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Abstract: Rubus chingii Hu is the only species that is used for both edible and medicinal purposes
among the 194 species of the genus Rubus in China. It is well known for its sweet and sour fresh fruits
that are rich in vitamins and for its dried immature fruits that are used to treat kidney-related ailments.
This study aims to evaluate genetic diversity and population structure and build a core germplasm
repository of 132 R. chingii accessions from the provinces of Jiangxi and Fujian, using Hyper-seq-
derived single-nucleotide polymorphism (SNP) markers. This is the first genetic study of R. chingii
based on SNP molecular markers, and a total of 1,303,850 SNPs and 433,159 insertions/deletions
(InDels) were identified. Low values for observed heterozygosity, nucleotide diversity (Pi) and
fixation indexes (Fis) indicated low genetic diversity within populations, and an analysis of molecular
variance (AMOVA) showed that 37.4% and 62.6% of the variations were found between populations
and within samples, respectively. Four main clusters were identified by means of neighbor-joining
(NJ) trees, the ADMIXTURE program and principal component analysis (PCA). Based on the genetic
diversity, we finally constructed 38 representative core collections, representing 50% of the total core
germplasm samples and 95.3% of the genotypes. In summary, the results of our study can provide
valuable information on the genetic structure of R. chingii germplasm resources, which is helpful
for further explorations of potential high-quality genes and for formulating future breeding and
conservation strategies.
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1. Introduction

Rubus chingii Hu (named Zhangye-Fupenzi in China) is a diploid species (2n = 2x = 14)
and a perennial rattan shrub of the Rubus genus of the Rosaceae family, distributed in
southern Anhui, Zhejiang, northern Fujian and northeastern Jiangxi in China [1–3]. Of the
194 Chinese Rubus species, R. chingii fruit was the only one included in the Pharmacopoeia
of the People’s Republic of China 2020 and the homologous catalog of medicine and food by
the National Health Commission of China in 2015; it is also listed as “the third-generation
fruit” in the “new fruit trees in the 21st century” [4–8]. The dried and unripe fruit of
R. chingii harvested at the green-to-yellow stage has been the basic source of the traditional
Chinese medicine (TMC) known as Fupenzi for more than 1500 years; it has mild medicinal
properties and is beneficial to the kidney, strengthening the essence of and shrinking urine,
nourishing the liver and improving eyesight. In addition, it is rich in health-promoting
components such as terpenoids, flavonoids, alkaloids and phenolic acids [9]. Modern
pharmacology shows that Fupenzi has antioxidant, anti-inflammatory, anti-tumor and other
effects [5,10–12]. The ripe fruit has a high sugar–acid ratio and a good taste when eaten fresh,
and it contains rich trace elements. It has been used in food, drink, health care and other
industries, as well as in jam and raspberry wine [13,14]. Previous research has shown that
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variations in the fruit at different phases of growth arise from the coordinated accumulation
of flavonoid and phenolic acid syntheses at various stages and their subsequent conversion
into derivatives [15].

Zhejiang Province and the northeastern region of Jiangxi Province are the primary
production areas for R. chingii [16]. Planting areas in the provinces of Zhejiang and An-
hui have grown significantly in recent years, creating a distinct scale for the combined
agriculture and tourism industries; with the ongoing rise in market demand, its commer-
cial benefits are outstanding, and its future potential is vast [1,17]. Its new plant variety
certificate was achieved by domesticating R. chingii natural resources into cultivars, and
a summary of its introduction, domestication, propagation and cultivation procedures
has been provided [17,18]. These techniques primarily involve the analysis of branching,
leafing, fruiting traits and medicinal components, as well as the screening of good plants
with the potential for individual application and popularization [19–21]. However, narrow
genetic resources and limited breeding strategies superadd the interaction of genotypes and
the environment lowers the efficiency of choosing excellent material [22,23]. This is coupled
with the fact that R. chingii mainly propagates root tillering seedlings [24], resulting in vari-
ety degradation and lower yields [25]. Utilizing molecular markers to encourage R. chingii
assistant breeding methods can help overcome this obstacle and hasten improvement.

