Effects of Seven Plant Essential Oils on the Growth, Development and Feeding Behavior of the Wingless Aphis gossypii Glover
Abstract
:1. Introduction
2. Results
2.1. Effect of EOs on Cotton Aphid Growth, Development, and Fecundity
2.2. Effect of Plant EOs on Aphid Feeding Behavior
2.3. Effect of Plant EOs on Daily Secretion of Aphid Honeydew
3. Discussion
4. Materials and Methods
4.1. Sources of Essential Oils and Test Insects
4.2. Growth, Development, and Fecundity
4.3. Effect of EOs on Aphid Feeding Behaviors
4.4. Honeydew Excretion
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R.; Cheng, S.; Chen, Z.; Guo, T.; Liang, P.; Zhen, C.; Wang, J.; Zhang, L.; Liang, P.; Gao, X. Establishment of toxicity and susceptibility baseline of broflanilide for Aphis gossypii Glover. Insects 2022, 13, 1033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, S.; Luo, J.; Wang, C.; Lv, L.; Dong, S.; Cui, J. Ecological adaption analysis of the cotton aphid (Aphis gossypii) in different phenotypes by transcriptome comparison. PLoS ONE 2013, 8, e83180. [Google Scholar] [CrossRef]
- Heilsnis, B.; Mahas, J.B.; Conner, K.; Pandey, S.; Clark, W.; Koebernick, J.; Srinivasan, R.; Martin, K.; Jacobson, A.L.; Burrack, H. Characterizing the vector competence of Aphis gossypii, Myzus persicae and Aphis craccivora (Hemiptera: Aphididae) to transmit cotton leafroll dwarf virus to cotton in the United States. J. Econ. Entomol. 2023, 116, 719–725. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, F.M.; Davis, J.A.; Swale, D.R. Profile of commercialized aphicides on the survivorship and feeding behavior of the cotton aphid, Aphis gossypii. Pestic. Biochem. Physiol. 2022, 186, 105174. [Google Scholar] [CrossRef] [PubMed]
- Braendle, C.; Davis, G.K.; Brisson, J.A.; Stern, D.L. Wing dimorphism in aphids. Heredity 2006, 97, 192–199. [Google Scholar] [CrossRef]
- Herron, G.A.; Powis, K.; Rophail, J. Insecticide resistance in Aphis gossypii Glover (Hemiptera: Aphididae), a serious threat to Australian cotton. Aust. J. Entomol. 2001, 40, 85–91. [Google Scholar] [CrossRef]
- Nauen, R.; Elbert, A. European monitoring of resistance to insecticides in Myzus persicae and Aphis gossypii (Hemiptera: Aphididae) with special reference to imidacloprid. Bull. Entomol. Res. 2007, 93, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Patima, W.; Guo, P.; Ma, S.; Gao, X.; Zhang, L.; Zhang, S.; Ma, D. Resistance of different field populations of Aphid gossypii to ten insecticides in Xinjiang. Plant Prot. 2019, 45, 273–278. [Google Scholar] [CrossRef]
- Fernandes, M.E.S.; Alves, F.M.; Pereira, R.C.; Aquino, L.A.; Fernandes, F.L.; Zanuncio, J.C. Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials. Chemosphere 2016, 156, 45–55. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-a review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Karamanoli, K.; Ainalidou, A.; Bouzoukla, F.; Vokou, D. Decomposition profiles of leaf essential oils in the soil environment. Ind. Crops Prod. 2018, 124, 397–401. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Grdiša, M.; Gršić, K. Botanical insecticides in plant protection. Agric. Conspec. Sci. 2013, 78, 85–93. [Google Scholar]
