A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Measurement of Tomato Quality Traits
2.3. Data Preprocessing
2.4. Machine Learning Models
2.4.1. XGBoost Model
- is the number of observations in the dataset,
- is the actual value for the i-th observation,
- is the predicted value for the i-th observation.
2.4.2. ANN Model
2.5. Feature Importance Analysis with SHAP
3. Results
3.1. Correlation Heatmap
3.2. Model Performance
3.2.1. Brix
3.2.2. Lycopene
3.2.3. a/b ratio
3.3. SHAP
3.3.1. Brix
3.3.2. Lycopene
3.3.3. a/b ratio
4. Discussion
4.1. Correlation Heatmap
4.2. Model Performance
4.2.1. Brix
4.2.2. Lycopene
4.2.3. a/b ratio
4.3. SHAP
4.3.1. Brix
4.3.2. Lycopene
4.3.3. a/b ratio
5. Future Work and Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agbemafle, R.; Danso Owusu-Sekyere, J.; Bart-Plange, A.; Otchere, J.K.; Owusu-Sekyere, J.; Bart-Plange, A.; Otchere, J. Effect of Deficit Irrigation and Storage on Physicochemical Quality of Tomato (Lycopersicon Esculentum Mill. Var. Pechtomech). Food Sci. Qual. Manag. 2014, 34, 10. [Google Scholar]
- Wang, X.; Yun, J.; Shi, P.; Li, Z.; Li, P.; Xing, Y. Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels. J. Plant Growth Regul. 2019, 38, 400–415. [Google Scholar] [CrossRef]
- Daood, H.G.; Bencze, G.; Palotás, G.; Pék, Z.; Sidikov, A.; Helyes, L. HPLC Analysis of Carotenoids from Tomatoes Using Cross-Linked C18 Column and MS Detection. J. Chromatogr. Sci. 2014, 52, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Takács, S.; Pék, Z.; Csányi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of Water Stress Levels on the Yield and Lycopene Content of Tomato. Water 2020, 12, 2165. [Google Scholar] [CrossRef]
- Liu, J.; Hu, T.; Feng, P.; Yao, D.; Gao, F.; Hong, X. Effect of Potassium Fertilization during Fruit Development on Tomato Quality, Potassium Uptake, Water and Potassium Use Efficiency under Deficit Irrigation Regime. Agric. Water Manag. 2021, 250, 106831. [Google Scholar] [CrossRef]
- Zhu, F.; Wen, W.; Cheng, Y.; Fernie, A.R. The Metabolic Changes That Effect Fruit Quality during Tomato Fruit Ripening. Mol. Hortic. 2022, 2, 2. [Google Scholar] [CrossRef]
- Agius, C.; von Tucher, S.; Poppenberger, B.; Rozhon, W. Quantification of Sugars and Organic Acids in Tomato Fruits. MethodsX 2018, 5, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, E.A.; Goodner, K.; Plotto, A. Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. J. Food Sci. 2008, 73, S294–S307. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic Acid Impacts Tomato Carotenoids, Soluble Sugars, and Organic Acids. Hortscience 2016, 51, 370–376. [Google Scholar] [CrossRef]
- Baltazar, A.; Aranda, J.I.; González-Aguilar, G. Bayesian Classification of Ripening Stages of Tomato Fruit Using Acoustic Impact and Colorimeter Sensor Data. Comput. Electron. Agric. 2008, 60, 113–121. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and Instruments for Brix Measurement: A Review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef]
- Giovannucci, E. Tomatoes, Tomato-Based Products, Lycopene, and Cancer: Review of the Epidemiologic Literature. JNCI J. Natl. Cancer Inst. 1999, 91, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, T.; Voutilainen, S.; Nyyssonen, K.; Salonen, J.T. Lycopene, Atherosclerosis, and Coronary Heart Disease. Exp. Biol. Med. 2002, 227, 900–907. [Google Scholar] [CrossRef]