Plants in the genus Rubus are primarily classified and identified based on differences
in phenotypes and chromosomal composition [26]. An effective method for analyzing the
genetic diversity of germplasm resources involves molecular markers [27]. Numerous re-
searchers have previously studied the relationship and genetic diversity of R. chingii on the
bases of the internal transcribed spacer (ITS), random amplified polymorphic DNA (RAPD)
and inter-simple sequence repeat (ISSR), thus demonstrating the high feasibility and effec-
tiveness of using molecular marker methods for germplasm resources research [28–31]. In
addition, the chromosome-scale reference genome of R. chingii was sequenced and assem-
bled by Wang et al., yielding 231.21 Mb of sequence data; moreover, 1,817,604 such SSR
sequences were found in the genome [32]. Jiang et al. used transcriptome data to mine SSR
sequences and annotate functional genes in the SSR-containing region [33]. More improved
knowledge is needed of R. chingii’s transcriptome and genomic coding sequences to facilitate
the use of more straightforward and effective single-nucleotide polymorphisms (SNPs) and
insertion/deletion (InDel) markers for R. chingii genetic diversity and molecular breeding.

The distribution of R. chingii resources is widely dispersed, and there are exceedingly
low numbers in the wild. This, combined with harmful human exploitation, makes the
damage extremely severe [34]. Moreover, there is a paucity of the literature about the
evaluation and collection of germplasm resources for R. chingii. The majority of research
subjects come from the provinces of Anhui and Zhejiang, while hardly any studies have
been conducted on those originating from the Jiangxi and Fujian provinces [20,30,31,33,35].
It takes a lot of time and effort to collect and preserve as many genetic resources as
possible, despite the fact that germplasm conservation is crucial for biodiversity and plant
breeding [36]. Core collection can represent the genetic diversity of all of the species’
resources to the greatest extent, with the least amount of genetic duplication, which can
enhance the management and utilization efficiency of germplasm resources; thus, the core
collection has become the focus of plant germplasm resources research, both domestically
and internationally [37–39]. For the purpose of the conservation and sustainable use
of R. chingii resources, it is crucial to investigate the genetic diversity and distribution
of R. chingii in the field. In addition to revealing genetic traits, analyzing the genetic
diversity, phylogenetic relationships and population structure of R. chingii germplasms can
serve as a foundation for germplasm identification, resource conservation and utilization,
and effective breeding. However, there are few studies on the genetic diversity and
population structure of R. chingii based on DNA molecular markers. This, coupled with its
unclear domestication history and extremely complicated genetic background, has created
a bottleneck for the application of effective breeding strategies.
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Advances in next-generation sequencing technology have made whole-genome se-
quencing more efficient and cost-effective than ever before, and they offer the opportunity
to find a large number of DNA polymorphisms in the genome, such as SNPs and InDels [40].
SNPs are the most common variants in the genome of any organism [41], and InDels have
become an increasingly important source of genetic variation [42]. Despite the continuous
development of genotyping techniques for SNPs, InDel polymorphisms are easily geno-
typed by fragment-length polymorphisms and are of practical value for laboratories that
do not have the infrastructure to perform SNP genotyping [43]. They are best suited for
genetic evaluation and strategies for selective breeding using molecular genetics.

Hyper-seq is an extremely low-cost, efficient, flexible and high-throughput DNA
sequencing library preparation and genotyping method that was developed by Xia’s
team at Hainan University [44]. This technique mainly consists of PCR amplification to
construct the library and gel electrophoresis to preliminarily detect the quality of the library.
Then, the mixed glue is recovered, and the quality of the library is controlled again by
means of Nanodrop and gel electrophoresis; the second-generation Illumina NovaSeq
6000 platform is used for high-throughput sequencing and for several key steps, such as
quality control and filtering of the original data generated by sequencing. This technology
has wide applicability and scalability, as well as a certain gene region enrichment effect.
Utilizing various Hyper-seq primers, the label density can be readily modified to suit
the requirements of various species and projects. Additionally, special PCR techniques
eliminate the need for additional enzyme digestion and joint procedures, which can realize
the simultaneous construction of a large number of samples, produce massive genotype
big data, meet the needs of large-scale typing sequencing of different species at low cost
and accelerate efficient big data breeding and population research. Wang et al. used Hyper-
seq technology to conduct genome-wide association analysis (GWAS) on 150 tetraploid
potatoes, and they discovered candidate genes that may be closely related to the formation
and regulation of the flesh colors of potato tubers [45]. Fu et al. combined Hyper-seq
sequencing of 241 Canna edulis populations to identify key genes related to leaf color and
morphology and completed the classification of C. edulis populations [46]. Ding et al.
constructed a sequencing library of 137 Areca catechu DNA samples using the Hyper-seq
method and mined 86 candidate genes related to Areca catechu fruit shape traits [47].

