Species Identification and Genetic Diversity Analysis of Medicinal Plants Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz.
Abstract
:1. Introduction
2. Results
2.1. Identification of Morphologies of Pubescence on Inflorescence
2.2. Individual Identification and Validation
2.3. ISSR Genetic Diversity Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Microscopic Morphological Observation
4.3. Genomic DNA Extraction
4.4. ISSR Amplification
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.Q.; Kadota, Y. Aconitum Linnaeus. In Flora of China; Missouri Botanical Garden Press: St. Louis, MO, USA; Science Press: Beijing, China, 2001; Volume 6, pp. 149–222. [Google Scholar]
- Xiao, P.G.; Wang, F.P.; Gao, F.; Yan, L.P.; Chen, D.L.; Liu, Y. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. Acta. Phytotaxon. Sin. 2006, 44, 1–46. [Google Scholar] [CrossRef]
- Ma, L.; Gu, R.; Tang, L.; Chen, Z.E.; Di, R.; Long, C. Important poisonous plants in Tibetan ethnomedicine. Toxins 2015, 7, 138–155. [Google Scholar] [CrossRef] [PubMed]
- Han, L.H.; Shang, Z.H.; Ren, G.H.; Wang, Y.L.; Ma, Y.S.; Li, X.L.; Long, R.J. The response of plants and soil on black soil patch of the Qinghai–Tibetan Plateau to variation of bare-patch areas. Acta Pratac. Sin. 2011, 20, 1–6. [Google Scholar]
- Shang, Z.H.; Tang, Y.; Long, R.J. Allelopathic effect of Aconitum pendulum (Ranunculaceae) on seed germination and seedlings of five native grass species in the Tibetan Plateau. Nord J. Bot. 2011, 29, 488–494. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhou, Z.; Xu, T.; Wang, N.Y.; Tang, C.; Tan, X.Y.; Feng, Z.G.; Zhang, Y.; Liu, Y. Aconitum pendulum and Aconitum flavum: A narrative review on traditional uses, phytochemistry, bioactivities and processing methods. J. Ethnopharmacol. 2022, 292, 115216. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Acharya, P.; Solanki, B.; Sharma, A.K.; Rawat, S. A review on efforts for improvement in medicinally important chemical constituents in Aconitum through biotechnological interventions. 3 Biotech 2023, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Salick, J.; Byg, A.; Amend, A.; Gunn, B.; Law, W.; Schmidt, H. Tibetan medicine plurality. Econ. Bot. 2006, 60, 227–253. [Google Scholar] [CrossRef]
- El–Shazly, M.; Tai, C.J.; Wu, T.Y.; Csupor, D.; Hohmann, J.; Chang, F.R.; Wu, Y.C. Use, history, and liquid chromatography/mass spectrometry chemical analysis of Aconitum. J. Food Drug. Anal. 2016, 24, 29–45. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia Standards of the Ministry of Health of the People’s Republic of China: Tibetan Medicine, 1st ed.; Chemical Industry Press: Beijing, China, 1995; p. 79. [Google Scholar]
- Zhang, Y.; Zhong, G. Qiang Medicine, 1st ed.; Culture and History Press: Beijing, China, 2005; pp. 214–215. [Google Scholar]
- Duo, J.C.; Li, C.X.; Xu, X.L.; Feng, H.S.; Song, W.Z.; Ma, S.Z. Research progress and prospects of pustainable utilization, chemical composition and pharmacological effects of the resource of Aconitum Flavum Hand.-Mazz. China Wild Plant Resour. 2022, 41, 67–74. [Google Scholar]
- Yang, Q.E. Taxonomic notes on some species of Aconitum L. (Ranunculaceae) from Yunnan, China. J. Syst. Evol. 1999, 37, 545–590. [Google Scholar]
- Luo, Y.; Yang, Q.E. Taxonomic revision of Aconitum (Ranunculaceae) from Sichuan, China. J. Syst. Evol. 2005, 43, 289–386. [Google Scholar] [CrossRef]