- Rao, A.V.; Young, G.L.; Rao, L.G. Lycopene and Tomatoes in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Jürkenbeck, K.; Spiller, A.; Meyerding, S.G.H. Tomato Attributes and Consumer Preferences—A Consumer Segmentation Approach. Br. Food J. 2020, 122, 328–344. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pék, Z. Effect of Natural Light on Surface Temperature and Lycopene Content of Vine Ripened Tomato Fruit. Can. J. Plant Sci. 2007, 87, 927–929. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pék, Z. Effect of Irrigation on Processing Tomato Yield and Antioxidant Components. Turk. J. Agric. For. 2012, 36, 702–709. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, D.U.; Lim, J.H.; Kim, S.; Choi, J.H. Agreement between Visual and Model-Based Classification of Tomato Fruit Ripening. Trans. ASABE 2020, 63, 667–674. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Xyrafis, E.; Polyzos, N.; Antoniadis, V.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. The Optimization of Nitrogen Fertilization Regulates Crop Performance and Quality of Processing Tomato (Solanum lycopersicum l. Cv. Heinz 3402). Agronomy 2020, 10, 715. [Google Scholar] [CrossRef]
- Goisser, S.; Wittmann, S.; Fernandes, M.; Mempel, H.; Ulrichs, C. Comparison of Colorimeter and Different Portable Food-Scanners for Non-Destructive Prediction of Lycopene Content in Tomato Fruit. Postharvest Biol. Technol. 2020, 167, 111232. [Google Scholar] [CrossRef]
- Goisser, S.; Krause, J.; Fernandes, M.; Mempel, H.; Goisser, S.; Krause, J.; Fernandes, M.; Mempel, H. Determination of Tomato Quality Attributes Using Portable NIR-Sensors; KIT Scientific Publishing: Karlsruhe, Germany, 2019. [Google Scholar] [CrossRef]
- Deák, K.; Szigedi, T.; Pék, Z.; Baranowski, P.; Helyes, L. Carotenoid Determination in Tomato Juice Using near Infrared Spectroscopy. Int. Agrophys. 2015, 29, 275–282. [Google Scholar] [CrossRef]
- Adalid, A.M.; Roselló, S.; Nuez, F. Evaluation and Selection of Tomato Accessions (Solanum Section Lycopersicon) for Content of Lycopene, β-Carotene and Ascorbic Acid. J. Food Compos. Anal. 2010, 23, 613–618. [Google Scholar] [CrossRef]
- Arias, R.; Lee, T.C.; Logendra, L.; Janes, H. Correlation of Lycopene Measured by HPLC with the L*, A*, B* Color Readings of a Hydroponic Tomato and the Relationship of Maturity with Color and Lycopene Content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef]
- Thole, V.; Vain, P.; Yang, R.Y.; Almeida Barros da Silva, J.; Enfissi, E.M.A.; Nogueira, M.; Price, E.J.; Alseekh, S.; Fernie, A.R.; Fraser, P.D.; et al. Analysis of Tomato Post-Harvest Properties: Fruit Color, Shelf Life, and Fungal Susceptibility. Curr. Protoc. Plant Biol. 2020, 5, e20108. [Google Scholar] [CrossRef]
- Matiu, M.; Ankerst, D.P.; Menzel, A. Interactions between Temperature and Drought in Global and Regional Crop Yield Variability during 1961–2014. PLoS ONE 2017, 12, e0178339. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Guan, K.; Jaegermeyr, J.; Wang, E.; et al. Silver Lining to a Climate Crisis in Multiple Prospects for Alleviating Crop Waterlogging under Future Climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Ruß, G.; Kruse, R.; Schneider, M.; Wagner, P. Optimizing Wheat Yield Prediction Using Different Topologies of Neural Networks. Proc. IPMU 2008, 8, 576–582. [Google Scholar]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data. Proc. AAAI Conf. Artif. Intell. 2017, 31. [Google Scholar] [CrossRef]
- Mehra, L.K.; Cowger, C.; Gross, K.; Ojiambo, P.S. Predicting Pre-Planting Risk of Stagonospora Nodorum Blotch in Winter Wheat Using Machine Learning Models. Front. Plant Sci. 2016, 7, 390. [Google Scholar] [CrossRef] [PubMed]
- Behmann, J.; Mahlein, A.K.; Rumpf, T.; Römer, C.; Plümer, L. A Review of Advanced Machine Learning Methods for the Detection of Biotic Stress in Precision Crop Protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Y.; Shang, Y. Research and Application of XGBoost in Imbalanced Data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Song, K.; Yan, F.; Ding, T.; Gao, L.; Lu, S. A Steel Property Optimization Model Based on the XGBoost Algorithm and Improved PSO. Comput. Mater. Sci. 2020, 174, 109472. [Google Scholar] [CrossRef]