- Isman, M.B. Botanical insecticides in the twenty-first century-fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2019, 19, 235–241. [Google Scholar] [CrossRef]
- Chiasson, H.; Vincent, C.; Bostanian, N. Insecticidal properties of a Chenopodium-based botanical. J. Econ. Entomol. 2004, 97, 1378–1383. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Attia, S.; Lognay, G.; Heuskin, S.; Hance, T. Insecticidal activity of Lavandula angustifolia Mill. against the pea aphid Acyrtosiphum pisum. J. Entomol. Zool. Stud. 2016, 4, 118–122. [Google Scholar]
- Saıfı, R.; Saıfı, H.; Akca, İ.; Benabadelkader, M.; Askın, A.K.; Belghoul, M. Insecticidal and repellent effects of Mentha longifolia L. essential oil against Aphis craccivora Koch (Hemiptera: Aphididae). Chem. Biol. Technol. Agric. 2023, 10, 18. [Google Scholar] [CrossRef]
- Mousavi, M.; Valizadegan, O. Insecticidal effects of Artemisia dracunculus L. (Asteraceae) essential oil on adult of Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. Arch. Phytopathol. 2014, 47, 1737–1745. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G. The effect of Santolina chamaecyparissus and Tagetes patula essential oils on biochemical markers of oxidative stress in aphids. Insects 2021, 12, 360. [Google Scholar] [CrossRef]
- Abualfia, R.; Samara, R. Antifeedants impact of plant essential oil on green peach aphid on potato crops. J. Ecol. Eng. 2021, 23, 274–285. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Yu, Y.; Yang, L. Antifeeding and insecticidal activity of ethanol extracts from 11 plants against Aphis sp. of Lycium barbarum. J. Agric. Sci. 2007, 1, 21–23. [Google Scholar]
- Zhou, W. Preliminary tests on the biological activity of extracts of Flaveria bidentis against aphids and Ostrinia nubilalis. Jiang Su Agric. Sci. 2010, 6, 198–199. [Google Scholar] [CrossRef]
- Tomova, B.S.; Waterhouse, J.S.; Doberski, J. The effect of fractionated Tagetes oil volatiles on aphid reproduction. Entomol. Exp. Appl. 2005, 115, 153–159. [Google Scholar] [CrossRef]
- Petrakis, E.A.; Kimbaris, A.C.; Perdikis, D.C.; Lykouressis, D.P.; Tarantilis, P.A.; Polissiou, M.G. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 2014, 62, 272–279. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Li, H.; Gao, Y.; Yang, Y.; Lu, Y. Bottom-up effects of drought-stressed cotton plants on performance and feeding behavior of Aphis gossypii. Plants 2023, 12, 2886. [Google Scholar] [CrossRef]
- Sauge, M.H.; Lacroze, J.P.; Poëssel, J.L.; Pascal, T.; Kervella, J. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 2002, 102, 29–37. [Google Scholar] [CrossRef]
- Fereres, A.; Moreno, A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 2009, 141, 158–168. [Google Scholar] [CrossRef]
