Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pittosporum angustifolium Fractions and Subfractions
2.1.1. LC-MS Analysis of P. angustifolium Fraction 1
2.1.2. GC-MS Analysis of Pittosporum angustifolium Fraction 1 and Subfractions
2.1.3. Cytotoxic Activity and HPLC Profiling
2.2. Terminalia ferdinandiana Fractions
2.2.1. Cytotoxic Activity
2.2.2. Antibacterial Activity
3. Materials and Methods
3.1. Reagents
3.2. Sample Extraction
3.3. HPLC Fractionation and Subfractionation of P. angustifolium Extract
3.4. HPLC Fractionation of T. ferdinandiana Fruit Flesh Extract
3.5. Cytotoxicity Assay
3.6. Antimicrobial Activity
3.7. LC-MS/MS Analysis of P. angustifolium Fraction
3.8. GC-MS/MS Analysis of P. angustifolium Fraction 1 and Subfractions
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, M.S.; Mustafa, M.; Nallappan, M.A.; Choi, S.; Paik, J.H.; Rusea, G. Determination of Phenolics and Flavonoids of Some Useful Medicinal Plants and Bioassay-Guided Fractionation Substances of Sclerocarya birrea (A. Rich) Hochst Stem (Bark) Extract and Their Efficacy against Salmonella typhi. Front. Chem. 2021, 9, 670530. [Google Scholar] [CrossRef]
- Feng, W.; Li, M.; Hao, Z.; Zhang, J. Analytical Methods of Isolation and Identification. In Phytochemicals in Human Health; IntechOpen: London, UK, 2019; Volume 13. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chromatogr. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef]
- Zanatta, A.C.; Vilegas, W.; Edrada-Ebel, R. UHPLC-(ESI)-HRMS and NMR-Based Metabolomics Approach to Access the Seasonality of Byrsonima intermedia and Serjania marginata from Brazilian Cerrado Flora Diversity. Front. Chem. 2021, 9, 710025. [Google Scholar] [CrossRef]
- Naiker, M.; Anderson, S.; Johnson, J.B.; Mani, J.S.; Wakeling, L.; Bowry, V. Loss of trans-resveratrol during storage and ageing of red wines. Aust. J. Grape Wine Res. 2020, 26, 385–387. [Google Scholar] [CrossRef]
- Sochor, J.; Zitka, O.; Skutkova, H.; Pavlik, D.; Babula, P.; Krska, B.; Horna, A.; Adam, V.; Provazník, I.; Kizek, R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules 2010, 15, 6285–6305. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Del Mar Contreras, M. Phenolic compounds from sesame cake and antioxidant activity: A new insight for agri-food residues’ significance for sustainable development. Foods 2019, 8, 432. [Google Scholar] [CrossRef]
- Richmond, R.; Bowyer, M.; Vuong, Q. Australian native fruits: Potential uses as functional food ingredients. J. Funct. Foods 2019, 62, 103547. [Google Scholar] [CrossRef]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Niedermeyer, T.H.; Wurster, M.; Bodtke, A.; Lindequist, U. Taraxastane-type triterpene saponins isolated from Pittosporum angustifolium Lodd. Z. Naturforsch. Sect. B J. Chem. Sci. 2015, 70, 403–408. [Google Scholar] [CrossRef]
- Blonk, B.; Cock, I.E. Interactive antimicrobial and toxicity profiles of Pittosporum angustifolium Lodd. extracts with conventional antimicrobials. J. Integr. Med. 2019, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.T.; Wurm, P.A.S.; Vemuri, S.; Brady, C.; Sultanbawa, Y. Kakadu Plum (Terminalia ferdinandiana) as a Sustainable Indigenous Agribusiness. Econ. Bot. 2019, 74, 74–91. [Google Scholar] [CrossRef]
- Sirdaarta, J.; Matthews, B.; White, A.; Cock, I.E. GC-MS and LC-MS analysis of Kakadu plum fruit extracts displaying inhibitory activity against microbial triggers of multiple sclerosis. Pharmacogn. Commun. 2015, 5, 100–115. [Google Scholar] [CrossRef]
- Cock, I.E. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology 2015, 23, 203–229. [Google Scholar] [CrossRef]
- Mani, J.; Johnson, J.; Hosking, H.; Hoyos, B.E.; Walsh, K.B.; Neilsen, P.; Naiker, M. Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. Plants 2022, 11, 2886. [Google Scholar] [CrossRef]