- Haq Chowdhury, R.; Sultana Eti, F.; Atiqur Rahman Bhuiyan, M.; Das Gupta, S.; Hassan Rubel, M. Drought-Responsive Genes in Tomato: Meta-Analysis of Gene Expression Using Machine Learning. Sci. Rep. 2023, 13, 19374. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M. Natural Networks for Pattern Recognition; Oxford University Press: Cambridge, UK, 1995; p. 482. [Google Scholar]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative Analysis of Salt-Affected Soil Reflectance Spectra: A Comparison of Two Adaptive Methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Kaul, M.; Hill, R.L.; Walthall, C. Artificial Neural Networks for Corn and Soybean Yield Prediction. Agric. Syst. 2005, 85, 1–18. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating Crop Yields with Deep Learning and Remotely Sensed Data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar]
- International Commission for Uniform Methods of Sugar Analysis. ICUMSA Proceedings 1974: 16th Session; Verlag Dr. Albert Bartens: Berlin, Germany, 1974; ISBN 978-0-905003-00-9. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-Validation Strategies for Data with Temporal, Spatial, Hierarchical, or Phylogenetic Structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; NeurIPS: San Diego, CA, USA, 2017; Volume 30. [Google Scholar]
- Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Ayankojo, I.T.; Morgan, K.T. Increasing Air Temperatures and Its Effects on Growth and Productivity of Tomato in South Florida. Plants 2020, 9, 1245. [Google Scholar] [CrossRef]
- Bihon, W.; Ognakossan, K.E.; Tignegre, J.B.; Hanson, P.; Ndiaye, K.; Srinivasan, R. Evaluation of Different Tomato (Solanum Lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae 2022, 8, 579. [Google Scholar] [CrossRef]
- Chowdhury, M.; Kiraga, S.; Islam, M.N.; Ali, M.; Reza, M.N.; Lee, W.H.; Chung, S.O. Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory. Foods 2021, 10, 1524. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Z.; Wei, T.; Zhao, H. Response of Tomato Sugar and Acid Metabolism and Fruit Quality under Different High Temperature and Relative Humidity Conditions. Phyton Int. J. Exp. Bot. 2022, 91, 2033–2054. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Gómez, H.A.G.; Seabra Junior, S.; Maraschin, M.; Tecchio, M.A.; Borges, C.V. Functional and Nutraceutical Compounds of Tomatoes as Affected by Agronomic Practices, Postharvest Management, and Processing Methods: A Mini Review. Front. Nutr. 2022, 9, 868492. [Google Scholar] [CrossRef] [PubMed]
- Vela-Hinojosa, C.; Escalona-Buendía, H.B.; Mendoza-Espinoza, J.A.; Villa-Hernández, J.M.; Lobato-Ortíz, R.; Rodríguez-Pérez, J.E.; Pérez-Flores, L.J. Antioxidant Balance and Regulation in Tomato Genotypes of Different Color. J. Am. Soc. Hortic. Sci. 2019, 144, 45–54. [Google Scholar] [CrossRef]
- Silva, R.S.; Kumar, L.; Shabani, F.; Picanço, M.C. Assessing the Impact of Global Warming on Worldwide Open Field Tomato Cultivation through CSIRO-Mk3.0 Global Climate Model. J. Agric. Sci. 2017, 155, 407–420. [Google Scholar] [CrossRef]
- Zuo, H. Analysis and Detection of Tomatoes Quality Using Machine Learning Algorithm and Image Processing. Int. J. Adv. Comput. Sci. Appl. IJACSA 2022, 13. [Google Scholar] [CrossRef]
- Égei, M.; Takács, S.; Palotás, G.; Palotás, G.; Szuvandzsiev, P.; Daood, H.G.; Helyes, L.; Pék, Z. Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy. Front. Nutr. 2022, 9, 5317. [Google Scholar] [CrossRef]