- Wang, W.C. Angiospermae. In Flora of China; Science Press: Beijing, China, 1979; Volume 27, pp. 318–321. [Google Scholar]
- Nezami, E.; Gallego, P.P. History, phylogeny, biodiversity, and new computer-based tools for efficient micropropagation and conservation of Pistachio (Pistacia spp.) germplasm. Plants 2023, 12, 323. [Google Scholar] [CrossRef]
- Huang, S.Q.; Zhang, Y.Y.; Li, Y.Z.; Fan, H.; Huang, W.L.; Deng, C.; Wang, W.; Song, X.M. Research progress of Aconitum szechenyianum Gay. China Wild Plant Resour. 2020, 39, 39–46. [Google Scholar]
- Stavridou, E.; Lagiotis, G.; Karapetsi, L.; Osathanunkul, M.; Madesis, P. DNA fingerprinting and species identification uncovers the genetic diversity of Katsouni Pea in the Greek islands Amorgos and Schinoussa. Plants 2020, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Munankarmi, N.N.; Rana, N.; Bhattarai, T.; Shrestha, R.L.; Joshi, B.K.; Baral, B.; Shrestha, S. Characterization of the genetic diversity of Acid Lime (Citrus aurantifolia (Christm.) Swingle) cultivars of Eastern Nepal using Inter-Simple Sequence Repeat markers. Plants 2018, 7, 46. [Google Scholar] [CrossRef]
- Vieira, J.P.S.; Selbach-Schnadelbach, A.; Braz, M.; Ribeiro, P.L.; van den Berg, C.; Oliveira, R.P. Coalescent-Based Species delimitation in herbaceous Bamboos (Bambusoideae, Olyreae) from Eastern Brazil: Implications for Taxonomy and conservation in a group with weak morphological divergence coupled with low genetic diversity. Plants 2023, 12, 107. [Google Scholar] [CrossRef]
- Reddy, M.P.; Sarla, N.; Siddiq, E.A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 2002, 128, 9–17. [Google Scholar] [CrossRef]
- Jedrzejczyk, I.; Rewers, M. Genome size and ISSR markers for Mentha L. (Lamiaceae) genetic diversity assessment and species identification. Ind. Crop. Prod. 2018, 120, 171–179. [Google Scholar] [CrossRef]
- Ma, S.; Khayatnezhad, M.; Minaeifar, A.A. Genetic diversity and relationships among Hypericum L. species by ISSR markers: A high value medicinal plant from Northern of Iran. Caryologia 2021, 74, 97–107. [Google Scholar] [CrossRef]
- Li, A.; Ma, M.; Li, H.; He, S.; Wang, S. Genetic diversity and population differentiation of a Chinese endangered plant Ammopiptanthus nanus (M. Pop.) Cheng f. Genes 2023, 14, 1020. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tang, J.; Zou, R.; Luo, Y.; Deng, Z.; Li, D.; Chai, S.; Wei, X. The genetic diversity and genetic structure of the germplasm resources of the medicinal orchid plant Habenaria dentata. Genes 2023, 14, 1749. [Google Scholar] [CrossRef]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome fingerprinting by Simple Sequence Repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef]
- Contreras, R.; van den Brink, L.; Burgos, B.; Gonzalez, M.; Gacitua, S. Genetic characterization of an endangered Chilean endemic species, Prosopis burkartii Munoz, reveals its hybrids parentage. Plants 2020, 9, 744. [Google Scholar] [CrossRef]
- Araujo, F.S.; Bruno, R.A.; Arriel, N.H.C.; de Medeiros, E.P.; de Lima, L.M.; de Souza, M.A.; de Andrade, A.P.; Silva, R.A.R.; Felix, F.C.; Belarmino, K.S. Genetic polymorphism detection in brazilian perennial cottons (Gossypium spp.) using an ISSR marker system and its application for molecular interspecific differentiation. Mol. Biol. Rep. 2023, 50, 3001–3009. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, D.; Liu, Y.; Zhang, Z.; Khayat–Nezhad, M. Molecular identification and genetic relationships among Alcea (Malvaceae) species by ISSR Markers: A high value medicinal plant. Caryologia 2021, 74, 65–75. [Google Scholar] [CrossRef]
