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Abstract: Aboveground biomass (AGB) is an important indicator of the grassland ecosystem. It can be
used to evaluate the grassland productivity and carbon stock. Satellite remote sensing technology is
useful for monitoring the dynamic changes in AGB across a wide range of grasslands. However, due
to the scale mismatch between satellite observations and ground surveys, significant uncertainties
and biases exist in mapping grassland AGB from satellite data. This is also a common problem in low-
and medium-resolution satellite remote sensing modeling that has not been effectively solved. The
rapid development of uncrewed aerial vehicle (UAV) technology offers a way to solve this problem.
In this study, we developed a method with UAV and satellite synergies for estimating grassland AGB
that filled the gap between satellite observation and ground surveys and successfully mapped the
grassland AGB in the Hulunbuir meadow steppe in the northeast of Inner Mongolia, China. First,
based on the UAV hyperspectral data and ground survey data, the UAV-based AGB was estimated
using a combination of typical vegetation indices (VIs) and the leaf area index (LAI), a structural
parameter. Then, the UAV-based AGB was aggregated as a satellite-scale sample set and used to
model satellite-based AGB estimation. At the same time, spatial information was incorporated into
the LAI inversion process to minimize the scale bias between UAV and satellite data. Finally, the
grassland AGB of the entire experimental area was mapped and analyzed. The results show the
following: (1) random forest (RF) had the best performance compared with simple regression (SR),
partial least squares regression (PLSR) and back-propagation neural network (BPNN) for UAV-based
AGB estimation, with an R2 of 0.80 and an RMSE of 76.03 g/m2. (2) Grassland AGB estimation
through introducing LAI achieved higher accuracy. For UAV-based AGB estimation, the R2 was
improved by an average of 10% and the RMSE was reduced by an average of 9%. For satellite-based
AGB estimation, the R2 was increased from 0.70 to 0.75 and the RMSE was decreased from 78.24 g/m2

to 72.36 g/m2. (3) Based on sample aggregated UAV-based AGB and an LAI map, the accuracy of
satellite-based AGB estimation was significantly improved. The R2 was increased from 0.57 to 0.75,
and the RMSE was decreased from 99.38 g/m2 to 72.36 g/m2. This suggests that UAVs can bridge the
gap between satellite observations and field measurements by providing a sufficient training dataset
for model development and AGB estimation from satellite data.

Keywords: aboveground biomass; uncrewed aerial vehicle; GF-2 multi-spectral data; random forest;
leaf area index

1. Introduction

The grassland ecosystem is one of the important terrestrial ecosystems and plays an
indispensable role in livestock forage supply, climate regulation, soil protection and the
global carbon cycle [1–3]. Grassland degradation caused by overgrazing has become an
economic and environmental problem in pastoral areas, including China [4], Brazil [5], etc.
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Grassland aboveground biomass (AGB), which is a crucial indicator of grassland sensitivity
to climate change and human activity, serves as a significant entry point for studying the
issue. Quantitative AGB estimation of grassland at a large scale is crucial for monitoring
the changes in grassland ecology and production function over short and long periods
of time.

AGB estimation is commonly achieved by using field measurements or remote sensing-
based modeling. The former is destructive and time-consuming, and it is applicable only
to small-scale monitoring [6], whereas remote sensing is non-destructive and provides a
cost-effective method to monitor and map AGB frequently over large areas. Vegetation
indices (VIs), calculated based on target information of spectral signals, can be used as the
model parameter in place of the full spectral band for model construction, representing an
important method for AGB estimation from remote sensing data [7,8]. The widely used
normalized difference vegetation index (NDVI) is an effective and reliable indicator for
studying the growth status and biomass of different kinds of vegetation [8–11]. In addition
to the NDVI, other VIs have been used, including the relative vegetation index (RVI) [12],
the relative difference vegetation index (RDVI) [13], the optimized soil-adjusted vegetation
index (OSAVI) [14], the modified soil-adjusted vegetation index (MSAVI) [15] and the
chlorophyll index (CI) [16]. However, most previous studies involved statistical models
based on a single VI, and each has its own limitations and uncertainties [17].

Uncrewed aerial vehicle (UAV) imaging is increasingly being used as an emerging
technology in the field of grasslands due to its mobility [18–20]. UAVs are also relatively in-
expensive compared to other high-resolution remote sensing platforms and are compatible
with a variety of sensors [20–23]. For example, high-resolution grassland images can be
obtained by UAVs equipped with consumer-grade hyperspectral sensors [7]. UAVs can
reduce the impact of clouds on imaging data when flying at low altitudes, giving them
greater application advantages over high-resolution satellite platforms. Therefore, UAVs
have been widely used for estimating grassland vegetation parameters, including plant
height, biomass, leaf area index and chlorophyll content [4,7,24]. Pecina et al. [25] proposed
an approach for mapping coastal meadow AGB based on a random forest algorithm and
vegetation indices calculated from UAV data. Zhang et al. [26] proposed a non-destructive
method for rapid acquisition of grassland AGB using UAV RGB images. Their study
also indicated that the grassland AGB retrieved from UAV data could be used as sample
datasets for satellite modeling. It is an effective method for estimating grassland AGB by
constructing the relationships between field-measured AGB and remotely sensed data [27].
However, the accuracy of grassland AGB estimation models based on spectral information
may only yield errors due to the phenomenon of different objects possessing the same
spectra. More information needs to be mined and introduced for AGB modeling [28],
including characteristic vegetation indices and vegetation structural parameters [20]. Leaf
area index (LAI), an important vegetation structural parameter, is also a common indicator
for AGB modeling [29,30]. Meanwhile, the inversion of LAI from remote sensing data
has become increasingly mature, and its accuracy is guaranteed [31–33]. UAV technology
captures vegetation spectral or structural information with high spatial and spectral resolu-
tion, enabling accurate estimation of vegetation biomass [20,23,34]. However, due to the
limitation of UAVs’ endurance conditions and the processing costs of ultra-high-resolution
data, the application of UAVs in large-scale grassland AGB estimation is still limited.