- Powell, G.; Tosh, C.R. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 2006, 51, 309–330. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 2006, 57, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Q.; Wang, Q.; Rui, C.; Cui, L. The feeding behavior and life history changes in imidacloprid-resistant Aphis gossypii Glover (Homoptera: Aphididae). Pest Manag. Sci. 2019, 76, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zeng, X.; Zaka, M.S.; Cen, Y. Influence of the essential oil of guava leaves on the feeding behavior of the Asian citrus psyllid. Environ. Entomol. 2010, 32, 483–487. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, J.; Zhang, P.; Wang, Y. The influence of four kinds of plant aqueous extracts on the feeding behaviors of Aphis gossypii. J. Plant Prot. Res. 2004, 3, 252–258. [Google Scholar] [CrossRef]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host-plant selection and feeding. In Aphis as Crop Pests; CABI: Wallingford, UK, 2017; pp. 173–195. [Google Scholar] [CrossRef]
- Ramírez, C.C.; Niemeyer, H.M. The influence of previous experience and starvation on aphid feeding behavior. J. Insect Behav. 2000, 13, 699–709. [Google Scholar] [CrossRef]
- Pompon, J.; Quiring, D.; Goyer, C.; Giordanengo, P.; Pelletier, Y. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J. Insect Physiol. 2011, 57, 1317–1322. [Google Scholar] [CrossRef]
- Calvo-Agudo, M.; Tooker, J.F.; Dicke, M.; Tena, A. Insecticide-contaminated honeydew: Risks for beneficial insects. Biol. Rev. 2021, 97, 664–678. [Google Scholar] [CrossRef]
- Seo, B.Y.; Kwon, Y.-H.; Jung, J.K.; Kim, G.-H. Electrical penetration graphic waveforms in relation to the actual positions of the stylet tips of Nilaparvata lugens in rice tissue. J. Asia Pac. Entomol. 2009, 12, 89–95. [Google Scholar] [CrossRef]
- He, Y.; Zhao, J.; Zheng, Y.; Weng, Q.; Biondi, A.; Desneux, N.; Wu, K. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 2013, 9, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Joschinski, J.; Krauss, J. Food colouring as a new possibility to study diet ingestion and honeydew excretion by aphids. Entomol. Exp. Appl. 2017, 164, 141–149. [Google Scholar] [CrossRef]
- Zhou, Q.; Liang, W.; Zeng, L. Study on antifeedant effect of plant extracts on Myzus persicae (Sulzer) and Lipaphis erysimi (Kaltenbach). Nat. Prod. Res. Dev. 2004, 16, 521–524. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Petrakis, E.A.; Arvaniti, K.A.; Kimbaris, A.C.; Polissiou, M.G.; Perdikis, D.C. Comparative bioactivity of essential oils from two Mentha pulegium (Lamiaceae) chemotypes against Aphis gossypii, Aphis spiraecola, Tetranychus urticae and the generalist predator Nesidiocoris tenuis. Phytoparasitica 2019, 47, 683–692. [Google Scholar] [CrossRef]
- Sayed, S.; Soliman, M.M.; Al-Otaibi, S.; Hassan, M.M.; Elarrnaouty, S.A.; Abozeid, S.M.; El-Shehawi, A.M. Toxicity, deterrent and repellent activities of four essential oils on Aphis punicae (Hemiptera: Aphididae). Plants 2022, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Setzer, W.N. Evaluation of the toxicity of Satureja intermedia C. A. Mey essential oil to storage and greenhouse insect pests and a predator ladybird. Foods 2020, 9, 712. [Google Scholar] [CrossRef] [PubMed]
- Mensah, R.; Moore, C.; Watts, N.; Deseo, M.A.; Glennie, P.; Pitt, A. Discovery and development of a new semiochemical biopesticide for cotton pest management: Assessment of extract effects on the cotton pest Helicoverpa spp. Entomol. Exp. Appl. 2014, 152, 1–15. [Google Scholar] [CrossRef]
- Koul, O. Phytochemicals and insect control: An antifeedant approach. Crit. Rev. Plant Sci. 2008, 27, 1–24. [Google Scholar] [CrossRef]