- Akhtar, N.; Hafiz, I.A.; Hayat, M.Q.; Potter, D.; Abbasi, N.A.; Habib, U.; Hussain, A.; Hafeez, H.; Bashir, M.A.; Malik, S.I. ISSR-based genetic diversity assessment of genus Jasminum L. (Oleaceae) from Pakistan. Plants 2021, 10, 1270. [Google Scholar] [CrossRef]
- Meng, F.; Wang, R.; Peng, M.; Wang, C.; Wang, Z.; Guan, F.; Li, Y. Evaluation of genetic diversity among Kongpo Monkshood (Aconitum kongboense L.) germplasm accessions revealed by Inter Simple Sequence Repeat markers. Hortscience 2015, 50, 940–943. [Google Scholar] [CrossRef]
- Gao, F.C.; Sun, Y.; Zhang, J.; Zhang, F. ISSR analysis for genetic polymorphism of Aconitum leucostomum from different habitats. J. Chin. Med. Mater. 2014, 37, 26–29. [Google Scholar]
- Luo, Q.; Ma, D.W.; Wang, Y.H. ISSR identification of genetic diversity in Aconitum carmichaeli. Chin. Tradit. Herbal Drugs 2006, 37, 1554–1557. [Google Scholar]
- Luo, Y.; Zhang, F.M.; Yang, Q.E. Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences. Plant Syst. Evol. 2005, 252, 11–25. [Google Scholar] [CrossRef]
- Cui, Y.; Qi, P.C.; Wang, X.L. Cladistic systematics of Aconitum in Gansu Province. Rural Econ. Sci.–Technol. 2018, 29, 83–84+93. [Google Scholar]
- Li, Q. Species divergence of Aconitum pendulum and Aconitum flavum. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2022. [Google Scholar]
- Ren, L.M. A taxonomical study of Trib. Delphineae Warming (Ranunculaceae) from Gansu. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2019. [Google Scholar]
- Kita, Y.; Ueda, K.; Kadota, Y. Molecular phylogeny and evolution of the Asian Aconitum subgenus Aconitum (Ranunculaceae). J. Plant. Res. 1995, 108, 429–442. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.H.; You, F.M. Characterization of the complete chloroplast genome of Aconitum flavum (Ranunculaceae). Mitochondrial DNA B 2020, 5, 3000–3001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Li, Y.Q. Characterization of the complete chloroplast genome of Aconitum pendulum (Ranunculaceae), an endemic medicinal herb. Mitochondrial DNA B 2020, 5, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, F.; Renner, S.S. A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Mol. Phylogenet. Evol 2012, 62, 928–942. [Google Scholar] [CrossRef]
- Tamura, M. Die Natürlichen Pflanzenfamilien, Zweite Auflage; Dunker and Humblot: Berlin, Germany, 1995; pp. 274–291. [Google Scholar]
- Kong, H.H.; Gao, Q.; Luo, Y.; Yang, Q.E. Seed morphology in some Chinese species of Aconitum (Ranunculaceae) and its systematic implications. Plant Divers. Resour. 2013, 35, 241–252. [Google Scholar]
- Li, Q.; Xia, M.; Yu, J.; Chen, S.; Zhang, F. Plastid genome insight to the taxonomic problem for Aconitum pendulum and A. flavum (Ranunculaceae). Biologia 2022, 77, 953–966. [Google Scholar] [CrossRef]
- Xia, C.; Wang, M.; Guan, Y.; Li, J. Comparative analysis of the chloroplast genome for Aconitum species: Genome structure and phylogenetic relationships. Front. Genet. 2022, 13, 878182. [Google Scholar] [CrossRef]