- Ecarnot, M.; Baogonekczyk, P.; Tessarotto, L.; Chervin, C. Rapid Phenotyping of the Tomato Fruit Model, Micro-Tom, Withaportable VIS-NIR Spectrometer. Plant Physiol. Biochem. 2013, 70, 159–163. [Google Scholar] [CrossRef]
- Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Comparison of Different Approaches for the Prediction of Sugar Content in New Vintages of Whole Port Wine Grape Berries Using Hyperspectral Imaging. Comput. Electron. Agric. 2017, 140, 244–254. [Google Scholar] [CrossRef]
- Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Determination of Sugar Content in Whole Port Wine Berries Combining Hyperspectral Imaging with neural Networks Methodologies. In Proceedings of the IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), Orlando, FL, USA, 9–12 December 2014; pp. 188–193. [Google Scholar]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Attri, I.; Awasthi, L.K.; Sharma, T.P. Machine Learning in Agriculture: A Review of Crop Management Applications. Multimed. Tools Appl. 2023, 83, 12875–12915. [Google Scholar] [CrossRef]
- Ayaz Mirani, A.; Muhammad Suleman Memon, E.; Qabulio, M.; Suleman Memon, M.; Chohan, R.; Ali Wagan, A. Machine Learning In Agriculture: A Review. LUME 2021, 10, 5. [Google Scholar]
- Isaac Abiodun, O.; Jantan, A.; Esther Omolara, A.; Victoria Dada, K.; AbdElatif Mohamed, N.; Arshad, H. State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon 2018, 4, 938. [Google Scholar] [CrossRef]
- Almeida, J.S. Predictive Non-Linear Modeling of Complex Data by Artificial Neural Networks. Curr. Opin. Biotechnol. 2002, 13, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Bdr, M.F.; Anshori, M.F.; Emanuella, G.; Pratiwi, N.; Ermiyanti, I.; Yovita, V.; Musdalifa, M.; Nasaruddin, N. High Lycopene Tomato Breeding Through Diallel Crossing. Agrotech J. 2020, 5, 63–72. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Chen, W.; Yang, J.; Zheng, L. Feasibility in Multispectral Imaging for Predicting the Content of Bioactive Compounds in Intact Tomato Fruit. Food Chem. 2015, 173, 482–488. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, A.D.; Kumari, M.; Kumar, N.; Saxena, V.; Kumar, R. Artificial Intelligence-Based Prediction of Lycopene Content in Raw Tomatoes Using Physicochemical Attributes. Phytochem. Anal. 2023, 34, 729–744. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 326. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Li, Z. Extracting Spatial Effects from Machine Learning Model Using Local Interpretation Method: An Example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Suresh, S.; Newton, D.T.; Everett, T.H.; Lin, G.; Duerstock, B.S. Feature Selection Techniques for a Machine Learning Model to Detect Autonomic Dysreflexia. Front. Neuroinform. 2022, 16, 1428. [Google Scholar] [CrossRef]
- Rusu, O.R.; Mangalagiu, I.; Amăriucăi-Mantu, D.; Teliban, G.C.; Cojocaru, A.; Burducea, M.; Mihalache, G.; Roșca, M.; Caruso, G.; Sekara, A.; et al. Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato. Horticulturae 2023, 9, 541. [Google Scholar] [CrossRef]
- Aldrich, H.T.; Salandanan, K.; Kendall, P.; Bunning, M.; Stonaker, F.; Külen, O.; Stushnoff, C. Cultivar Choice Provides Options for Local Production of Organic and Conventionally Produced Tomatoes with Higher Quality and Antioxidant Content. J. Sci. Food Agric. 2010, 90, 2548–2555. [Google Scholar] [CrossRef]
- Prinzenberg, A.; Gf Visser, R.; Marcelis, L.; Heuvelink, E. Genetic Mapping of the Tomato Quality Traits Brix and Blossom-End Rot Under Supplemental LED and HPS Lighting Conditions. Euphytica 2021, 217, 213. [Google Scholar] [CrossRef]