- Chen, M.; Hu, Y.; Zhou, J.; Xie, Y.; Wu, H.; Yuan, T.; Yang, Z. Facile fabrication of tea tree oil-loaded antibacterial microcapsules by complex coacervation of sodium alginate/quaternary ammonium salt of chitosan. RSC Adv. 2016, 6, 13032–13039. [Google Scholar] [CrossRef]
- Chen, X.; Fan, Y.; Zhang, W.; Tian, Z.; Liu, J.; Zhao, K. Soybean aphid, Aphis glycines (Hemiptera: Aphididae), developmental and reproductive capacity on white clover, Trifolium repens (Rosales: Leguminosae), in northeast China. Appl. Entomol. Zool. 2017, 52, 491–495. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Desneux, N.; Lu, Y. Impact of temperature on survival rate, fecundity, and feeding behavior of two aphids, Aphis gossypii and Acyrthosiphon gossypii, when reared on cotton. Insects 2021, 12, 565. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, Q.; Liu, X.; Liang, G. Differences in the sublethal effects of sulfoxaflor and acetamiprid on the Aphis gossypii Glover (Homoptera: Aphididae) are related to its basic sensitivity level. Insects 2022, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Izakmehri, K.; Saber, M.; Mehrvar, A.; Hassanpouraghdam, M.B.; Vojoudi, S. Lethal and sublethal effects of essential oils from Eucalyptus camaldulensis and Heracleum persicum against the adults of Callosobruchus maculatus. J. Insect Sci. 2013, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Castilhos, R.V.; Grützmacher, A.D.; Coats, J.R. Acute toxicity and sublethal effects of terpenoids and essential oils on the predator Chrysoperla externa (Neuroptera: Chrysopidae). Neotrop. Entomol. 2018, 47, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are naringenin and quercetin useful chemicals in pest-management strategies? J. Pest Sci. 2014, 87, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Sandanayaka, W.R.M.; Hale, C.N. Electronically monitored stylet penetration pathway of woolly apple aphid, Eriosoma lanigerum (Homoptera: Aphididae), on apple (Malus domestica). N. Z. J. Crop Hortic. Sci. 2003, 31, 107–113. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Z.; He, H.; Li, J.; Bai, S.; Yan, F. Review of insect honeydew research methods. Chin. J. Appl. Entomol. 2020, 57, 466–473. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin 1985, 24, 225–240. [Google Scholar]
EOs | Developmental Times (d) of Life Stages | Pre-Adults | |||
---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | ||
Control | 1.18 ± 0.06 cd | 1.09 ± 0.04 d | 1.09 ± 0.05 ab | 1.44 ± 0.07 ab | 4.80 ± 0.09 d |
O. sanctum | 1.29 ± 0.08 bc | 1.39 ± 0.07 ab | 1.12 ± 0.05 ab | 1.40 ± 0.07 abc | 5.19 ± 0.07 ab |
O. basilicum | 1.49 ± 0.07 a | 1.18 ± 0.06 bcd | 1.09 ± 0.04 ab | 1.14 ± 0.05 d | 4.89 ± 0.09 cd |
O. gratissimum | 1.36 ± 0.07 abc | 1.20 ± 0.05 bcd | 1.10 ± 0.04 ab | 1.22 ± 0.06 cd | 4.88 ± 0.11 cd |
M. piperita | 1.34 ± 0.07 abc | 1.51 ± 0.14 a | 1.21 ± 0.06 a | 1.38 ± 0.07 abc | 5.23 ± 0.06 a |
M. arvensis | 1.46 ± 0.08 ab | 1.16 ± 0.05 cd | 1.18 ± 0.05 a | 1.38 ± 0.07 abc | 5.18 ± 0.11 ab |
T. erecta | 1.53 ± 0.08 ab | 1.15 ± 0.05 d | 1.10 ± 0.04 ab | 1.33 ± 0.07 bc | 5.10 ± 0.10 abc |