Satellite remote sensing technology has the advantage of high-frequency and large-
range observation, which provides an important data source for grassland AGB monitoring
in large areas. However, satellite-based models for estimating AGB are always affected by
the amount of in situ data and the spatial heterogeneity of the measurements [35–38]. For
example, the grassland AGB on the Qinghai–Tibet Plateau was estimated from MODIS data
by matching pixels of 500 m resolution to small quadrats of 0.5 m × 0.5 m and 1 m × 1 m [36].
Compared with that of other natural ecosystems, the grassland AGB is more sensitive to
environmental change, and its spatial distribution shows significant heterogeneity [39,40].
Therefore, it is more important to obtain as many ground observation data as possible to
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reduce the impact of surface spatial heterogeneity. Due to the complexity of the natural
grassland ecological environment, the heavy work of ground survey and the damaging
effects of surface sampling, it is difficult to collect intensive AGB field samples over large-
scale grassland. A large number of destructive ground surveys may also increase the risk
of grassland desertification. This limits the accuracy of grassland biomass estimation using
satellite data because the accuracy of biomass inversion is closely related to the quality and
quantity of the field sample dataset, and it increases with the number of field samples [41].
High-resolution satellite data, including QuickBird, WorldView, SkySat and GF, can solve
the scale mismatch in this case. Because these satellites have a resolution of less than
1 m, they are relatively easily matched with the ground measurements for modeling a
more precise and robust model [42,43]. However, the high cost of these satellite data
cannot support large-scale grassland AGB estimations for dynamically assessing grassland
ecosystem productivity.

Ground survey, UAV observation and satellite observation have their own advantages
and disadvantages. UAV technology, as an intermediate platform, is useful for bridging
the gaps between ground survey and traditional space-based platforms [44]. In terms
of biomass estimation in the process of grassland degradation, grassland degradation
resulted in a decrease in dominant species and grassland coverage, leading to a significant
increase in surface spatial heterogeneity, which creates more uncertainty in grassland AGB
estimation based on satellite data. UAV technology can effectively solve the problem
by capturing fine-scale vegetation information. However, current research still mainly
focuses on the use of UAV data to provide auxiliary data required for satellite inversion,
including sample datasets [36,43] and subpixel land cover [45]. Many studies fail to realize
the unification of satellite and UAV data, and they do not consider the possible problems in
the coordination of satellite and UAV data, such as scale effects.

Therefore, considering the mentioned advantages and limitations of different plat-
forms, a more feasible grassland biomass inversion method can be explored by constructing
a ground–UAV–satellite integrated grassland AGB estimation model and introducing the
LAI to solve the problem of missing structural parameters in the model. Scale effect is
also an unavoidable problem in the joint application of multi-scale data [46,47]. However,
the bias between multi-scale AGB retrieval from different platforms’ data has still not
been fully analyzed and evaluated, especially when satellite data and UAV data are used
cooperatively for biomass estimation of degraded grassland [43]. The scale bias increases
the uncertainty of inversion. However, if the scale information can be extracted and used
to optimize the inversion process, the inversion uncertainty caused by multi-scale data can
be reduced and the inversion accuracy can be improved [46,48].

Thus, this study collected field-measured data of the grassland AGB and LAI and
remote sensing data in the form of UAV hyperspectral data and Chinese GaoFen-2 (GF-2)
multi-spectral data, developing a grassland AGB estimation method based on a combi-
nation of satellite, UAV and ground. This method corrects the scale problem in low- and
medium-resolution satellite remote sensing modeling and provides a new strategy for
estimating grassland biomass with high precision in a large range. The research questions
of this study are as follows: (1) what is the applicability of several common regression
models for grassland AGB estimation? These models are simple regression (SR), partial
least squares regression (PLSR), back-propagation neural network (BPNN) and random
forest (RF). (2) How much can the accuracy of grassland AGB estimation be improved
after adding structural parameter LAI? (3) How can the scale effect be reduced in mapping
grassland AGB based on integrated UAV and satellite data? (4) What are the impacts of
grassland restoration measures such as fertilization and mowing on grassland AGB?

2. Methods and Materials
2.1. Study Area

To evaluate the effect of degraded grassland restoration and management, a compre-
hensive field campaign was carried out in the Hulunbuir degraded grassland restoration
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technology research and development platform (hereinafter referred to as the Experimental
Platform, EP) during 20–26 July 2022. The Experimental Platform (central coordinates:
49◦17′59.25′′ N, 120◦0′16.2′′ E), located in the center of the Hulunbuir meadow steppe in the
northeast of Inner Mongolia, China, was one of the most typical temperate meadow steppes
in China, with a mean annual temperature of −2–1 ◦C and mean annual precipitation of
380–400 mm [49,50].