- Beckles, D.M.; Hong, N.; Stamova, L.; Luengwilai, K. Biochemical Factors Contributing to Tomato Fruit Sugar Content: A Review. Fruits 2012, 67, 49–64. [Google Scholar] [CrossRef]
- Vallarino, J.G.; Kubiszewski-Jakubiak, S.; Ruf, S.; Rößner, M.; Timm, S.; Bauwe, H.; Carrari, F.; Rentsch, D.; Bock, R.; Sweetlove, L.J.; et al. Multi-Gene Metabolic Engineering of Tomato Plants Results in Increased Fruit Yield up to 23%. Sci. Rep. 2020, 10, 17219. [Google Scholar] [CrossRef]
- Shin, Y.; Ryu, J.A.; Liu, R.H.; Nock, J.F.; Watkins, C.B. Harvest Maturity, Storage Temperature and Relative Humidity Affect Fruit Quality, Antioxidant Contents and Activity, and Inhibition of Cell Proliferation of Strawberry Fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Aziz, R.; Verma, C.K.; Srivastava, N. Artificial Neural Network Classification of High Dimensional Data with Novel Optimization Approach of Dimension Reduction. Ann. Data Sci. 2018, 5, 615–635. [Google Scholar] [CrossRef]
- Amiri, M.; Jafari, A.H.; Makkiabadi, B.; Nazari, S. Recognizing Intertwined Patterns Using a Network of Spiking Pattern Recognition Platforms. Sci. Rep. 2022, 12, 19436. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Deng, S.; Ma, L.; Li, M.; Xie, B.; Gao, J.; Shao, M.; Chen, Y. Effects of Soil Properties and Nutrients on the Fruit Economic Parameters and Oil Nutrient Contents of Camellia Oleifera. Forests 2023, 14, 1786. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Tan, F.; Chen, W.; Ou, L. Effects of Soil Type on Trace Element Absorption and Fruit Quality of Pepper. Front. Plant Sci. 2021, 12, 8796. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R.; Biklé, A. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. Front. Sustain. Food Syst. 2021, 5, 417. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.L.; Ahmed, S. Effects of Climate Change on Fruit Nutrition. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–93. ISBN 9780128187326. [Google Scholar]
- Lima, E.; Hyde, R.; Green, M. Model Selection for Inferential Models with High Dimensional Data: Synthesis and Graphical Representation of Multiple Techniques. Sci. Rep. 2021, 11, 412. [Google Scholar] [CrossRef] [PubMed]
- Ahlquist, K.D.; Sugden, L.A.; Ramachandran, S. Enabling Interpretable Machine Learning for Biological Data with Reliability Scores. PLoS Comput. Biol. 2023, 19, e1011175. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.Y.; Janss, L.L.; Andersen, J.R.; Orabi, J.; Jensen, J.D.; Jahoor, A.; Jensen, J. Genomic Prediction and GWAS of Yield, Quality and Disease-Related Traits in Spring Barley and Winter Wheat. Sci. Rep. 2020, 10, 3347. [Google Scholar] [CrossRef]
- Bineau, E.; Rambla, J.L.; Duboscq, R.; Corre, M.N.; Bitton, F.; Lugan, R.; Granell, A.; Plissonneau, C.; Causse, M. Inheritance of Secondary Metabolites and Gene Expression Related to Tomato Fruit Quality. Int. J. Mol. Sci. 2022, 23, 6163. [Google Scholar] [CrossRef]
- Wang, H.; Cimen, E.; Singh, N.; Buckler, E. Deep Learning for Plant Genomics and Crop Improvement. Curr. Opin. Plant Biol. 2020, 54, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Panthee, D.R.; Cao, C.; Debenport, S.J.; Rodrıguez, G.R.; Labate, J.A.; Robertson, L.D.; Breksa III, A.P.; van der Knaap, E.; McSpadden Gardener, B.B. Magnitude of Genotype×Environment Interactions Affecting Tomato Fruit Quality. Hortscience 2012, 47, 721–726. [Google Scholar] [CrossRef]
- Kuti, J.O.; Konuru, H.B. Effects of Genotype and Cultivation Environment on Lycopene Content in Red-Ripe Tomatoes. J. Sci. Food Agric. 2005, 85, 2021–2026. [Google Scholar] [CrossRef]