L. angustifolia | 1.06 ± 0.03 d | 1.35 ± 0.07 abc | 1.00 ± 0.00 b | 1.54 ± 0.07 a | 4.96 ± 0.05 bcd |
F7, 385 = 4.760 | F7, 375 = 3.954 | F7, 373 = 1.885 | F7, 371 = 3.332 | F7, 371 = 3.339 | |
p < 0.001 | p < 0.001 | p = 0.071 | p = 0.002 | p = 0.002 |
EOs | Adult Longevity (d) | Reproductive Days (d) | Fecundity |
---|---|---|---|
Control | 29.67 ± 0.67 a | 14.04 ± 0.32 a | 53.18 ± 0.99 a |
O. sanctum | 26.25 ± 1.12 b | 14.21 ± 0.78 a | 41.69 ± 2.44 cde |
O. basilicum | 26.36 ± 0.89 b | 11.30 ± 0.36 b | 49.55 ± 1.88 ab |
O. gratissimum | 26.76 ± 0.75 b | 11.08 ± 0.34 b | 49.24 ± 1.27 ab |
M. piperita | 25.32 ± 1.16 bc | 13.47 ± 0.82 a | 39.53 ± 2.6 de |
M. arvensis | 25.80 ± 0.98 b | 10.81 ± 0.36 b | 46.20 ± 1.95 bc |
T. erecta | 22.92 ± 0.85 c | 11.25 ± 0.44 b | 43.79 ± 1.46 cd |
L. angustifolia | 24.25 ± 0.99 bc | 13.55 ± 0.66 a | 36.63 ± 2.12 e |
F7, 371 = 4.27 | F7, 367 = 7.219 | F7, 371 = 8.390 | |
p < 0.001 | p < 0.001 | p < 0.001 |
EOs | R0 | T (d) | rm | λ |
---|---|---|---|---|
Control | 47.86 ± 2.41 ab | 8.99 ± 0.16 c | 0.4304 ± 0.0099 a | 1.5379 ± 0.0152 a |
O. sanctum | 40.02 ± 2.59 cde | 10.24 ± 0.15 a | 0.3605 ± 0.0072 c | 1.4340 ± 0.0104 c |
O. basilicum | 43.60 ± 2.80 abcd | 9.27 ± 0.13 bc | 0.4071 ± 0.0096 ab | 1.5024 ± 0.0143 ab |
O. gratissimum | 48.26 ± 1.57 a | 9.23 ± 0.15 bc | 0.4199 ± 0.0073 ab | 1.5218 ± 0.0111 ab |
M. piperita | 37.16 ± 2.77 de | 10.04 ± 0.13 a | 0.3601 ± 0.0080 c | 1.4335 ± 0.0115 c |
M. arvensis | 46.20 ± 1.92 abc | 9.55 ± 0.16 b | 0.4014 ± 0.0073 b | 1.4940 ± 0.0109 b |
T. erecta | 42.02 ± 1.84 bcd | 9.25 ± 0.16 bc | 0.4043 ± 0.0078 b | 1.4982 ± 0.0117 ab |
L. angustifolia | 35.14 ± 2.26 e | 9.51 ± 0.13 b | 0.3742 ± 0.0068 c | 1.4538 ± 0.0099 c |
Treatment (n) | C | F | G | Np | Pd | C Events | Np Events |
---|---|---|---|---|---|---|---|
Control (10) | 205.97 ± 18.369 b | 6.97 ± 5.416 b | 13.00 ± 7.365 d | 0.18 ± 0.175 c | 13.44 ± 1.443 ab | 186.00 ± 17.578 bc | 0.20 ± 0.200 c |
O. sanctum (11) | 240.90 ± 16.574 ab | 20.69 ± 10.040 ab | 58.22 ± 14.374 bcd | 34.89 ± 8.350 a | 12.58 ± 1.459 b | 186.91 ± 20.866 bc | 9.64 ± 2.180 a |
O. basilicum (11) | 237.38 ± 25.908 ab | 4.52 ± 3.902 b | 73.22 ± 21.420 abc | 33.46 ± 13.111 a | 14.54 ± 1.823 ab | 230.82 ± 27.775 ab | 7.64 ± 2.636 ab |
O. gratissimum (11) | 281.85 ± 26.821 a | 9.55 ± 7.996 b | 55.79 ± 14.204 bcd | 24.55 ± 7.615 ab | 13.19 ± 1.400 ab | 172.82 ± 12.156 c | 4.00 ± 1.279 bc |
M. piperita (10) | 288.70 ± 26.326 a | 14.21 ± 11.502 ab | 39.03 ± 11.134 cd | 6.32 ± 4.161 bc | 15.35 ± 0.971 ab | 217.40 ± 12.199 bc | 1.40 ± 0.884 c |
M. arvensis (12) | 247.52 ± 23.507 ab | 40.96 ± 14.030 a | 100.21 ± 24.490 ab | 18.06 ± 5.136 abc | 14.62 ± 1.635 ab | 210.00 ± 22.016 bc | 5.58 ± 1.960 abc |
T. erecta (12) | 240.65 ± 10.570 ab | 1.77 ± 1.766 b | 112.25 ± 21.620 a | 14.67 ± 6.030 abc | 13.90 ± 1.071 ab | 207.25 ± 12.283 bc | 3.50 ± 1.222 bc |
L. angustifolia (12) | 297.43 ± 21.609 a | 23.36 ± 10.341 ab | 21.26 ± 13.919 d | 10.67 ± 6.310 bc | 17.08 ± 1.337 a | 272.08 ± 19.719 a | 3.75 ± 2.937 bc |
F7, 81 = 2.004 | F7, 81 = 2.093 | F7, 81 = 4.114 | F7, 81 = 2.783 | F7, 81 = 1.018 | F7, 81 = 2.786 | F7, 81 = 2.445 | |
p = 0.064 | p = 0.054 | p = 0.001 | p = 0.012 | p = 0.425 | p = 0.012 | p = 0.025 |