As shown in Figure 1, the Experimental Platform was composed of a “strip” experi-
mental platform (SEP) and a “cell” experimental platform (CEP). Four groups of multi-year
fertilization comparison quadrats were constructed in the “strip” test platform. The “cell”
test platform developed a total of 1800 experimental units, each with an area of 10 m × 10 m.
Fertilization control experiments had been carried out in 90 of these experimental units,
which had formed different species composition and biomass gradients. Therefore, it was
very suitable for grassland biomass estimation and change research. More than 30 dom-
inant species were recorded in the Experimental Platform, including Poaceae (Leymus
chinensis, Stipa baicalensis and Cleistogenes squarrosa), Fabaceae (Astragalus laxmannii and
Oxytropis myriophylla), Asteraceae (Artemisia scoparia, Artemisia frigida and Klasea centau-
roides), Amaryllidaceae (Allium tenuissimum and Allium polyrhizum) and Ranunculaceae
(Thalictrum squarrosum and Clematis hexapetala) [50,51]. According to field measurements,
the average canopy height of the grassland was about 50 cm.
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Figure 1. The location of the study area and the distribution of field measurements. (a) The study
area is located in the center of the Hulunbuir meadow steppe in the northeast of Inner Mongolia,
China; (b) Chinese GF-2 satellite image of the Experimental Platform. The platform was composed of
a “strip” experimental platform (SEP) and a “cell” experimental platform (CEP); (c) UAV RGB image
with 90 field-measured sample plots. Sample 1 and sample 2 are on-site photographs.
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2.2. Data Acquisition
2.2.1. Field Measurements

The field measurements were collected during 21–26 July 2022 in CEP. In total, 90 sam-
ple plots were set up, each with a size of 1 m × 1 m (elemental sampling unit, ESU), and
12 GCPs were placed for georeferencing. SVC HR-1024 (Spectra Vista, New York, NY, USA)
was used during the campaign for measuring the surface reflectance of vegetation canopy,
vegetation leaf and soil. Grassland LAI was collected using an LAI-2200 manufactured by
LI-COR, Lincoln, NE, USA. The optical sensor of the LAI-2200 consisted of a fisheye lens
(vertical field of view 148◦, horizontal field of view 360◦, wavelength range 320–490 nm)
and an optical system. The fisheye lens “sees” a hemispherical image, which the optical
system focuses onto the photodiode optical sensor [52]. The LAI-2200 infers LAI based
on the Beer–Lambert law, which describes the relationship between the gap fraction and
LAI [53]. Five concentric rings with a centered VZA of 7◦, 23◦, 38◦, 53◦ and 68◦ were used
in the LAI-2200 to determine the ratio of below-canopy to above-canopy measurements
for calculating the gap fraction. According to the operation manual [52] and characteristic
of grassland canopy, LAI measurements using the LAI-2200 were carried out with one
above-canopy measurement and four below-canopy measurements of the incoming radia-
tion in each sample plot. Such operations were repeated three times at a single point, and
the average value was taken as the LAI value of the sample point. The average LAI was
obtained based on one above-canopy measurement and four below-canopy measurements
of the incoming radiation in each sample plot. The average LAI of each plot was calculated
based on one above-canopy measurement and four low-canopy measurements. After LAI
measurements, the plants in each ESU were harvested and dried in the laboratory. The
AGB of each ESU was obtained by weighing the dried plants.

2.2.2. UAV Hyperspectral Data Acquisition and Preprocessing

During the field campaign, a Nano-HP hyperspectral camera (Headwall, Boston, MA,
USA) was equipped onto the DJI M300 UAV platform (DJI, Shenzhen, China) and used to
obtain the grassland hyperspectral data over the Experimental Platform. Headwall’s Nano-
Hp hyperspectral camera collects 270 spectral bands with 640 spatial elements within the
visible-to-near-infrared (VNIR) range from 400 nm to 1000 nm, with a spectral resolution of
approximately 2.2 nm. The pixel size of Nano-Hp hyperspectral camera is 7.4 µm.

The flight was conducted from 10:30 a.m. to 2:30 p.m. on 20 July 2022, and the weather
was clear and cloudless. The UAV flew at a speed of 3 m/s and a height of 50 m above
the ground, providing data at about 0.05 m resolution originally (focal length of 8 mm).
Five images were collected during the UAV flight. A preprocessing series was carried
out for UAV images, including radiometric correction, geometric correction, atmospheric
correction and image splicing. Therefore, the information on geometric control points and
the spectrum of reference target (calibration panel) was also obtained during flight. The
data were processed in Headwall SpectralView software (Version 3.1), and a hyperspectral
digital orthophoto map (DOM) was generated at 0.1 m resolution after processing. Then,
the 12 field geometric control points (GCPs) were processed for georeferencing of the
hyperspectral data to the reference system WGS 84 UTM 50 N. Atmospheric correction was
carried out based on an empirical line approach. The reflectance of hyperspectral DOM
was validated using in situ measurements, with uncertainty of approximately 2–3%.

2.2.3. Chinese GF-2 Multi-Spectral Data Acquisition and Preprocessing

The Chinese GF-2 multi-spectral data covering the study area on 21 July 2022 were
collected from the China Center for Resources Satellite Data and Application (CRESDA).
GF-2 multi-spectral data had four bands (Table 1), the wavelength ranges of which were
450–520 nm, 520–590 nm, 630–690 nm and 770–890 nm. The resolution of the GF-2 multi-
spectral data was 4 m. The preprocessing of the GF-2 multi-spectral data contained radiance
calibration, atmospheric correction and geometric correction. Based on the band-specific
absolute calibration gains, the at-satellite radiances (Gλ) were calculated from 8-bit digital



Plants 2024, 13, 1006 6 of 19

numbers (DNs) of GF-2 data. Then, the atmospheric correction was performed using a
MODTRAN-based FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes)
method. The reflectance was finally validated using in situ measurements, with uncertainty
of approximately 4–8%. The geometric correction was performed using an image-to-image
registration method based on previous geometrical corrected GF-2 data. The GF-2 image
was registered in UTM zone 50 with a WGS84 datum.

Table 1. Specific description of GF-2 multi-spectral data.