In the current study, 132 individuals from 11 wild populations of R. chingii in Jiangxi
and Fujian provinces were subjected to simplified genome sequencing conducted with
Hyper-seq technology. The primary objectives of this study were to (1) evaluate the
genetic diversity and population structure of R. chingii accessions and (2) develop a core
germplasm set, conserving diversity for improvement and breeding programs. This is
the first genetic study on R. chingii that uses very accurate SNP molecular markers, and it
offers a theoretical foundation for the comprehension, preservation and sustainable use of
wild R. chingii resources in Jiangxi and Fujian provinces. Moreover, these two significant
R. chingii-producing regions have an abundance of wild resources, which are crucial for
enhancing the species’ excellent germplasm resources and expanding their gene pool.

2. Results
2.1. Genome Re-Sequencing and Variant Identification

The re-sequencing of 132 accessions of R. chingii was performed with the Illumina
sequencing platform. The total depth of sequencing was 309.92×, and approximately
70.17 G of sequencing data was generated. We extracted 493 million clean reads, with
an average of 3.7 million reads per individual, by filtering low-quality reads and reads
less than 15 bp in length. The mean value of Q30 was 91%, and the GC content was
between 37.48% and 44.76%, which indicates high library quality and accurate and reliable
sequencing results that can be used for subsequent SNP marker mining (Supplementary
Table S1). Clean reads of each accession were mapped onto the R. chingii reference genome
using a BWA aligner. The percentage of reads mapped onto the reference genome varied
from 70.26% to 97.27% (Supplementary Table S2).
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A total of 1,303,850 SNPs and 433,159 InDels were identified, located on 7 chromosomes
and 35 scaffolds (Supplementary Figures S1–S3); they were considered as a candidate pool
for further selection and were evenly distributed across the R. chingii genome (Figure 1A).
The number of alleles (Na) varied from two to seven (Supplementary Table S3), while
the length distribution of InDels was within 10 bp, and 1 to 2 bp were the two most
abundant types, accounting for 45% (Figure 1C). The overall mean SNP and InDel densities
of the chromosomes were 3.5 SNPs/kb and 1.4 InDels/kb. Chromosome 6 had the highest
frequency of SNPs (6.782 SNPs/kb) and InDels (2.655 InDels/kb), while chromosome 5
had the lowest (Supplementary Table S4).
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Figure 1. SNPs and InDels screening and in silico simulation. (A) Genome-wide variation distribution.
Tracks toward the center: a, CG content (%); b, number of genes; c, number of SNPs; d, number of
insertions; e, number of deletions. (B) Proportion of six variant types of SNPs in the whole population.
(C) Distribution of InDel lengths.

Transitions (Ts) SNPs (A/G or C/T) were more abundant than transversions (Tv) SNPs
(A/C, A/T, C/G or G/T), with a Ts/Tv ratio of 1.54. (Supplementary Table S5). The single
base variation showed that C/T was the dominant conversion type, accounting for 30.9%,
while C/G conversion represented only 5.8% (Figure 1B).

The identified SNPs and InDels were annotated to identify the genes disrupted by
the variants and to assess the effect of the mutation on individuals. The results showed
that nonsynonymous single-nucleotide variants (SNV) accounted for up to 41.5% of SNPs,
synonymous SNV accounted for 21.8%, and frameshift deletions and frameshift insertions
accounted for 6.7% and 10%, respectively. InDels identified the largest number of mutations
in the intergenic part of the genome, accounting for 33.9%, followed by intronic, accounting
for 24.1%, and exonic, accounting for 19.2% (Supplementary Table S6).

2.2. Genetic Diversity

The main allele frequency (MAF), expected/observed heterozygosity, expected/observed
homozygosity, nucleotide diversity (Pi) and fixation index (Fis) and other parameters
were used to assess genetic diversity. The number of polymorphic sites and mean num-
ber of individuals per locus values (Num Indv) of these SNPs ranged from 21,693 to
250,386 and from 1 to 11.4, respectively. The percentages of locations with polymorphisms
ranged from 26,621 to 231,860 and from 7.34% to 25%, with a mean value of 15.76%. MAF
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had an average of 0.957, ranging from 0.932 to 0.972. The expected and observed heterozy-
gosities had mean values of 0.053 and 0.044, ranging from 0.034 to 0.090 and from 0.033 to
0.073, respectively. Meanwhile, the expected and observed homozygosities had average
values of 0.947 and 0.956, ranging from 0.910 to 0.965 and from 0.926 to 0.969, respectively.
The Pi and Fis values ranged from 0.047 to 0.115 and from 0.012 to 0.186, respectively, with
mean values of 0.0738 and 0.061, respectively, as shown in Table 1.

Table 1. Genetic diversity within and among 132 R. chingii accession genotypes.