- Li, M.; Si, D.; Fu, Z.; Sang, M.; Zhang, Z.; Liu, E.; Yang, W.; Gao, X.; Han, L. Enhanced identification of the in vivo metabolites of Ecliptae Herba in rat plasma by integrating untargeted data-dependent MS2 and predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion scan. J. Chromatogr. B 2019, 1109, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.S.; Xu, L.L.; Zhang, J.Y.; Wang, Z.J.; Jiang, Y.Y.; Liu, B. Rapid Characterization and Identification of Non-Diterpenoid Constituents in Tinospora sinensis by HPLC-LTQ-Orbitrap MSn. Molecules 2018, 23, 274. [Google Scholar] [CrossRef]
- Beh, C.C.; Teoh, W.H. Recent Advances in the Extraction of Pittosporum angustifolium Lodd. Used in Traditional Aboriginal Medicine: A Mini Review. Nutraceuticals 2022, 2, 49–59. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Chaliha, M.; Hong, H.T.; Tinggi, U.; Netzel, M.E.; Sultanbawa, Y. Nutritional value and antimicrobial activity of Pittosporum angustifolium (gumby gumby), an Australian indigenous plant. Foods 2020, 9, 887. [Google Scholar] [CrossRef] [PubMed]
- Bäcker, C.; Jenett-Siems, K.; Bodtke, A.; Lindequist, U. Polyphenolic compounds from the leaves of Pittosporum angustifolium. Biochem. Syst. Ecol. 2014, 55, 101–103. [Google Scholar] [CrossRef]
- Mani, J.; Johnson, J.; Hosking, H.; Walsh, K.; Neilsen, P.; Naiker, M. In vitro Cytotoxic Properties of Crude Polar Extracts of Plants Sourced from Australia. Clin. Complement. Med. Pharmacol. 2022, 2, 100022. [Google Scholar] [CrossRef]
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Bin Emran, T.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; et al. Berberine as a potential anticancer agent: A comprehensive review. Molecules 2021, 26, 7368. [Google Scholar] [CrossRef]
- Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Hojjat-Farsangi, M.; Yousefi, M. Berberine: A novel therapeutic strategy for cancer. IUBMB Life 2020, 72, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.H.; Piao, X.L.; Kim, J.M.; Kwon, S.W.; Park, J.H. Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitis amurensis. Phytother. Res. 2008, 22, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.K.; Dhir, A. Berberine: A Plant Alkaloid with Therapeutic Potential for Central Nervous System Disorders. Phytother. Res. 2010, 24, 317–324. [Google Scholar] [CrossRef]
- Quetglas-Llabrés, M.M.; Quispe, C.; Herrera-Bravo, J.; Catarino, M.D.; Pereira, O.R.; Cardoso, S.M.; Dua, K.; Chellappan, D.K.; Pabreja, K.; Satija, S.; et al. Pharmacological Properties of Bergapten: Mechanistic and Therapeutic Aspects. Oxid. Med. Cell. Longev. 2022, 2022, 8615242. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, L.; Liu, K.; Cao, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity. Phytother. Res. 2021, 35, 6131–6147. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites 2022, 12, 1016. [Google Scholar] [CrossRef]
- Nunes, S.; Madureira, R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F. Therapeutic and nutraceutical potential of rosmarinic acid—Cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, I.; Asiri, A.M. Biomedical features and therapeutic potential of rosmarinic acid. Arch. Pharmacal Res. 2022, 45, 205–228. [Google Scholar] [CrossRef]
- Omar, R.; El-salam, M.A.; Elsbaey, M.; Hassan, M. Fourteen immunomodulatory alkaloids and two prenylated phenylpropanoids with dual therapeutic approach for COVID-19: Molecular docking and dynamics studies. J. Biomol. Struct. Dyn. 2023, 42, 2298–2315. [Google Scholar] [CrossRef]
- Rabizadeh, F.; Mirian, M.S.; Doosti, R.; Kiani-Anbouhi, R.; Eftekhari, E. Phytochemical Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional Persian Medicine. Evid.-Based Complement. Altern. Med. 2022, 2022, 8022599. [Google Scholar] [CrossRef]
- Siracusa, L.; Napoli, E. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022, 27, 1525. [Google Scholar] [CrossRef]
- Bizzarri, M.; Fuso, A.; Dinicola, S.; Cucina, A.; Bevilacqua, A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin. Drug Metab. Toxicol. 2016, 12, 1181–1196. [Google Scholar] [CrossRef]