- Guerra, A.S.; Hoyos, C.G.; Molina-Ramírez, C.; Velásquez-Cock, J.; Vélez, L.; Gañán, P.; Eceiza, A.; Goff, H.D.; Zuluaga, R. Extraction and Preservation of Lycopene: A Review of the Advancements Offered by the Value Chain of Nanotechnology. Trends Food Sci. Technol. 2021, 116, 1120–1140. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Lycopene; Chemistry, Biosynthesis, Metabolism and Degradation under Various Abiotic Parameters. J. Food Sci. Technol. 2015, 52, 41–53. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Plant Responses to Environmental Stresses-From Gene to Biotechnology. AoB Plants 2017, 9, plx025. [Google Scholar] [CrossRef] [PubMed]
- Arah, I.K.; Ahorbo, G.K.; Anku, E.K.; Kumah, E.K.; Amaglo, H. Postharvest Handling Practices and Treatment Methods for Tomato Handlers in Developing Countries: A Mini Review. Adv. Agric. 2016, 2016, 6436945. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26. [Google Scholar]
- Kang, M.; Ko, E.; Mersha, T.B. A Roadmap for Multi-Omics Data Integration Using Deep Learning. Brief Bioinform. 2022, 23, bbab454. [Google Scholar] [CrossRef]
- Amankwah, A. Climate Variability, Agricultural Technologies Adoption, and Productivity in Rural Nigeria: A Plot-Level Analysis. Agric. Food Secur. 2023, 12, 7. [Google Scholar] [CrossRef]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef]
- Naeem, M.; Zhao, W.; Ahmad, N.; Zhao, L. Beyond Green and Red: Unlocking the Genetic Orchestration of Tomato Fruit Color and Pigmentation. Funct. Integr. Genom. 2023, 23, 243. [Google Scholar] [CrossRef] [PubMed]
- Pathak, T.B.; Stoddard, C.S. Climate Change Effects on the Processing Tomato Growing Season in California Using Growing Degree Day Model. Model Earth Syst. Environ. 2018, 4, 765–775. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Fan, S.; Wen, T.; Wang, M.; Zhang, L.; Zhao, L. The Transcription Factor WRKY32 Affects Tomato Fruit Colour by Regulating YELLOW FRUITED-TOMATO 1, a Core Component of Ethylene Signal Transduction. J. Exp. Bot. 2021, 72, 4269–4282. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-Generation Phenotyping: Requirements and Strategies for Enhancing Our Understanding of Genotype-Phenotype Relationships and Its Relevance to Crop Improvement. Theor. Appl. Genet. 2013, 126, 867–887. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Regulated Water Deficits Improve Phytochemical Concentration in Lettuce. J. Amer. Soc. Hort. Sci. 2010, 135, 223–229. [Google Scholar] [CrossRef]
- Kim, Y.X.; Son, S.Y.; Lee, S.; Lee, Y.; Sung, J.; Lee, C.H. Effects of Limited Water Supply on Metabolite Composition in Tomato Fruits (Solanum Lycopersicum L.) in Two Soils with Different Nutrient Conditions. Front. Plant Sci. 2022, 13, 3725. [Google Scholar] [CrossRef]
- Condran, S.; Bewong, M.; Islam, M.Z.; Maphosa, L.; Zheng, L. Machine Learning in Precision Agriculture: A Survey on Trends, Applications and Evaluations over Two Decades. IEEE Access. 2022, 10, 73786–73803. [Google Scholar] [CrossRef]
- Salman, S.; Liu, X. Overfitting Mechanism and Avoidance in Deep Neural Networks. arXiv 2019, arXiv:1901.06566. [Google Scholar]
- Bates, S.; Hastie, T.; Tibshirani, R. Cross-Validation: What Does It Estimate and How Well Does It Do It? J. Am. Stat. Assoc. 2021. [Google Scholar] [CrossRef]
- Jin, H. Hyperparameter Importance for Machine Learning Algorithms. arXiv 2022, arXiv:2201.05132. [Google Scholar]
- Wray, N.R.; Yang, J.; Hayes, B.J.; Price, A.L.; Goddard, M.E.; Visscher, P.M. Pitfalls of Predicting Complex Traits from SNPs. Nat. Rev. Genet. 2013, 14, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Zhang, S.; Li, S.; Zhang, M.; Benli, H.; Wang, Y. Numerical Investigation for Effects of Natural Light and Ventilation on 3D Tomato Body Heat Distribution in a Venlo Greenhouse. Inf. Process. Agric. 2022, 10, 535–546. [Google Scholar] [CrossRef]