Pop ID 10 13 14 15 16 17 18 30 37 49 9

Polymorphic Sites 142,311 142,562 346,555 57,793 231,860 45,178 26,621 43,356 92,739 70,498 184,274
%Polymorphic Loci 17.5723 17.6693 33.7596 10.0109 25.0310 8.4686 7.3391 8.6978 13.0160 10.7878 21.0269

Num Indv * 4.4886 4.8872 10.8207 1.7818 7.1989 2.0501 1 2.3320 3.8976 2.7428 5.2249
MAF ** 0.9541 0.9543 0.9319 0.9637 0.9425 0.9698 0.9633 0.9721 0.9643 0.9667 0.9459

Observed
heterozygosity 0.0413 0.0429 0.0406 0.0460 0.0407 0.0459 0.0734 0.0309 0.0326 0.0340 0.0505

Observed
homozygosity 0.9587 0.9571 0.9594 0.9540 0.9593 0.9541 0.9266 0.9691 0.9674 0.9660 0.9495

Expected
heterozygosity 0.0586 0.0580 0.0900 0.0424 0.0747 0.0352 0.0367 0.0340 0.0450 0.0410 0.0686

Expected
homozygosity 0.9414 0.9420 0.9100 0.9576 0.9253 0.9648 0.9633 0.9660 0.9551 0.9591 0.9314

Pi *** 0.0753 0.0751 0.1078 0.0627 0.0915 0.0532 0.0734 0.0466 0.0580 0.0549 0.0897
Fis **** 0.0714 0.0686 0.1742 0.0269 0.1186 0.0119 0 0.0276 0.0513 0.0378 0.0828

* Num Indv: number of individuals per locus values; ** MAF: main allele frequency; *** Pi: nucleotide diversity;
**** Fis: fixation index.

The results of inter-populational molecular AMOVA showed that most of the variance
occurred among individuals, accounting for 62.6% of the total variation, and a further
37.4% of the total variation was attributed to inter-populational differences. The genetic
differentiation coefficient (Phi) was 0.37 (p < 0.05) (Table 2).

Table 2. Analysis of molecular variance (AMOVA) results for the 10 field populations of R.chingii
from different regions of China *.

Source of Variations Df ** Sum of Squares Covariance
Components

Percentage of
Covariance (%) Phi (p < 0.05)

Between populations 9 35,769.45 286.0839 37.4036
Within samples 121 57,931.61 478.7737 62.5965 0.3740

Total 130 93,701.07 764.8575 100

* Since there was only one material in Population 18, which did not meet the prerequisites of the AMOVA, the
data in the table do not include 18-1. ** Df: degrees of freedom.

The fixation index (Fst) value of the 11 populations ranged from 0.13 to 0.46, suggesting
high genetic differentiation among populations (Supplementary Table S7). In addition,
the lowest Fst value was 0.13 between populations 30 and 14; the highest Fst value was
0.46 between populations 18 and 17.

2.3. Population Structure

To infer relationships among the 132 accessions of R. chingii, a neighbor-joining (NJ)
tree was constructed. PLINK software (version 3.696) was utilized with VCF files to calcu-
late squared genetic distances between individuals based on SNP data. Four subgroups
were generated from this NJ tree. Pop1 (red in Figure 2) included all the resources in
populations 9, 10 and 13 and two accessions in population 16, while the genetic structure
of populations 14, 17 and 18 showed a closer relationship to Pop2 (yellow in Figure 2).
Pop3 (blue in Figure 2) consisted of 21 accessions from three populations: 30; 37; and
49. Pop4 (green in Figure 2) comprised 24 accessions, population 15 and the remaining
21 accessions of population 16. In general, except for a small internal division from popula-
tion 16, individuals from every other population clustered on the same genetic branch.
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Meanwhile, the principal component analysis (PCA) obtained using the SNP markers
generated in this study provides useful information on the relationships among R. chingii
accessions and is generally consistent with the results observed in the NJ tree (Figure 3).

In the ADMIXTURE analysis, the most probable K value varied from 2 to 11, with
K = 4 having the lowest cross-validation error (Figure 4, Supplementary Figure S4). Thus,
K = 4 was considered the optimal number of subpopulations, indicated as clusters I–IV
to describe the genetic structure. The NJ tree results and PCA analysis supported the
ADMIXTURE study.
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2.4. Core Germplasm

In this research, the core germplasms of R. chingii were constructed from 132 wild
accessions using a combination of Hyper-seq technology and Genocore [48]. According to
the NJ tree, there are 21 accessions in Pop1, accounting for 27.3%; 28 accessions in Pop2,
accounting for 36.4%; only 14 accessions in Pop3, accounting for 18.2%; and 14 accessions in
Pop4, accounting for 18.2%. Furthermore, 38 accessions of R. chingii samples were chosen
from the core set if the sample was 50% (Table 3); the genotype coverage is 95.3% (Figure 5,
Supplementary Table S8), and Pop2 contains 14 accessions, reaching the maximum of 36.8%.
At this time, the noncore germplasm contains 27 strains. The percentage of polymorphic
sites of the core germplasm population is 91.5%; the effective allele number is 1.4293, and
the Shannon’s information is 0.6192. Nei’s gene diversity is 0.6341, higher than that in
the noncore germplasm set. The average observed heterozygosity of the core germplasm
population is 0.1833, which is slightly lower than that of the noncore germplasm sets.