Spectral Bands Bands Range (nm) Spatial Resolution (m)

Blue 450–520 4
Green 520–590 4
Red 630–690 4

Near-infrared 770–890 4

2.3. Regression Models and Accuracy Assessment

Regression modeling based on machine learning has been increasingly applied to
AGB inversion and proved to have reasonable validity [28,36]. As the typical machine
learning regression methods, PLSR [54], RF [55] and BPNN [56] were analyzed in this study
to establish the relationships between AGB and multi-source variables. RF is the machine
learning regression method with the most applications in grassland AGB estimation, and
the second is PLSR [41]. BPNN is a typical artificial neural network algorithm. At the same
time, to evaluate the machine learning regression model, the simple regression method SR
was also used for comparative analysis.

During AGB estimation, 60% of the field data were used for model training and the
remaining 40% were used for model performance testing (20%) and accuracy evaluation
(20%) of the above four regression models. The correlation coefficient (R2) and root-mean-
square error (RMSE) of predicted AGB and measured AGB were calculated to assess the
performance of different methods. R2 and RMSE can be calculated as follows:

R2 =
∑ n

i
(

AGBcal,i − AGB′
cal
)(

AGBobs,i − AGB′
obs
)

∑ n
i

(
AGBcal,i − AGB′

cal,i

)2
∑ n

i
(

AGBobs − AGB′
obs
)2

(1)

RMSE =

√
∑ n

i (AGBcal, i − AGBobs,i)
2

n
(2)

where n is the number of samples, AGBcal is the predicted AGB, AGBobs is the measured
AGB and AGB′

obs is the average value of measured AGB.

2.4. Estimation of Grassland Aboveground Biomass

As shown in Figure 2, field data were used for estimation of the UAV-based AGB,
and the best model was selected by comparing multiple models with and without the
vegetation structure parameter LAI. Then, the UAV-based AGB was aggregated (spatial
resolution is 4 m, consistent with the satellite resolution) as the sample dataset for satellite
remote sensing modeling. Considering the strong correlation between the AGB and LAI, in
the process of satellite LAI inversion, the scale bias between satellite data and UAV data
was used as prior information to correct the satellite-retrieved LAI. The modified LAI was
used as the key input for the satellite-based AGB inversion. Finally, the satellite-based AGB
was mapped and validated against field data.



Plants 2024, 13, 1006 7 of 19

Plants 2024, 13, 1006 7 of 19 
 

 

used as the key input for the satellite-based AGB inversion. Finally, the satellite-based 
AGB was mapped and validated against field data. 

UAV hyperspectral data

VIs calculationPROSAILIn 
situ 

AGB

Field data

In 
situ 
LAI

Regression 
models

Based on VIs Based on VIs 
and LAI

Optimal model 
analysis and selection

UAV-based AGB

Chinese GF-2 data

LUT

UAV-based 
LAI VIs 

calculation

Random Forest

Satellite-based 
AGB

Validation

Validation

Scale bias

Satellite-
based LAI

LUT

PROSAIL

Scale 
information

Testing 
data

validation 
data

Training 
data

Sample dataset at 
satellite scale

aggregated

Spatial information from 
multiple scale data

 
Figure 2. The flow of estimation of grassland aboveground biomass. Firstly, the field measurements 
were used for modeling and validation of AGB estimation from UAV data. The comparison between 
models, including SR, PLSR, BPNN and RF, was carried out with and without the vegetation struc-
ture parameter LAI. Then, the scale bias between UAV data and satellite data was extracted and 
used as prior information to correct the satellite-retrieved indicators. The UAV-based AGB was ag-
gregated as the sample dataset for satellite remote sensing modeling. Finally, the satellite-based 
AGB was mapped and validated. 

2.4.1. Mapping UAV-Scale AGB from Hyperspectral Data 

2.4.1.1. Optimal VI Selection Based on UAV Hyperspectral Data 
Six typical vegetation indices (VIs) were calculated and analyzed from UAV hyper-

spectral data for AGB estimation, as shown in Table 2, including the simple ratio vegeta-
tion index (RVI) and normalized difference vegetation index (NDVI). The 6 used VIs were 
proven to be well correlated with the grassland AGB [18,57]. To effectively use the UAV 
hyperspectral information, the correlation coefficient (R) values between the VIs created 
by combining any two spectral bands of UAV hyperspectral data and in situ AGB were 
calculated. The indicator R was drawn in the form of correlation plots and the most sen-
sitive band combinations were selected with the maximum R. 

Table 2. The vegetation indices used and descriptions. 

Spectral Bands 
Bands Range 

(nm) 
Spatial Resolution 

(m) 
RVI(i,j) 𝜌/𝜌 [58] 

NDVI(i,j) (𝜌 − ρ)/(𝜌 + 𝜌) [59] 

RDVI(i,j) (𝜌 − ρ)/ට(𝜌 + 𝜌) [60] 

OSAVI(i,j) 
(1 + 0.16) × (𝜌 − ρ)(𝜌 + 𝜌 + 0.16)  [61] 

Figure 2. The flow of estimation of grassland aboveground biomass. Firstly, the field measurements
were used for modeling and validation of AGB estimation from UAV data. The comparison between
models, including SR, PLSR, BPNN and RF, was carried out with and without the vegetation structure
parameter LAI. Then, the scale bias between UAV data and satellite data was extracted and used as
prior information to correct the satellite-retrieved indicators. The UAV-based AGB was aggregated
as the sample dataset for satellite remote sensing modeling. Finally, the satellite-based AGB was
mapped and validated.