- Amaral, D.C.; Brown, P.H. Foliar Application of an Inositol-Based Plant Biostimulant Boosts Zinc Accumulation in Wheat Grains: A μ-X-Ray Fluorescence Case Study. Front. Plant Sci. 2022, 13, 837695. [Google Scholar] [CrossRef] [PubMed]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Wurster, M.; Bodtke, A.; Lindequist, U. Cytotoxic saponins from the seeds of Pittosporum angustifolium. Z. Naturforschung C 2014, 69, 191–198. [Google Scholar] [CrossRef]
- Winnett, V.; Sirdaarta, J.; White, A.; Clarke, F.M.; Cock, I.E. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: Natural approaches for the prevention and management of ankylosing spondylitis. Inflammopharmacology 2017, 25, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Bäcker, C.; Drwal, M.N.; Preissner, R.; Lindequist, U. Inhibition of DNA–Topoisomerase I by Acylated Triterpene Saponins from Pittosporum angustifolium Lodd. Nat. Prod. Bioprospect. 2016, 6, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qu, L.; Meng, L.; Shou, C. Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1-CXCL1 pathway. J. Exp. Clin. Cancer Res. 2019, 38, 370. [Google Scholar] [CrossRef] [PubMed]
- Widyawati, T.; Yusoff, N.A.; Bello, I.; Asmawi, M.Z.; Ahmad, M. Bioactivity-Guided Fractionation and Identification of Antidiabetic Compound of Syzygium polyanthum (Wight.)’s Leaf Extract in Streptozotocin-Induced Diabetic Rat Model. Molecules 2022, 27, 6814. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Konczak, I.; Ramzan, I.; Sze, D.M.Y. Native Australian fruit polyphenols inhibit cell viability and induce apoptosis in human cancer cell lines. Nutr. Cancer 2011, 63, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Deo, P.; Hewawasam, E.; Karakoulakis, A.; Claudie, D.J.; Nelson, R.; Simpson, B.S.; Smith, N.M.; Semple, S.J. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. BMC Complement. Altern. Med. 2016, 16, 435. [Google Scholar] [CrossRef]
- Akter, S.; Netzel, M.E.; Fletcher, M.T.; Tinggi, U.; Sultanbawa, Y. Chemical and nutritional composition of Terminalia ferdinandiana (kakadu plum) kernels: A novel nutrition source. Foods 2018, 7, 60. [Google Scholar] [CrossRef]
- Tan, A.C.; Konczak, I.; Ramzan, I.; Zabaras, D.; Sze, D.M.Y. Potential antioxidant, antiinflammatory, and proapoptotic anticancer activities of Kakadu plum and Illawarra plum polyphenolic fractions. Nutr. Cancer 2011, 63, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Sultanbawa, Y.; Cozzolino, D. High throughput screening to determine the antibacterial activity of Terminalia ferdinandiana (Kakadu plum): A proof of concept. J. Microbiol. Methods 2021, 182, 106169. [Google Scholar] [CrossRef] [PubMed]
- Noé, W.; Murhekar, S.; White, A.; Davis, C.; Cock, I.E. Inhibition of the growth of human dermatophytic pathogens by selected australian and asian plants traditionally used to treat fungal infections. J. Mycol. Médicale 2019, 29, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
Peak No. | Proposed Compound | Molecular Formula | RT (min) | Mode of Ionisation | Molecular Weight (g/mol) | Observed Precursor Mass (m/z) | Theoretical Mass (m/z) | Product Ions (m/z) | Literature |
---|---|---|---|---|---|---|---|---|---|
1 | Chlorogenic acid | C16H18O9 | 9.13 | positive | 354.31 | 355.10 | 355.00 * | 65.0, 188.0, 219.0, 275.8 | |
1 | Neochlorogenic acid | C16H18O9 | 9.13 | positive | 354.31 | 354.31 | 355.00 | 65.0, 188.0, 219.0, 275.8 | Li et al., 2016 [15] |
2 | Unidentified | Unidentified | 23.29 | negative | Unidentified | 229.10 | Unidentified | 157.1, 102.2 | |
3 | Unidentified | Unidentified | 29.15 | positive | Unidentified | 313.10 | Unidentified | 223.1, 158.2, 102.2 | |
4 | Berberine | C20H18NO4+ | 30.65 | positive | 336.4 | 336.20 | 336.12 ** | 287.2 | Jiao et al., 2018 [16] |
5 | Unidentified | Unidentified | 33.09 | positive | Unidentified | 378.2 | Unidentified | 102.1, 249.2 | |