Table 3. Correlation index of genetic diversity between core and noncore germplasms * under
different sampling proportions.

Sample
Population

Sampling
Proportion

Sample
Numbers

Polymorphic
Loci

Numbers
%

Observed
Heterozy-

gosity

Observed
Homozy-

gosity

Observed
Alleles

Number
(Na)

Effective
Allele

Number
(Ne)

Shannon’s
Informa-

tion

Nei’s Gene
Diversity

Core
germplasm 25% 19 86.99 0.1791 0.8209 1.9489 1.4256 0.6027 0.6078

Noncore
germplasm 25% 13 80.75 0.1874 0.8162 1.9121 1.4208 0.5908 0.5873

Core
germplasm 50% 38 91.50 0.1833 0.8167 1.9963 1.4293 0.6192 0.6341

Noncore
germplasm 50% 27 87.39 0.1908 0.8092 1.9816 1.4264 0.6095 0.6250

Core
germplasm 100% 77 95.65 0.1868 0.8132 2.0000 1.4360 0.6299 0.6383

Noncore
germplasm 100% 55 92.39 0.1892 0.8108 1.9998 1.4290 0.6199 0.6359

* Genocore determined that there are 77 strains of core germplasms, 100% of genotype coverage, and 55 strains of
noncore germplasms remaining.
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represent the proportions of the ancestries in the sample.
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Figure 5. Genotype coverage trend map. When the sample size is 50, the genotype coverage
reaches 95.3%.

3. Discussion
3.1. SNPs and InDel Markers

On the basis of the published R. chingii genome, it becomes easy and quick to mine
the genomic SNP and InDel markers by means of re-sequencing and bioinformatics. Single-
nucleotide polymorphisms refer to single base differences that exist in the genomes of different
individuals of a species, and they are also a rich form of genetic variation within individuals
of a species that can occur at different frequencies throughout the genome [49,50]. In this
study, genotype DNA libraries for R. chingii were created and genotyped using Hyper-seq
technology. Then, the SNP markers were utilized to examine the genetic diversity and
population structure. Previous studies carried out R. chingii ISSR marker studies and
transcriptome SSR mining and analysis [31,33], whereas SNPs are being used here for
genotyping for the first time.

The alignment efficiency between the results of this study and the reference genome
is from 70.26% to 97.27%, which reveals that there are differences in the whole-genome
sequence of the materials studied. The average ratio of Ts/Tv is 1.54; similar rates exist in
other plants, like sweet cherry and sorghum [51,52]. Furthermore, some reports suggest that
high Ts/Tv ratios indicate low levels of genetic differentiation in genomic comparisons [53].
Nevertheless, transversion is more likely to change the amino acid sequence of proteins,
suggesting that transversion has a greater influence on the regulation of DNA, and the
local deviation of the Ts/Tv ratio can also reflect the evolutionary selection of genes [54,55].
Insertions or deletion variants of 1–2 bp are the most common type, and the size of InDels is
negatively correlated with their abundance, which has also been found in previous studies
with different crops [53,56,57]. In addition, the distributions of SNPs and InDels vary with
the type of sequence region, but the distributions are not uniform; the distribution densities
differ on various chromosomes, and the frequency of polymorphism in intergenic regions is
relatively higher than that in gene regions [58]. Moreover, variations located within or close
to coding sequences should always raise greater concerns due to the increased likelihood
that they will be connected to a particular biological function [59]. In this study, the numbers
of SNPs and InDels found on chromosome 6 are the largest, while their distribution on
chromosome 5 is the smallest, which was mutually verified with the conclusion that InDels
events were positively correlated with single-nucleotide changes [60]; this also indicates
that the diversity of chromosome 5 is low. The largest number of InDel variants were
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identified in the intergenic part of the genome, but no variants were detected in the 3′ UTR
and 5′ UTR parts, similar to the findings of the Chinese cabbage study [61]. The newly
identified SNPs and InDel markers can provide abundant data information for genetic and
functional genomics studies of R. chingii, quickly identify dominant populations, provide a
deeper understanding of the genomic diversity and population structure of germplasm
and establish a foundation for the continued breeding of superior species.