2.4.1. Mapping UAV-Scale AGB from Hyperspectral Data
2.4.1.1. Optimal VI Selection Based on UAV Hyperspectral Data

Six typical vegetation indices (VIs) were calculated and analyzed from UAV hyper-
spectral data for AGB estimation, as shown in Table 2, including the simple ratio vegetation
index (RVI) and normalized difference vegetation index (NDVI). The 6 used VIs were
proven to be well correlated with the grassland AGB [18,57]. To effectively use the UAV
hyperspectral information, the correlation coefficient (R) values between the VIs created by
combining any two spectral bands of UAV hyperspectral data and in situ AGB were calcu-
lated. The indicator R was drawn in the form of correlation plots and the most sensitive
band combinations were selected with the maximum R.

Table 2. The vegetation indices used and descriptions.

Spectral Bands Bands Range (nm) Spatial Resolution (m)

RVI(i,j) ρj/ρi [58]

NDVI(i,j) (ρj − ρi)/(ρi + ρj) [59]

RDVI(i,j) (ρj − ρi)/
√
(ρi + ρj) [60]

OSAVI(i,j)
(1+0.16)×(ρj−ρi)

(ρi+ρj+0.16) [61]

MSAVI(i,j) 2ρi+1−
√
(2ρi+1)2−8(ρj−ρi)

2
[62]

CI(i,j) ρj/ρi − 1 [63]
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2.4.1.2. Generation of the LAI from UAV Hyperspectral Data Based on PROSAIL Model

First, the parameter sensitivity analysis and parameterization of the PROSAIL
model [64–66] were carried out. For more details, refer to [7,67]. Then, a dataset with
100,000 simulations was generated by running PROSAIL in forward mode. Based on the
simulated data and UAV hyperspectral data, the sensitive bands and two typical VIs (NDVI
and OSAVI) were calculated to generate a look-up table (LUT). NDVI and OSAVI have
been proved to be well correlated with the LAI [14,68]. Finally, the grassland LAI inversion
based on the LUT was made by minimizing the RMSE between UAV reflectance data and
reflectance found in the LUT.

2.4.1.3. Estimation of the AGB from Hyperspectral Data

Based on the 6 VIs and LAI generated in Sections 2.4.1.1 and 2.4.1.2, the UAV-based
AGB was calculated in two cases.

Case 1. Estimation of the AGB based on VIs: the six VIs were used for retrieving and
evaluating the grassland AGB from UAV hyperspectral data based on regression models,
namely, simple regression (SR), partial least squares regression (PLSR), back-propagation
neural network (BPNN) and random forest (RF).

Case 2. Estimation of AGB VIs and LAI: both VIs and the LAI were used for retrieving
and evaluating the grassland AGB from UAV hyperspectral data based on the four regres-
sion models used in Case 1. Based on the estimated results, the impact of introducing the
LAI on the estimation accuracy of AGB was evaluated.

The accuracy of the estimated results was verified using the in situ data. Based on
the validation and evaluation of the different models, the model with the highest accuracy
was selected as the optimal model for estimating the AGB from the Chinese GF-2 multi-
spectral data.

2.4.2. Mapping Satellite-Scale AGB from Chinese GF-2 Multi-Spectral Data
2.4.2.1. Retrieval of the LAI Using PROSAIL and Multiple Spatial Information

First, based on the simulated data described in Section 2.4.1.2 and the spectral response
function (SRF) of the Chinese GF-2 PMS sensor, the simulated bands and two typical VIs
of NDVI and OSAVI were calculated to generate the satellite-based LUT. Due to the
scale mismatch and spatial heterogeneity, there was an inversion bias when mapping the
grassland LAI from satellite data [69]. Then, a spatial effect factor k was constructed based
on Taylor development, which was used as scale information between the UAV-scale data
and satellite-scale data for correcting the LAI inversion bias. The spatial effect factor k can
be calculated with the following equation; for more details, refer to [46,68]. The spatial
effect factor k is defined as:

k = LAIp − LAIm (3)

where LAIp is the LAI retrieved from observation data aggregated from high-resolution
images; LAIm is the average LAI retrieved from high-resolution images, which is taken as
a relative true value; and k is the difference between LAIp and LAIm, describing the bias
between the true LAI value and the retrieved LAI value.

Because the LUT is not a normal function and the parameter LAI is sensitive to the
NDVI, the purpose here was to obtain the scale information of different-resolution remote
sensing data; thus, a semi-empirical formula was established for LAI calculation and finally
used for spatial effect factor calculation.

LAI = g(NDVI) = g
(

NIR − R
NIR + R

)
= f (NIR, R) (4)

where NIR and R are the near-infrared red band and the red band.

k = f (NIRm, Rm)−
1
n∑ n

i=1 f (NIRi, Ri) (5)
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where NIRi and Ri are the reflectance of the near-infrared red band and the red band of
high-resolution data; NIRm and Rm are the average of NIR and R and n is the number of
pixels for aggregation. Then, LAIm = 1

n ∑ n
i=1 f (NIRi, Ri) is approximated using a second-

order Taylor development of f around (NIRi = NIRm, Ri = Rm). Finally, the spatial effect
factor k is calculated with the formulas shown below [46,69–71].

k = f (NIRm, Rm)− 1
n

n
∑

i=1


f (NIRm, Rm) +

(
∂ f

∂NIR
∂ f
∂R

)( NIRi − NIRm
Ri − Rm

)
+ 1

2

(
∂2 f

∂NIR∂NIR
∂2 f

∂R∂NIR
∂2 f

∂NIR∂R
∂2 f

∂R∂R

)(
(NIRi − NIRm)

2 (NIRi − NIRm)(Ri − Rm)

(Ri − Rm)(NIRi − NIRm) (Ri − Rm)
2

)


= − 1
2 ×

(
∂2 f

∂NIR∂NIR × VARNIR +
∂2 f

∂R∂R × VARR + 2 × ∂2 f
∂NIR∂R × COVNIR,R

)
(6)

where ∂2 f
∂NIR∂NIR , ∂2 f

∂R∂R and ∂2 f
∂NIR∂R are the second differential of function f (NIR, R); VARNIR

and VARR are the variance of NIR and R and COVNIR,R is the covariance. Therefore, the
difference between the LAIs retrieved from different resolution data is calculated using the
variance of NIR and R value based on UAV-scale data and the second order differential of
f (NIR, R) [46,68]. For the pixel of GF-2 without synchronized UAV flight data, a 40 × 40
window is used to calculate the variance and covariance for the current pixel.