6 | Unidentified | Unidentified | 34.11 | positive | Unidentified | 326.9 | Unidentified | 102.3, 185.1, 228.3 | |
7 | Bergapten | C12H8O4 | 36.48 | positive | 216.042 | 217.10 | 217.05 * | 129.0, 202.0 | |
8 | Rosmarinic acid | C18H16O8 | 44.44 | positive | 360.3 | 361.20 | 361.09 ** | 181.05, 139.04 | |
9 | 8′-epitanegool | C20H24O7Na | 45.07 | positive | 399.39 | 399.2 | 399.14 | 287.3, 304.2 | Jiao et al., 2018 [16] |
10 | Unidentified | Unidentified | 46.07 | positive | Unidentified | 403.2 | Unidentified | 102.2, 329.2, 361 |
Target | Fraction 1 | Subfraction 1 | Subfraction 2 | Subfraction 3 | Compound Class | |
---|---|---|---|---|---|---|
1 | Citric acid-4TMS | 2,971,610 | 87,281 | 124,060 | 23,465 | Carboxylic acids |
2 | Glucose-meto-5TMS(1) | 2,162,365 | 230,045 | 0 | 163,277 | Carbohydrate |
3 | Inositol-6TMS(2) | 1,194,216 | 141,218 | 1123 | 10,389 | Carbocyclic sugar |
4 | 2-Aminopimelic acid-3TMS | 1,188,393 | 35,263 | 46,722 | 10,226 | Amino acid |
5 | Hydroxylamine-3TMS | 609,044 | 0 | 574,334 | 0 | Hydroxylamine |
6 | Glucose-meto-5TMS(2) | 423,257 | 49,736 | 3456 | 34,808 | Carbohydrate |
7 | Galactose-meto-5TMS(2) | 422,411 | 49,066 | 3587 | 38,804 | Carbohydrate |
8 | 1,5-13C2-Citric acid | 412,327 | 13,144 | 16,485 | 3281 | Carboxylic acids |
9 | Lactic acid-2TMS | 268,289 | 437,458 | 247,071 | 444,661 | Carboxylic acids |
10 | 1,6-Anhydroglucose-3TMS | 228,502 | 14,470 | 1080 | 4143 | Carbohydrate |
11 | Alanine-2TMS | 225,866 | 32,076 | 8606 | 14,237 | Amino acid |
12 | Xylose-meto-4TMS(1) | 178,497 | 31,305 | 4775 | 22,749 | Carbohydrates |
13 | 3-Aminoglutaric acid-2TMS | 169,217 | 26,046 | 4177 | 2165 | Amino acid |
14 | 4-Aminobutyric acid-3TMS | 169,048 | 17,510 | 0 | 6009 | Amino acid |
15 | Arabinose-meto-4TMS | 165,445 | 30,249 | 4666 | 19,117 | Carbohydrates |
16 | Palmitic acid-TMS | 154,588 | 129,131 | 126,973 | 120,981 | Saturated fatty acid |
17 | Sarcosine-d3-2TMS | 147,242 | 130,615 | 123,520 | 94,609 | Amino acid |
18 | Lyxose-meto-4TMS(2) | 146,571 | 23,892 | 3754 | 16,430 | Carbohydrates |
19 | Proline-2TMS | 144,359 | 37,171 | 3022 | 0 | Amino acid |
20 | Malic acid-3TMS | 135,932 | 12,652 | 2318 | 3148 | Carboxylic acids |
Fractions | Crystal Product Obtained (mg) | Concentrations of Fractions Tested (mg/mL) |
---|---|---|
KPF1 | 38.10 | 0.095 |
KPF 2 | 169.00 | 0.423 |
KPF 3 | 77.40 | 0.194 |
KPF 4 | 17.60 | 0.044 |
Kakadu Plum Fractions | Concentrations (µg/mL) | Bacterial Strain Zone of Inhibition (mm) | |||
---|---|---|---|---|---|
Gram Positive | Gram Negative | ||||
S. aureus | E. coli | P. aeruginosa | S. typhimurium | ||
1 | 58.1 | 4.00 ± 0.71 | 0.00 | 0.00 | 0.00 |
2 | 169.0 | 4.30 ± 0.35 | 3.20 ± 0.10 | 2.10 ± 0.20 | 2.30 ± 0.40 |
3 | 77.9 | 0.00 | 0.00 | 0.00 | 0.00 |
4 | 17.6 | 4.20 ± 0.25 | 0.00 | 0.00 | 0.00 |
Positive control (gentamicin) | 10 | 13.67 ± 0.58 | 16.33 ± 0.58 | 13.00 ± 0.10 | 12.67 ± 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, J.; Johnson, J.; Hosking, H.; Schmidt, L.; Batley, R.; du Preez, R.; Broszczak, D.; Walsh, K.; Neilsen, P.; Naiker, M. Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study. Plants 2024, 13, 807. https://doi.org/10.3390/plants13060807
Mani J, Johnson J, Hosking H, Schmidt L, Batley R, du Preez R, Broszczak D, Walsh K, Neilsen P, Naiker M. Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study. Plants. 2024; 13(6):807. https://doi.org/10.3390/plants13060807
Chicago/Turabian StyleMani, Janice, Joel Johnson, Holly Hosking, Luke Schmidt, Ryan Batley, Ryan du Preez, Daniel Broszczak, Kerry Walsh, Paul Neilsen, and Mani Naiker. 2024. "Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study" Plants 13, no. 6: 807. https://doi.org/10.3390/plants13060807
APA StyleMani, J., Johnson, J., Hosking, H., Schmidt, L., Batley, R., du Preez, R., Broszczak, D., Walsh, K., Neilsen, P., & Naiker, M. (2024). Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study. Plants, 13(6), 807. https://doi.org/10.3390/plants13060807