | It can stimulate peanut growth, root system functioning, and defense physiology. | [189] |
Pearl millet (Pennisetum glaucum) | Poaceae | Pseudomonas fluorescens | It can result in the improvement of growth and boost resistance against downy mildew disease caused by the fungus Sclerospora graminicola. | [190] |
Pepper (Capsicum annum L.) | Solanaceae | Pseudomonas chlororaphis strain PA23 | It can increase enzymes such as polyphenol oxidase, peroxidase, ammonia lyase, and phenol content, as well as decrease the incidence of damping-off | [191] |
Pseudomonas aeruginosa | It can increase nutrient uptake and yield parameters, as well as increase the adsorption of phosphorous in the soil. | [192] | ||
Pseudomonas putida BP25 | It can increase plant defence responses in pepper roots. | [193] | ||
Pigeon pea (Cajanus cajan L.) | Fabaceae | Pseudomonas spp. | It can increase plant growth and nutrient uptake. | [194] |
Pistachios (Pistacia vera L.) | Anacardiaceae | Pseudomonas spp. strain VUPf428 | It can suppress the root-knot nematodes. | [195] |
Rice (Oryza sativa L.) | Poaceae | Pseudomonas fluorescens strains PF1, TDK1, and PY15 | It can control the rice root-knot nematode Meloidogyne graminicola. | [196] |
Pseudomonas fluorescens PW-5 | It can increase root, shoot, and dry weight. | [197] | ||
Sedum alfredii Hance | Crassulaceae | Pseudomonas fluorescens | It can increase the reversed and long-distance transport of Cd and sucrose in the plant by examining the phloem and xylem sap, as well as by quantifying the contents of sucrose and Cd in root and shoot. | [198] |
Sesame (Sesamum indicum L.) | Pedaliaceae | Pseudomonas fluorescens | It can increase plant growth and enhance crop production. | [199] |
Sorghum (Sorghum bicolor L.) | Poaceae | Pseudomonas sp. P17 | It is considered as a potential plant growth promoter. | [200] |
Pseudomonas fluorescens | It has a meaningful influence on the root and shoot length of sorghum. | [201] | ||
Soybean (Glycine max) | Fabaceae | Pseudomonas putida KT2440 | It can significantly increase seed germination, root and shoot length, and dry and fresh weight of plants. | [202] |
Pseudomonas parafulva JBCS1880 | It can be considered as a specific biological control agent. | [203] | ||
Pseudomonas putida H-2-3 | It can induce tolerance against abiotic stress and also cause an increase in antioxidants. | [204] | ||
Sugarcane (Saccharum officinarum L.) | Poaceae | Pseudomonas spp. | It can be used for the management of red rot disease in sugarcane-growing districts. | [205] |
Sunflower (Helianthus annuus L.) | Asteraceae | Pseudomonas monteilii; Pseudomonas aeruginosa | It can significantly suppress the root rotting fungi of sunflower and improve fresh shoot weight and plant height. | [206,207] |
Pseudomonas lurida strain EOO26 | It can increase the length and dry weight of shoot and root of sunflower and increased Cu uptake. | [208] | ||
Pseudomonas sp. AF-54 | It can increase sunflower crop yield. | [209] | ||
Thale cress (Arabidopsis thaliana) | Brassicaceae | Pseudomonas aeruginosa PA01 | It can improve the ability of the plant in terms of different abiotic and biotic parameters that may cause stress. | [210] |
Tobacco (Nicotiana tabacum) | Solanaceae | Pseudomonas sp. TK35-L | It can promote tobacco root development by upregulating the transcript levels of the HRGPnt3 gene, which can promote tobacco seedling growth. | [211] |
Pseudomonas spp. | It can increase the Ca-phytate bioavailability to tobacco up to 10-fold. | [212] | ||
Tomato (Solanum lycopersicum L.) | Solanaceae | Pseudomonas putida SAESo11 | Its inoculation can adapt plants to drought stress and keep the redox state of plants at exposure to drought stress. | [213] |
Pseudomonas spp. | Its application can help provide enough Zn bioavailability that can be induced to increase plant growth in a sustainable manner. | [214,215] | ||
Pseudomonas chlororaphis; Pseudomonas fluorescens | It can be effective against Salmonella strains as a post-harvest application. | [216] | ||