3.2. Genetic Diversity Analysis

Genetic diversity is critical for a healthy population because it represents different
alleles that can lead to resistance to pests, diseases or other stressful conditions; it is essential
to retain sufficient genetic diversity for current and future plant breeding programs [62].
However, the current rate of species extinction is rapidly approaching an unprecedented
level, with conservative estimates of genetic diversity within wild populations declining
by 5.4–6.5% since the Industrial Revolution, and the rate of biodiversity loss does not
appear to be slowing down. A better understanding of the genetic diversity characteristics,
population structure and ecological relationships of wild resources is necessary to develop
and implement effective genetic conservation strategies [63–65]. From a molecular level,
this study analyzed genetic diversity in wild R. chingii species in order to further provide
a foundation for genetic resource protection and a basis for the sustainable utilization
of resources.

Regarding the observed heterozygosity, all of the observed heterozygous population
SNPs loci were lower than expected, and R. chingii (0.044) had a much lower observed
heterozygosity than Prunus persica (0.444) [66]. This indicates a clear lack of heterozygosity
and low genetic diversity that may herald a potentially depressed breeding problem [66,67].
The high MAF (0.95) and Fis > 0 confirmed that there is less observed heterozygosity than
expected, which also indicates that the population has a low outcrossing rate and low genetic
variation, which may be related to the characteristics of root tiller reproduction [68,69].

The major drivers of genetic diversity loss include climate change, habitat fragmenta-
tion, overcollection and population size reduction [70]. Considering that genetic variations
within and between populations do not depend on sexual and/or asexual reproduction, this
means that sexual plants are as genetically diverse as asexual plants [71,72]. Overexploita-
tion of nature often results in habitat loss for wild resources, while habitat fragmentation
leads to smaller population sizes, which will also endanger the long-term survival of R.
chingii through asexual reproduction and genetic drift [66]. Therefore, it seems that poor
habitat conditions, low distribution density and severe human intervention are the main
reasons for the reduction in genetic diversity [73]. However, the small number of materials
in some regions may not be a true reflection of the low diversity level, and further studies
with larger samples are needed.

3.3. Population Structure

To effectively utilize germplasm resources and safeguard variety rights, access to
genetic relationships and population structure at the genomic level is required [74]. There
is some evidence of significant genetic differentiation in wild R. chingii populations in
the current investigation. Firstly, the amount of variance between populations is further
quantified by the interpopulation fixed index (Fst) [69]. Strong genetic divergence between
populations is indicated by an average Fst value of 0.253 [67]. The highest Fst values were
found between populations 17 and 18, indicating the highest degree of genetic differentia-
tion between them. Surprisingly, the Fst values of the two largest sampled populations,
14 and 16, are both lower than 0.25, indicating a modest degree of differentiation between
these two populations. Conversely, population 18, with the smallest sample size, had a
high level of differentiation, shown by its Fst score. The broadest range of alleles may
be covered by the large sample size, and since there is more genetic overlap with other
groups, there may be less genetic differentiation. Secondly, the results of the AMOVA study
supported earlier findings that most woody species change more between individuals than



Plants 2024, 13, 618 11 of 18

across populations, with the majority of variations occurring within samples [75,76]. The
Phi among the samples reached a significant level of 0.37 (p < 0.05), and there was also a
high level of genetic differentiation demonstrated between monoculture materials [77].

The results of the NJ tree, ADMIXTURE structural and PCA analyses all divided
132 wild R. chingii resources into four subgroups. Regular patterns in the classification
of germplasm resources are mostly influenced by known material lineages, geographical
origins and dissemination patterns [51]. Pop1 is mainly located in the northeast of Jiangxi
Province, while Pop3 distribution is concentrated in Jiangxi’s center; the main distribution
of Pop4 is in Fujian, which borders Jiangxi; and Pop2 is dispersed across both Jiangxi
and Fujian provinces, roughly 400 km apart, which is not consistent with the criteria of
geographical origin of the first three subgroups. In addition, population 16 was classified
into two subgroups. Given that R. chingii’s natural resources are primarily found in places
where there has been significant human disturbance, like hillsides and roadside areas, and
its fruits are favored by birds and animals, its seeds may also spread with their range. Thus,
the first possibility that comes to mind is that transmission mediated by humans or animals
may be involved [2,78,79]. R. chingii germplasm resources were not strictly categorized
based on the established population, and a subpopulation can be further divided into
distinct groups, each exhibiting some degree of confounding, which indicates a varied
genetic makeup within each of these subgroups [68,69].