- Boydak, M.; Teker, T.; Gazdagli, A.; Thanos, C.A.; Caliskan, S.; Kaltsis, A.; Tozlu, E.C.; Fournaraki, C.; Albayrak, G. ISSR genotyping of Phoenix theophrasti natural populations in Turkey and Crete (Greece) and P. dactylifera. Nord. J. Bot. 2021, 39, e03104. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Song, Y.; Khayatnezhad, M.; Minaeifar, A.A. Genetic variations and interspecific relationships in Salvia (Lamiaceae) using SCoT molecular markers. Caryologia 2021, 74, 77–89. [Google Scholar] [CrossRef]
- Tomasello, S.; Alvarez, I.; Vargas, P.; Oberprieler, C. Is the extremely rare Iberian endemic plant species Castrilanthemum debeauxii (Compositae, Anthemideae) a ‘living fossil’? Evidence from a multi-locus species tree reconstruction. Mol. Phylogenet. Evol. 2015, 82, 118–130. [Google Scholar] [CrossRef]
- Sutkowska, A.; Boron, P.; Mitka, J. Natural hybrid zone of Aconitum species in the Western Carpathians: Linnaean taxonomy and ISSR fingerprinting. Acta Biol. Cracov. Bot. 2013, 55, 114–126. [Google Scholar] [CrossRef]
- Boron, P.; Zalewska-Galosz, J.; Sutkowska, A.; Zemanek, B.; Mitka, J. ISSR analysis points to relict character of Aconitum bucovinense Zapal. (Ranunculaceae) at the range margin. Acta Soc. Bot. Pol. 2011, 80, 315–326. [Google Scholar] [CrossRef]
- Zeng, H.; Tong, Z.; Qu, X.; Jin, X.; Chen, H.; Wang, J. Studies on the ecological and biological characteristics of reproductive module of Aconitum flavum Hand.-Mazz. growth in Liu Pan Shan area. Chin. Hortic. Abstr. 2009, 25, 29–31. [Google Scholar]
- Li, X.; Geng, T.; Wang, Y.; Qian, T.; Zhang, Y.; Zhao, F.; Sun, K.; Zhang, H. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq. Plant Sci. J. 2021, 39, 172–182. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Tang, J.N.; Xu, Q. Study on characteristics of flower organs and flowering and fruiting habits of A. flavum Hand.-Mazz. in Liupanshan. J. Anhui Agri. Sci. 2011, 39, 16035–16036. [Google Scholar] [CrossRef]
- Ni, D.W.; Chen, H.G. Influence of cultivation techniques and cultivation years on the quality of A. Pendulum. Agri. Sci. Technol. Inf. 2022, 14, 29–31. [Google Scholar] [CrossRef]
- Zhang, H.X.; Li, W.J.; Wang, J.; He, R.; Li, Y.; Hu, Y.P. Optimization of DNA isolation and ISSR–PCR system of Aconitum flavum Hand.-Mazz. Mol. Plant Breed. 2022, 20, 5724–5732. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE, Microsoft Window-Based Freeware for Population Genetic Analysis, version 1.32; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- McDermott, J.M.; McDonald, B.A. Gene flow in plant pathosystems. Annu. Rev. Phytopathol. 1993, 31, 353–373. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYS–pc: Numerical Taxonomy and Multivariate Analysis System, version 2.2; State University of New York: Stony Brook, NY, USA, 2009. [Google Scholar]
- Holsinger, K.E.; Lewis, P.O.; Dey, D.K. A Bayesian approach to inferring population structure from dominant markers. Mol. Ecol. 2002, 11, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.M.; Wang, L.; Geng, Y.; Wang, Q.; Luo, L.; Zhong, Y. Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai–Tibet Plateau. Genetica 2006, 128, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, L.; Xie, X.; Zhang, H.; Yang, J.; Li, Y. Genetic variation in cultivated rhubarb (Rheum tanguticum Maxim. ex Balf.) and the relationship with their wild relatives in China revealed by ISSR markers. Plant Syst. Evol. 2014, 300, 2217–2227. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Wen, W.; Falush, D. Documentation for STRUCTURE Software, version 2.3; University of Chicago: Chicago, IL, USA, 2010.