Pseudomonas fluorescens G20-18 | It can increase drought stress and contribute to increasing the robustness of the practical utilization of it to promote crop resilience. | [217] | ||
Pseudomonas oryzihabitans PGP01 | It has positive effects on the roots of plants. | [218] | ||
Pseudomonas chlororaphis subsp. aureofaciens strain M71 | Its inoculation can increase the ABA level in leaves of water-stressed tomatoes. | [219] | ||
Pseudomonas Syringae | It can increase the plant defense system. | [220] | ||
Turmeric (Curcuma longa) | Zingiberaceae | Pseudomonas fluorescens FP7 and TPF54 | It can increase the defense molecules, yield, and plant growth in turmeric plants and finally reduce the incidence of rhizome rot diseases caused by Pythium aphanidermatum. | [221] |
Wheat (Triticum aestivum L.) | Poaceae | Pseudomonas spp. | It can lead to increased grain yield. | [222] |
Plant | Plant Family | Type of Streptomyces | Key Points | Reference |
---|---|---|---|---|
Alfalfa (Medicago sativa L.) | Fabaceae | Streptomyces spp. | The strains can decrease defoliation caused by fungal plant pathogen (Phoma medicaginis var. medicaginis). | [305] |
Banana (Musa acuminata) | Musaceae | Streptomyces sp. H4 | It can improve the growth of banana seedlings, and it is an important microbial resource for the biocontrol of banana Fusarium wilt caused by Fusarium oxyspoum f. sp. cubense (Foc). | [306] |
Chickpea (Cicer arietinum L.) | Fabaceae | Streptomyces spp. | It can trigger systemic resistance in chickpea under Sclerotium rolfsii stress though increasing different enzymes. | [307] |
Streptomyces spp. | It has the potential for the biological control of Botrytis cinerea in chickpea. | [308] | ||
Streptomyces spp. | It is appropriate to control Fusarium wilt disease and increase plant growth. | [309] | ||
Common comfrey (Symphytum officinale) | Boraginaceae | Streptomyces pactum | Its application can lead to decreased Cd and Zn concentration in shoots. | [310] |
Cucumber (Cucumis sativus L.) | Cucurbitaceae | Streptomyces roche D74; Streptomyces pactum Act12 | Its applications can be applied to reassemble and optimize the rhizosphere microbiome of plants, which can induce to plant survival. | [311] |
Streptomyces goshikiensis YCXU | It showed antifungal activity against fungal pathogens, and it reduced the incidence of Fusarium wilt. | [312] | ||
Streptomyces sp. C-11 and C-26 | It showed a high ability to produce enzymes, such as lipase, protease, and amylase. | [313] | ||
Ginseng (Panax ginseng) | Araliaceae | Streptomyces werraensis F3 | It has a great potential as a biological control agent to effectively manage ginseng rust rot and root rot diseases. | [314] |
Grapes (Vitis vinifera L.) | Vitaceae | Streptomyces plumbeus strain CA5 | It inhibited gray mold development on grapes. | [315] |
Streptomyces alni | It is a biocontrol agent for controlling the root-rot of grapevine and other soil-borne plant pathogens. | [316] | ||
Maize (Zea mays L.) | Poaceae | Streptomyces sp. M7 | It can positively influence the vigor index and germination of maize plants. | [317] |
Melon (Cucumis melo L.) | Cucurbitaceae | Streptomyces spp. | It can be used as a biocontrol of gummy stem blight (Didymella bryoniae) and improve the growth of a plant. | [318] |
Mung bean (Vigna radiata L.) | Fabaceae | Streptomyces sp. GMKU 336 | It can significantly increase biomass and plant elongation, leaf color, leaf area, chlorophyll content, and adventitious roots, as well as decrease the ethylene level. | [319] |
Streptomyces spp. | It can suppress the root rot of mung bean | [320] | ||
Oil palm (Elaeis guineensis) | Arecaceae | Streptomyces sp. GanoSA1 | It can induce to a higher vegetative index, lower diseases incidence, reduced mortality, and mitigated severity of foliar symptoms, as well as act as a biological control agent. | [321,322] |