Finally, a modified cost function is established based on spatial effect factor k.

δ =

√
1
n∑ n

i

(
ρo

i − ρs
i
)2

ϵi
+

(LAI − k − LAIe)2

ϵLAI
(7)

where δ is the improved cost function based on scale information; ρo
i is the spectral in-

formation of GF-2; ρs
i is the simulated spectral information; ϵi is the error of measured

reflectance; k is the scale effect factor; LAIe is the expectation value of LAI and ϵLAI is the
error of measured LAI.

2.4.2.2. Estimation of the AGB from GF-2 Multi-Spectral Data

By aggregating the UAV-scale AGB map, an AGB map with 4 m resolution (consistent
with GF-2 multi-spectral data resolution) was obtained, which was called the satellite-scale
sample set. All pixel values in the 4 m resolution AGB image were used as the sample
data for satellite remote sensing modeling except null data and invalid data, making a
total of 1057 samples. Of the 1057 samples, 60% were used for modeling, 20% for testing
and 20% for validation. We developed satellite-scale AGB estimation models based on VIs
(RVI, NDVI, RDVI, OSAVI and MSAVI) with and without LAI (described in Section 2.4.2.1)
derived from the Chinese GF-2 multi-spectral data. The scale effect of VIs calculated
from GF-2 data, also modified using Taylor series expansion based on the optimal model
with lowest RMSE and highest R2, was selected as the satellite-based model. Finally, the
grassland AGB in EP was mapped with the satellite-based model.

3. Results
3.1. Estimation of Grassland AGB from Hyperspectral Data
3.1.1. AGB Estimation Based on VIs

As described in Section 2.4.1.1, considering the sensitivity of spectral information
to biomass, the six VIs were calculated with any two spectral bands and ordered using
the correlation coefficient R. Finally, the six VIs of RVI(644,544), NDVI(673,935), RDVI(684,522),
OSAVI(673,935), MSAVI(684,522) and CI(644,544) were selected for AGB estimation, with R = 0.63,
0.67, 0.65, 0.68, 0.66 and 0.63. The correlation matrix is shown in Figure 3. Based on the
selected VIs and regression models mentioned in Section 2.2, the UAV-based AGB was
estimated and validated against the field-measured AGB (Figure 4). Among the regression
models built with the selected VIs, the RF-based model achieved the best performance,
with the R2 = 0.72 and the RMSE = 83.11 g/m2. The random forest’s training efficiency is
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high and can reduce overfitting problems; therefore, it was used as the main model for later
inversion modeling.
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3.1.2. AGB Estimation Based on VIs and LAI

Firstly, five bands with the highest correlation were selected based on the correlation
analysis between the LAI and reflectance of each band. Then, two typical vegetation
indices, NDVI and OSAVI, were also calculated using UAV hyperspectral data to construct
the LUT for UAV-based LAI estimation. The UAV-based LAI was validated against the
field-measured LAI (Figure 5b), with the R2 = 0.84 and the RMSE = 0.68 m2/m2. Finally,
the UAV-based LAI would be used as vegetation structure information to participate in the
UAV-based AGB mapping. As shown in Figure 4, since spectral information was prone to
saturation in areas covered by dense vegetation, the AGB was underestimated. Therefore,
the addition of LAI structure information can better improve the inversion accuracy of AGB.
Compared with the AGB estimation model based on VIs only, the performance of AGB
estimation model based on VIs+LAI was much better (Table 3). For the AGB estimation
model based on RF, the R2 was increased from 0.72 to 0.80 and the RMSE was decreased
from 83.11 m2/m2 to 76.03 m2/m2. The models constructed using RF with and without the
LAI were both better than the others; thus, the regression model based on RF was selected
as the final model for satellite-based AGB estimation.
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Table 3. Evaluation of different models with and without LAI.

Models
Based on VIs Based on VIs + LAI

R2 RMSE R2 RMSE

MLR_UAV 0.62 101.91 m2/m2 0.68 93.29 m2/m2

PLSR_UAV 0.67 87.85 m2/m2 0.72 83.61 m2/m2

BPNN_UAV 0.67 90.44 m2/m2 0.74 79.08 m2/m2

RF_UAV 0.72 83.11 m2/m2 0.80 76.03 m2/m2

3.2. Estimation of Grassland AGB from Chinese GF-2 Data
3.2.1. AGB Estimation Based on VIs

Considering the lack of red-edge wavelengths, only five wideband VIs, namely, RVI,
NDVI, RDVI, OSAVI and MSAVI, were calculated from the Chinese GF-2 multi-spectral
data. Based on the five VIs and satellite-scale AGB sample set (aggregated from the UAV-
based AGB map), the RF regression model was established for grassland AGB retrieved
from the Chinese GF-2 data. The AGB estimated with RF_GF_UAV (mapping AGB from
GF data based on RF model and UAV samples, similarly hereinafter) based on VIs was
validated with field measurements, with an R2 of 0.70 and an RMSE of 78.24 g/m2. At
the same time, in order to demonstrate whether UAV data, as a bridge between field mea-
surements and satellite observations, can improve the estimation accuracy of satellite-scale
models, the AGB retrieved directly from the GF-2 data based on RF and field measurements
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was also analyzed. The results show that the accuracy of RF_GF_field (mapping AGB
from GF data based on RF model and field samples, similarly hereinafter) based on VIs
decreased significantly; the R2 was decreased from 0.70 to 0.57, and the RMSE increased
from 78.24 g/m2 to 99.38 g/m2 (Table 4).