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Lavandero, B.; Miranda, M.; Ramirez, C.C.; Fuentes-Contreras, E. Landscape composition modulates population genetic structure of Eriosoma lanigerum (Hausmann) on Malus domestica Borkh in central Chile. Bull. Entomol. Res. 2009, 99, 97–105. [Google Scholar] [CrossRef]
- Corander, J.; Waldmann, P.; Sillanpää, M.J. Bayesian analysis of genetic differentiation between populations. Genetics 2003, 163, 367–374. [Google Scholar] [CrossRef]
- Corander, J.; Marttinen, P.; Siren, J.; Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 2008, 9, 539. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 49, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
Pop ID | He * | I | PPB | Gst | Nm | Fst |
---|---|---|---|---|---|---|
DWM | 0.230 ± 0.187 | 0.354 ± 0.257 | 80.31% | - | - | - |
DWB | 0.219 ± 0.190 | 0.334 ± 0.268 | 68.91% | - | - | - |
BM | 0.148 ± 0.195 | 0.221 ± 0.281 | 40.93% | - | - | - |
A. flavum | 0.254 ± 0.170 | 0.395 ± 0.223 | 95.85% | 0.252 | 1.488 | 0.303 |
QHL | 0.278 ± 0.171 | 0.424 ± 0.231 | 88.18% | - | - | - |
GQ | 0.127 ± 0.190 | 0.188 ± 0.276 | 33.00% | - | - | - |
SL | 0.129 ± 0.192 | 0.191 ± 0.276 | 34.48% | - | - | - |
A. pendulum | 0.291 ± 0.160 | 0.445 ± 0.209 | 94.58% | 0.342 | 0.961 | 0.375 |
Collection Site | Population | Longitude (E) | Latitude (N) | Altitude (m) 2 | Sample Size | Material |
---|---|---|---|---|---|---|
Dawu, Maqin county, Golog Prefecture | DWM 1 | 100°17′3″ | 34°25′50″ | 3762 | 99 | Identification |
Dawu, Maqin county, Golog Prefecture | DWB | 100°17′3″ | 34°25′50″ | 3762 | 20 | Verification |
Banma county, Golog Prefecture | BM | 100°43′22.80″ | 32°43′22.80″ | 4114 | 16 | Verification |
Gangcha county, Haibei Prefecture | QHL | 100°14′48″ | 37°25′22″ | 3510 | 100 | Identification |
Guoqing pasture, Yushu city, Yushu Prefecture | GQ | 96°51′17.52″ | 32°58′48.60″ | 4393 | 18 | Verification |
Sulu, Zaduo county, Yushu Prefecture | SL | 95°9′55.14″ | 32°33′19.20″ | 4518 | 15 | Verification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Sun, Q.; Li, X.; Li, W.; Li, Y.; Zhou, Y.; Hu, Y. Species Identification and Genetic Diversity Analysis of Medicinal Plants Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. Plants 2024, 13, 885. https://doi.org/10.3390/plants13060885
Sun J, Sun Q, Li X, Li W, Li Y, Zhou Y, Hu Y. Species Identification and Genetic Diversity Analysis of Medicinal Plants Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. Plants. 2024; 13(6):885. https://doi.org/10.3390/plants13060885
Chicago/Turabian StyleSun, Jing, Qing Sun, Xin Li, Wenjing Li, Yi Li, Yubi Zhou, and Yanping Hu. 2024. "Species Identification and Genetic Diversity Analysis of Medicinal Plants Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz." Plants 13, no. 6: 885. https://doi.org/10.3390/plants13060885
APA StyleSun, J., Sun, Q., Li, X., Li, W., Li, Y., Zhou, Y., & Hu, Y. (2024). Species Identification and Genetic Diversity Analysis of Medicinal Plants Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. Plants, 13(6), 885. https://doi.org/10.3390/plants13060885