Streptomyces palmae | A potential biocontrol agent for basal stem rot disease caused by Ganoderma boninense. | [323] | ||
Oilseed rape (Brassica napus L.) | Brassicaceae | Streptomyces spp. | It is a promising agent to improve the growth of oilseed rape. | [324] |
Streptomyces platensis 3–10 | It is a promising biocontrol agent against Plasmodiophora brassicae, the causal agent for clubroot of oilseed rape. | [325] | ||
Pea (Pisum sativum L.) | Fabaceae | Streptomyces spp. | It can be used for the management of foot rotting and blight caused by Mycosphaerella pinodes. | [326] |
Peanut (Arachis hypogaea L.) | Fabaceae | Streptomyces sp. RP1A-12 | It has shown to have high effects in decreasing the incidence and severity of stem rot caused by Sclerotium rolfsii. | [327] |
Pepper (Capsicum sp.) | Piperaceae | Streptomyces spp. | It can fight against the development of phytophthora blight on Chile pepper. | [328,329] |
Pomegranate (Punica granatum L.) | Punicaceae | Streptomyces spp. | It can increase final yield and chemical components. | [330] |
Rice (Oryza sativa L.) | Poaceae | Streptomyces spp. AB131-1 | It induced to the highest plant height, increased the number of tillers, and can be used as a biocontrol agent against rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). | [331] |
Streptomyces spp. | The Iranian strain of Streptomyces has antifungal properties for the control of the rice sheath blight disease, because of Rhizoctonia solani (AG1-IA). | [332] | ||
Streptomyces albidoflavus OsiLf-2 | It can increase stress responses in the rice host at the biochemical and physiological levels, as well as cause significant tolerance to salinity. | [333] | ||
Streptomyces hygroscopicus OsiSh-2 | It is used to cope with Magnaporthe oryzae (Mo)-toxins in rice. | [334] | ||
Streptomyces hygroscopicus OsiSh-2 | It is a potential biocontrol agent against the rice blast pathogen. | [335] | ||
Strawberry (Fragaria × ananassa) | Rosaceae | Streptomyces spp. MBFA-172 | It can effectively suppress strawberry anthracnose caused by Glomerella cingulata. | [336] |
Streptomyces sp. H4 | It has shown anti-fungal activity with high effectiveness in controlling the anthracnose of strawberry fruit. | [337] | ||
Streptomyces hygroscopicus B04 | It is a potential biocontrol agent for controlling strawberry root rot. | [338] | ||
Sugar beet (Beta vulgaris L.) | Amaranthaceae | Streptomyces spp. | It has the potential for application as a biocontrol agent against fungal diseases, particularly in saline soils. | [339] |
Tomato (Solanum lycopersicum L.) | Solanaceae | Streptomyces pactum | It can decrease the emergence of Phelipanche aegyptiaca and promote host defense mechanisms. | [340] |
Streptomyces spp. | It can decrease root knot nematode disease in tomato by activating defensive mechanisms and systemic resistance against nematode infection. | [341] | ||
Wheat (Triticum aestivum L.) | Poaceae | Streptomyces spp. | It can improve crop production and ensure plant health protection. | [342] |
Streptomyces pactum (Act12) | Its addition increased Zn, Cu, and Cd in the roots and shoots, and P in the roots. It can also decrease lipid peroxidation and antioxidant activities in wheat. | [343] | ||
Streptomyces badius | It is an important source for the reduction of chemical fertilizers. | [344] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Shahrajabian, M.H.; Soleymani, A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. Plants 2024, 13, 613. https://doi.org/10.3390/plants13050613
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. Plants. 2024; 13(5):613. https://doi.org/10.3390/plants13050613
Chicago/Turabian StyleSun, Wenli, Mohamad Hesam Shahrajabian, and Ali Soleymani. 2024. "The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems" Plants 13, no. 5: 613. https://doi.org/10.3390/plants13050613
APA StyleSun, W., Shahrajabian, M. H., & Soleymani, A. (2024). The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. Plants, 13(5), 613. https://doi.org/10.3390/plants13050613