Table 4. Comparison of statistical indicators between RF_GF_UAV and RF_GF_field models.

Models
Based on VIs

R2 RMSE

RF_GF_UAV 0.70 78.24 g/m2

RF_GF_field 0.57 99.38 g/m2

Due to the heterogeneity of the surface and the difference of observation resolution
between different platforms, scale effects during the grassland AGB estimation based on
UAV and satellite synergies cannot be ignored. The UAV-based AGB (using RF_UAV_field
model) was aggregated as the relative truth value and the satellite-based AGB (using
RF_GF_field model) was taken as the estimated value, and the difference between them was
compared for analyzing the scale effect. As shown in Figure 6b, the scale bias reached 81%,
with an average of 18%. When the resolution increases, the bias is further increased [47,48].
Therefore, it is very important to consider and introduce the scale information in the process
of collaborative application of UAV and satellite data.
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3.2.2. AGB Estimation Based on VIs and LAI

Firstly, based on the method described in Section 2.4.2.1, the LAI was retrieved and
corrected from the Chinese GF-2 multi-spectral data. The satellite-based LAI was validated
using field measurements, with R2 = 0.75 and RMSE = 0.63 m2/m2. Then, based on the
satellite-scale AGB sample set (aggregated from UAV-based AGB map), the satellite-based
LAI and Vis calculated from the GF-2 data, the RF regression model was established for
estimating the grassland AGB from the Chinese GF-2 data. Finally, the performance of
the AGB estimation model with and without the LAI was analyzed. Compared with
RF_GF_UAV based on Vis, RF_GF_UAV based on VIs+LAI performed better; the R2 was
increased from 0.70 to 0.75 and the RMSE was decreased from 78.24 g/m2 to 72.36 g/m2

(Figure 7b).
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of satellite-based AGB versus ground measurements. The green line indicates the best fit, whereas
the gray line indicates the 1:1 relationship.

The grassland AGB in the EP was finally mapped at 4 m resolution using the RF_GF_UAV
model based on VIs+LAI. In addition, the effects of different fertilization measures on the
grassland AGB were analyzed. As shown in Figure 8 and Table 5, the effect of organic
fertilizer was better than that of inorganic fertilizer for grassland restoration treatment, and
the effect of fertilization in April was better than that in July. Compared with the reference
quadrat, the aboveground biomass of grassland increased by 45.06% after fertilization
in April.
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Figure 8. Fertilization and mowing control experiments over the 90 experimental units. CK: no
control experiments were performed; M: mowing control experiments were performed; O4: organic
fertilization on 10 April; O7: organic fertilization on 10 July; I4: inorganic fertilization on 10 April; I7:
inorganic fertilization on 10 July.

Table 5. Average value of AGB under different fertilization conditions.

Control Experiments Average Value of AGB

I4 605.30 g/m2

O4 622.54 g/m2

I7 562.75 g/m2

O7 584.52 g/m2

CK 423.23 g/m2
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4. Discussion

Accurate assessment of spatio-temporal changes in grassland aboveground biomass
is an essential basis for evaluating the productivity of the grassland ecosystem, monitor-
ing grassland degradation risk and understanding the grassland ecosystem carbon cycle.
Because natural grassland has extensive coverage, it is challenging to artificially obtain
biomass. Moreover, it is challenging to assess grassland biomass on a large scale over long
periods using only manual field surveys. It is a common way to estimate AGB estimation
on a large scale by establishing relationships between measured biomass and vegetation
indices calculated from satellite data. Due to the difficulty of manual ground measurement,
it is impossible to obtain all the ground measurement values at the satellite pixel scale,
which leads to uncertainty during AGB estimation from satellite data based on ground
small quadrat data (e.g., 1 m × 1 m). As described in Section 2.4.2.1, the model established
based on measured AGB and VIs calculated from GF-2 data had low accuracy, with an R2 of
0.57 and an RMSE of 99.38 g/m2. Recent advancements in UAV technology offer potential
opportunities to serve as a bridge connecting satellite data and ground surveys [44]. By
carrying a variety of sensors, the UAV can obtain ground samples that match the satellite
pixels, especially the low- and medium-resolution satellite data.

In this study, a ground–UAV–satellite collaborative estimation strategy for grassland
AGB was proposed. UAV-based AGB estimation, as the most critical link in the middle, was
evaluated and analyzed first. The results demonstrate that RF had the best performance
compared with SR, PLSR and BPNN, with an R2 of 0.72 (without LAI) or 0.80 (with LAI)
and an RMSE of 83.11 g/m2 (without LAI) or 76.03 g/m2 (with LAI). The performance
of the linear regression models, including SR and PLSR, was limited by the correlation
between vegetation indices [72]. In contrast to these limitations of linear models, nonlinear
models, including BPNN and RF, offer a different solution. The RF algorithm, an ensemble
learning method based on decision trees, provided feature importance scores based on
Mean Decrease Impurity (MDI). The RF model inherently incorporated a feature selection
process, effectively identifying and retaining the most critical features while eliminating
less important ones, which is beneficial for enhancing model interpretability and reducing
overfitting. Thus, the RF was regarded as the primary model for satellite-based AGB
estimation. Then, the UAV-scale AGB map was aggregated for making a satellite-based
sample set. As described in Section 2.4.2.2, the AGB sample set of 1057 samples (4 m × 4 m)
was achieved instead of 90 ground measurements (1 m × 1 m) by aggregating the UAV-
scale AGB map. Based on this sample set, the accuracy of satellite-based AGB estimation
is significantly improved, with an R2 of 0.70 (without LAI) and 0.75 (with LAI) and an
RMSE of 78.24 g/m2 (without LAI) and 72.36 g/m2 (with LAI). This suggests that UAVs
can connect the satellite observations to field measurements by providing a sufficiently
large training dataset for model development and AGB estimation from satellite data.