Only population 14 arose when K = 2, according to the structural analysis, suggesting
that this population’s differentiation period may have occurred earlier in the evolutionary
process. When K = 3, Pop3 and Pop4 were formed, which were distributed in central
Jiangxi Province and Fujian Province but not separated and had been isolated from Pop1
located in northeastern Jiangxi Province, indicating that R. chingii was likely to migrate
from northeastern Jiangxi Province to central Jiangxi Province and Fujian Province, where
it would likely spread quickly [80,81]. Although cross-cutting between materials and
environmental factors may allow the populations of different origins to belong to the same
subgroup, most species of the same origin with similar genetic background information
may be categorized accurately. The ADMIXTURE analysis results show that for K = 4,
populations 15, 30, 17 and 18 have a high proportion of color mixing, making it difficult to
distinguish between them based on gene pools of different colors.

3.4. Core Germplasm Repository Building

This study demonstrates that heterozygote deficits are present in all groups of wild
R. chingii populations, and that these populations maintain high levels of genetic differ-
entiation and low levels of genetic variation. Therefore, effective R. chingii conservation
strategies should be proposed based on the population’s genetic diversity information.
Maintaining the greatest amount of genetic variation should be the primary objective of any
program aimed at conserving plant genetic resources [82]. The quantity of the R. chingii core
germplasm building group is far lower than that of the total sample, but its genetic diversity
index, such as observed heterozygosity, is higher than that of each sample population. This
is because the core germplasm is protected with a minimum number of genetically similar
materials, which increases genetic diversity [83]. Since different needs and crops require
varying sample percentages, there is no perfect ratio or set size for all core germplasm sets.
The genotype coverage trends indicate that when the genotype coverage approaches 95%,
the percentage of matched core germplasm grows marginally with sample size, and at this
point, it is approximately 50%. Consequently, 50% of core germplasm was deemed to be
the best core germplasm in this investigation, and at this point in time, the observed het-
erozygosity was 0.1833, which was higher than that of any population. Nei’s gene diversity
(0.6341) and Shannon’s information (0.6192) indicated a high genetic variation level. Both
in situ and ex situ conservation are required since R. chingii is a widely distributed species
with a large range, and no single conservation strategy is optimal [62]. Core germplasm
nurseries provide valuable information for germplasm conservation, which can be followed
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by joint phenotypic trait analysis used to develop genetic populations to scan target loci
and genes and select parental material to improve breeding.

4. Conclusions

Research on the genetic diversity and population structure in populations of wild re-
sources is crucial for comprehending the status of these resources, as well as for discovering
beneficial genes and generating new cultivars. It provides a strong scientific basis for under-
standing how various species adapt to their surroundings and for creating workable plans
for the conservation and utilization of genetic resources. Following filtering, 1,303,850 SNP
polymorphic loci and 433,159 InDel polymorphic loci were discovered using Hyper-seq on
R. chingii wild resources. Based on the genetic diversity and AMOVA studies, R. chingii in
Jiangxi and Fujian provinces has maintained a low level of genetic variation, suggesting that
its genetic integrity may be at risk. Meanwhile, its high degree of population differentiation
suggests that material should be collected from a range of populations in order to maximize
the genetic variance of the germplasm. Four subgroups can be formed by combining a NJ
tree, ADMIXTURE analysis and PCA, and their genetic distances are the primary factors
that determine the priority of the major categorization. According to the genotype coverage
trends, when 38 strains were sampled, the core germplasm was built, and the genotype
coverage was 95.3%. The majority of genetic diversity was preserved using a modest
amount of germplasm resources. In addition, to preserve the integrity of the habitat and
lessen the logging of wild resources, a combination of in situ and relocated conservation
techniques should be used. In order to apply molecular breeding, consideration should
also be given to the discovery of alleles for important features in the natural resources of
the populations. The genetic diversity and population structural data from this research
can serve as a foundation for R. chingii conservation, management and further utilization.

5. Materials and Methods
5.1. Experimental Materials

The R. chingii germplasms used in this investigation were sourced from 11 field areas
in the provinces of Jiangxi and Fujian (Supplementary Table S9). The following figure
displays the collection’s geographic spread (Figure 6).
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5.2. DNA Extraction and Library Construction

In summer, healthy leaves were gathered, instantly frozen in liquid nitrogen and
then moved to a refrigerator at −80 ◦C. Following the manufacturer’s instructions, high-
quality genomic DNA was isolated from recently frozen R. chingii leaf tissue using the Plant
Genomic DNA Kit (Magen, Guangzhou, China). Each DNA sample was evaluated for
purity and concentration in order to guarantee the caliber of the created library. Following
successful completion of the genomic DNA test, library building followed the Hyper-seq
protocol to the letter [44]. High-throughput sequencing was carried out using the Illumina
NovaSeq 6000 platform (Illumina, San Diego, CA, USA). Fastp (version: 0.20.1; Parameter:
Default parameter) was used for filtering and quality assurance [84]. BWA (version: 0.7.17;
parameter: mem) comparison analysis was performed for each sample [85], and the filtered
clean reads were compared to the reference genome.