Treatment (n) | Time to First E1 (min) | E1 | E1 Events | Time to First E2 (min) | E2 | E2 Events | Percentage of E1 + E2 | Total Number of Single E1 |
---|---|---|---|---|---|---|---|---|
Control (10) | 54.58 ± 7.751 b | 77.76 ± 15.591 a | 15.30 ± 1.633 a | 112.76 ± 42.052 ab | 162.69 ± 24.491 a | 9.10 ± 1.560 a | 0.50 ± 0.039 a | 2.60 ± 0.562 b |
O. sanctum (11) | 175.03 ± 46.451 a | 27.57 ± 6.986 c | 8.54 ± 1.951 bc | 126.78 ± 41.123 ab | 85.15 ± 21.611 b | 3.82 ± 1.381 b | 0.23 ± 0.047 b | 2.91 ± 1.282 b |
O. basilicum (11) | 102.84 ± 26.238 ab | 41.86 ± 8.664 bc | 12.91 ± 1.781 ab | 182.44 ± 30.427 a | 75.02 ± 16.794 b | 4.27 ± 1.121 b | 0.24 ± 0.040 b | 6.27 ± 1.602 a |
O. gratissimum (11) | 159.31 ± 40.401 ab | 39.22 ± 9.034 bc | 8.73 ± 2.067 bc | 197.40 ± 53.812 a | 55.76 ± 24.627 b | 3.73 ± 1.630 b | 0.20 ± 0.067 b | 3.45 ± 0.857 ab |
M. piperita (10) | 135.14 ± 49.783 ab | 50.62 ± 10.683 abc | 10.30 ± 2.271 abc | 32.75 ± 12.343 b | 65.57 ± 28.194 b | 3.30 ± 1.257 b | 0.24 ± 0.067 b | 4.90 ± 1.159 ab |
M. arvensis (12) | 115.89 ± 31.654 ab | 25.10 ± 5.532 c | 6.75 ± 1.286 c | 161.45 ± 38.100 a | 33.53 ± 14.907 b | 2.33 ± 0.752 b | 0.12 ± 0.032 b | 3.83 ± 1.086 ab |
T. erecta (12) | 176.36 ± 39.023 a | 64.48 ± 17.068 ab | 12.00 ± 2.336 abc | 154.60 ± 42.219 a | 32.15±11.671 b | 4.00 ± 1.219 b | 0.20 ± 0.052 b | 6.33 ± 1.356 a |
L. angustifolia (12) | 150.97 ± 32.706 ab | 31.95 ± 7.718 bc | 13.67 ± 2.524 ab | 144.79 ± 38.275 ab | 79.96 ± 21.324 b | 5.67 ± 1.734 ab | 0.23 ± 0.053 b | 5.00 ± 1.030 ab |
F7, 81 = 1.240 | F7, 81 = 2.880 | F7, 81 = 2.074 | F7, 81 = 1.560 | F7, 81 = 3.791 | F7, 81 = 2.177 | F7, 81 = 4.392 | F7, 81 = 1.509 | |
p = 0.291 | p = 0.010 | p = 0.056 | p = 0.159 | p = 0.001 | p = 0.045 | p < 0.001 | p = 0.176 |
EOs | A. gossypii | |
---|---|---|
Proportion Honeydew/mm2 | Antifeedant Rate% | |
Control | 11.53 ± 0.809 a | — |
O. sanctum | 7.61 ± 0.853 b | 33.40 |
O. basilicum | 4.08 ± 0.833 c | 64.61 |
O. gratissimum | 5.64 ± 0.870 bc | 51.08 |
M. piperita | 5.69 ± 0.878 bc | 50.65 |
M. arvensis | 4.01 ± 0.686 c | 65.22 |
T. erecta | 4.70 ± 0.533 c | 59.24 |
L. angustifolia | 6.17 ± 0.821 bc | 46.49 |
F7, 136 = 9.669 | ||
p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Y.; Yuan, H.; Lu, Y. Effects of Seven Plant Essential Oils on the Growth, Development and Feeding Behavior of the Wingless Aphis gossypii Glover. Plants 2024, 13, 916. https://doi.org/10.3390/plants13070916
Wang X, Zhang Y, Yuan H, Lu Y. Effects of Seven Plant Essential Oils on the Growth, Development and Feeding Behavior of the Wingless Aphis gossypii Glover. Plants. 2024; 13(7):916. https://doi.org/10.3390/plants13070916
Chicago/Turabian StyleWang, Xinhang, Ying Zhang, Haibin Yuan, and Yanhui Lu. 2024. "Effects of Seven Plant Essential Oils on the Growth, Development and Feeding Behavior of the Wingless Aphis gossypii Glover" Plants 13, no. 7: 916. https://doi.org/10.3390/plants13070916
APA StyleWang, X., Zhang, Y., Yuan, H., & Lu, Y. (2024). Effects of Seven Plant Essential Oils on the Growth, Development and Feeding Behavior of the Wingless Aphis gossypii Glover. Plants, 13(7), 916. https://doi.org/10.3390/plants13070916