- Xiao, L.; Shibuya, T.; Kato, K.; Nishiyama, M.; Kanayama, Y. Effects of Light Quality on Plant Development and Fruit Metabolism and Their Regulation by Plant Growth Regulators in Tomato. Sci. Hortic. 2022, 300, 111076. [Google Scholar]
- Bai, Y.; Lindhout, P. Domestication and Breeding of Tomatoes: What Have We Gained and What Can We Gain in the Future? Ann. Bot. 2007, 100, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, P.; D’Alessandro, A.; Francese, G. An Integrated Genomic and Biochemical Approach to Investigate the Potentiality of Heirloom Tomatoes: Breeding Resources for Food Quality and Sustainable Agriculture. Front. Plant Sci. 2023, 13, 1776. [Google Scholar] [CrossRef]
- Duraivel, S.; Rahimpour, S.; Chiang, C.H.; Trumpis, M.; Wang, C.; Barth, K.; Harward, S.C.; Lad, S.P.; Friedman, A.H.; Southwell, D.G.; et al. High-Resolution Neural Recordings Improve the Accuracy of Speech Decoding. Nat. Commun. 2023, 14, 6938. [Google Scholar] [CrossRef]
- Chandola, V.; Varun, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models; Computer Science Department, Stanford University: Stanford, CA, USA, 2013; Volume 30, p. 3. [Google Scholar]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:arxiv:1609.04747. [Google Scholar]
- Oh, S. Feature Interaction in Terms of Prediction Performance. Appl. Sci. 2019, 9, 5191. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Pham, H. Optimizing Ensemble Weights and Hyperparameters of Machine Learning Models for Regression Problems. Mach. Learn. Appl. 2022, 7, 100251. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Nketiah, E.A.; Chenlong, L.; Yingchuan, J.; Aram, S.A. Recurrent Neural Network Modeling of Multivariate Time Series and Its Application in Temperature Forecasting. PLoS ONE 2023, 18, e0285713. [Google Scholar] [CrossRef]
- Shahid, N. Comparison of Hierarchical Clustering and Neural Network Clustering: An Analysis on Precision Dominance. Sci. Rep. 2023, 13, 5661. [Google Scholar] [CrossRef]
- Rahmat, F.; Zulkafli, Z.; Ishak, A.J.; Abdul Rahman, R.Z.; Stercke, S.; De Buytaert, W.; Tahir, W.; Ab Rahman, J.; Ibrahim, S.; Ismail, M. Supervised Feature Selection Using Principal Component Analysis. Knowl. Inf. Syst. 2023, 66, 1955–1995. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A Meta-Analysis of Crop Yield under Climate Change and Adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Mendoza, F.; Lu, R.; Ariana, D.; Cen, H.; Bailey, B. Integrated Spectral and Image Analysis of Hyperspectral Scattering Data for Prediction of Apple Fruit Firmness and Soluble Solids Content. Postharvest Biol. Technol. 2011, 62, 149–160. [Google Scholar] [CrossRef]
- Akimov, S.S.; Lebedev, S.V.; Grechkina, V.V.; Miroshnikova, M.S.; Topuria, G.M. The Effectiveness of Using Mathematical Modeling in Assessing the Quality of Food Products. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M’hamdi, O.; Takács, S.; Palotás, G.; Ilahy, R.; Helyes, L.; Pék, Z. A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants 2024, 13, 746. https://doi.org/10.3390/plants13050746
M’hamdi O, Takács S, Palotás G, Ilahy R, Helyes L, Pék Z. A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants. 2024; 13(5):746. https://doi.org/10.3390/plants13050746
Chicago/Turabian StyleM’hamdi, Oussama, Sándor Takács, Gábor Palotás, Riadh Ilahy, Lajos Helyes, and Zoltán Pék. 2024. "A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data" Plants 13, no. 5: 746. https://doi.org/10.3390/plants13050746
APA StyleM’hamdi, O., Takács, S., Palotás, G., Ilahy, R., Helyes, L., & Pék, Z. (2024). A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants, 13(5), 746. https://doi.org/10.3390/plants13050746