5.3. Identification of SNPs and InDels

Based on the comparison of the result files, GATK (version: 4.2.5.0; parameter: variant
filtration) [86] was used in order to reduce the proportion of false positives and obtain
high-quality SNPs and InDels. The identified SNPs and InDels were filtered separately
according to the hard-filtering standard recommended by GATK officials. The specific
filtering standards applied are as follows:

Criteria for SNPs are as follows: “QD < 2.0 || QUAL < 30.0 || SOR > 3.0 || FS > 60.0
|| MQ < 40.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0”;

Criteria for InDels are as follows: “QD < 2.0 || QUAL < 30.0 || FS > 200.0 ||
MQ < 40.0 || ReadPosRankSum < −20.0”.

The SNPs and InDels identified were annotated using ANNOVAR [87] to identify the
genes destroyed by the mutation to assess the impact of the mutation on the body.

5.4. Genetic Diversity

Population genetic parameters and population index (Fst) values were calculated with
Stacks software (version 2.65). Molecular AMOVA was completed using the poppr.amova
function analysis in Rstudio. The 10 field populations of R. chingii from different regions of
China were subjected to this method, except population 18, which only has one accession.

5.5. Population Structure

Based on GATK hard-filtering the remaining mutation result file, vcftools (version
0.1.16; parameters: -MAF, -max-missing, min-alleles, max-alleles, remove-indels) [88] was
used to eliminate MAFs (minor allele frequencies) lower than 0.05 and genotype deletion
ratios greater than 20%, and only second-order SNP mutation sites were retained. Finally,
the remaining variation sites, after filtering, were used for population structure analysis.

A phylogenetic tree is a branch diagram that describes the order of differentiation
between populations and is used to represent the evolutionary relationship between popu-
lations. According to the similarities and differences in physical or genetic characteristics
of the population, we can infer how closely related they are. Using the neighbor-joining
method in PHYLIP (version 3.696; parameter: neighbor), the evolutionary tree (NJ tree)
was constructed. Subsequently, ggtree, an R package, was used for visualization based on
the tree file (Newick format).

PCA is a method of statistical analysis and simplification of data sets. In genetics,
it is mainly used in cluster analysis, which clusters individuals into different subgroups
according to the principal component based on the degree of variation difference between
the samples of a population. GCTA (version: 1.93.2; parameters: -GRM, -PCA) [89] was
used for the PCA analysis.

ADMIXTURE software was used to estimate the maximum likelihood of individual
ancestors from multi-site SNPs genotype data sets and to estimate the optimal number of
ancestors; that is, the population was divided into several subgroups, where the number of
subgroups was called K. Normally, a range of K from 2 to n can be preset, since it is not
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known how many subpopulations this population actually contained. Software simulation
in the case of K = x was carried out by calculating how groups were based on a Bayesian
algorithm and the origin of each individual for each composition. For the simulation results
of each K value, the software calculated a CV error value and maximum likelihood value,
and the best K value could be selected according to both the error value and maximum
likelihood value.

ADMIXTURE (version: 1.3.0; parameters: -cv inputFile K) [90] was used for population
genetic structural analysis, with K values ranging from 2 to 10.

5.6. Core Germplasm Screening and Evaluation

The goal of the core germplasm is to use the fewest genetic resources possible while
optimizing the genetic variety of the whole resource population, taking into account
geographic distribution. The process of removing the core germplasm from all samples of
currently available genetic resources using certain techniques is known as “core germplasm
construction”. Originally, core sets were created using phenotypic data that included
morphological and agronomic traits. However, currently, molecular markers are the
principal method to objectively measure genetic diversity. In order to assess the accuracy
of germplasm screening, principal component analysis was performed on both the original
and screened core germplasm samples in this study. Genocore was utilized for the screening
process [48].

Supplementary Materials: The following supporting information can be downloaded at
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notations. Table S7: Value of the fixation index (Fst). Table S8: Coreset coverage. Table S9:
population information. Table S10: Basic Population Genetic Parameters. Figure S1: SNP Den-
sity Plot across the Seven Chromosomes of R. chingii (LG01-07) Representing Number of SNPs
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