Plant structural properties are considered significant for AGB estimation since the AGB
is essentially a 3D complex plant trait [24,73,74]. At the same time, due to the saturation of
optical signals, the AGB in mature grassland is easy to underestimate [20]. The introduction
of structural information (e.g., canopy height) can effectively solve this problem [24,75,76].
The extraction of vegetation height using UAV LiDAR over a large area is expensive, and
the flight height of UAV LiDAR has a significant impact on the capture of vegetation
details [62]. At the same time, the extraction of canopy height using UAV LiDAR is still
uncertain due to the influence of grass leaf droop. At the satellite scale, the estimation of
vegetation canopy height of grassland also lacks the support of corresponding LiDAR data.
Although some studies pointed out that satellite LiDAR data (e.g., ICESat-2, GLAS) had the
potential for retrieving the forest vegetation canopy height, the uncertainty of estimations
was always greater than 2 m [43,77]. These data are not suitable for grassland vegetation
with a height of less than 1 m. LAI, as an important vegetation structural parameter, is
also a well-known indicator for AGB modeling and can be retrieved from optical remote
sensing data of different platforms. The application of LAI in grassland is mature with
high accuracy and low cost, as shown in Figure 5. Grassland AGB estimation achieved
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higher accuracy when the LAI was introduced. For UAV-based AGB estimation, the R2 of
models based on VIs+LAI was improved by an average of 10% and the RMSE was reduced
by an average of 9% (Table 3). For satellite-based AGB estimation, RF_GF_UAV based on
VIs+LAI had better performance; the R2 was increased from 0.70 to 0.75 and the RMSE was
decreased from 78.24 g/m2 to 72.36 g/m2.

The study area was composed of multi-species communities, which were also affected
by grassland restoration measures such as fertilization and mowing, so there were large
differences between and within grassland species; that is, the surface heterogeneity of
the study area was strong. Due to the heterogeneity of the surface and the difference
in observation resolution between UAVs and satellites, scale effects must exist in the
grassland AGB estimation based on UAV and satellite synergies [47]. Since the RF model
is a non-parametric model, it is difficult to correct the scale bias directly. Therefore, in
this study, the UAV platform was used as the intermediary, and the structural parameter
LAI was introduced at the same time. Then, multi-scale information was extracted based
on the NDVI and used to correct the inversion bias. Finally, the scale bias was reduced
to 10%. The extraction and addition of multi-scale spatial information effectively ensure
the application of the model on the heterogeneous surface. NDVI is the most widely
used spectral vegetation index by ecologists and agriculturalists [9,14]. However, there is a
saturation effect when NDVI is applied to densely vegetated areas, which brings uncertainty
to the scale information extraction based on NDVI. Future studies could consider directly
constructing an AGB-based scale correction method to solve the uncertainty caused by
NDVI-based spatial correction. In addition, the synergistic use of satellite and UAV-derived
data for mapping grassland AGB proposed in this study was only tested during the
vegetation maturity stage, and it still needs to be optimized for different simultaneous data
in different regions to improve the universality of the method.

The final AGB map of the study area also revealed that the effect of organic fertilizer
was superior to that of inorganic fertilizer for grassland restoration treatment. Additionally,
the effect of fertilization on 10 April was better than that on 10 July. Compared with
the reference quadrat, the aboveground biomass of grassland increased by 45.06% after
fertilization in April.

5. Conclusions

In this study, the grassland AGB was successfully estimated and mapped in the
Hulunbuir meadow steppe by synergistically using Chinese GF-2 multi-spectral data and
UAV hyperspectral data. The results suggest that UAVs can be used for bridging the gap
between satellite observations and ground surveys. The UAV improved the performance
of satellite-based AGB estimation models by providing an AGB dataset that matched the
satellite pixels. This effectively reduced the effects of quadrat scale mismatch and surface
spatial heterogeneity. The conclusions are as follows:

(1) RF had the best performance compared with SR, PLSR and BPNN. The grassland AGB
was estimated from UAV hyperspectral data using an RF model based on VIs+LAI,
with an R2 of 0.80 and an RMSE of 76.03 g/m2.

(2) Grassland AGB estimation considering the LAI achieved higher accuracy. For UAV-
based AGB estimation, the R2 was improved by an average of 10%, and the RMSE
was decreased by an average of 9%. For satellite-based AGB estimation, the R2

was increased from 0.70 to 0.75 and the RMSE was decreased from 78.24 g/m2 to
72.36 g/m2.

(3) During grassland AGB estimation from different platforms, the scale bias was up
to 81%, with an average of 18%. By introducing spatial information during LAI
inversion, the scale bias of the AGB estimation based on VIs+LAI was reduced to 10%.

(4) The final AGB map of the study area revealed that the biomass after fertilization was
significantly higher than that without treatment, and the effect of organic fertilizer
was better than that of inorganic fertilizer for grassland restoration treatment.
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