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Abstract: N6-methyladenosine (m6A) is a prevalent internal modification in eukaryotic mRNA, tRNA,
miRNA, and long non-coding RNA. It is also known for its role in plant responses to biotic and
abiotic stresses. However, a comprehensive m6A transcriptome-wide map for Puccinia striiformis
f. sp. tritici (Pst) infections in wheat (Triticum aestivum) is currently unavailable. Our study is the
first to profile m6A modifications in wheat infected with a virulent Pst race. Analysis of RNA-seq
and MeRIP-seq data revealed that the majority of differentially expressed genes are up-regulated
and hyper-methylated. Some of these genes are enriched in the plant–pathogen interaction pathway.
Notably, genes related to photosynthesis showed significant down-regulation and hypo-methylation,
suggesting a potential mechanism facilitating successful Pst invasion by impairing photosynthetic
function. The crucial genes, epitomizing the core molecular constituents that fortify plants against
pathogenic assaults, were detected with varying expression and methylation levels, together with
a newly identified methylation motif. Additionally, m6A regulator genes were also influenced by
m6A modification, and their expression patterns varied at different time points of post-inoculation,
with lower expression at early stages of infection. This study provides insights into the role of
m6A modification regulation in wheat’s response to Pst infection, establishing a foundation for
understanding the potential function of m6A RNA methylation in plant resistance or susceptibility to
pathogens.

Keywords: wheat; Puccinia striiformis f. sp. tritici; RNA-seq; MeRIP-seq; m6A RNA methylation; gene
expression; post-transcriptional modification; plant–pathogen interaction; photosynthesis

1. Introduction

Many biological processes are controlled by RNA molecules, which play a vital role in
transferring genetic information. To perform specific molecular functions, RNA transcripts
can be chemically modified. Based on the MODOMICS database (https://iimcb.genesilico.
pl/modomics/ (accessed on 1 October 2023)), there have been more than 180 RNA chem-
ical modification discoveries to date, mainly in transfer RNAs (tRNAs) and ribosomal
RNAs (rRNAs), where they play important roles in RNA function [1]. The most common
post-transcriptional modifications to RNA are the following: N6-methyladenosine (m6A),
5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ), inosine (I), and
N6,2′-O-dimethyladenosine (m6Am) [2].

In eukaryotic mRNA, m6A is the most abundant methylation type which is also found
in bacteria and RNA viruses [3]. The m6A RNA modification is a preserved regulatory
system across highly diverse organisms; the system encompasses the methyltransferase
complexes known as “writers” that add methyl groups to mRNA, demethylases termed
“erasers” that remove these modifications for dynamic regulation, and m6A-binding pro-
teins or “readers” which recognize and interact with methylated RNA sites, collectively
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playing a crucial role in mRNA function by impacting processes such as stability, splicing,
localization, and translation, thereby illustrating the evolutionary significance of m6A mod-
ifications [4,5]. There are several m6A methyltransferases, called m6A writers, including
mRNA adenosine methylases (MTA and MTB), VIRILIZER (VIR), FK506-binding protein 12
(FKBP12)-interacting protein 37 (FIB37), and the E3 ubiquitin ligase HAKAI [6]. In addition,
m6A demethylases or erasers, such as the alkylated DNA repair proteins AlkB homologs
(e.g., AlkBH4b, AlkBH8, AlkBH9B, AlkBH10B, AlkBH11B) [7,8] and fat mass and obesity-
associated protein (FTO) [9], can dynamically modulate m6A modification. Moreover, there
is a series of m6A-binding proteins for recognizing m6A-containing mRNAs named m6A
readers like the EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) family
(e.g., ECT2, ECT3, ECT4). It has been demonstrated that ECT2 is involved in mRNA stabil-
ity [10]. YT521-B homology (YTH) family proteins, whose YTH domain can recognize and
bind m6A-containing RNA, are the main readers of m6A [11]. The m6A modification very
much plays a pivotal role in regulating plant transcription and gene expression, growth,
and development [12].

The most canonical consensus motif of the m6A modification site is RRACH (R = G or
A; H = U, A or C) [13], which accounts for more than 90% of the m6A sites in wheat mR-
NAs [14]. Numerous studies in plants also identified this dominant consensus motif [15–17].
Alternative motifs of GGAU and URUAY (Y = C or U) were also found to be enriched in
plant species by epitranscriptome analysis [18,19]. The distribution of m6A modification
within the mRNA is not uniform and is mainly enriched close to the stop codon and 3’
untranslated regions (3’ UTRs) [20]. Despite preliminary research on m6A methylation in
the plant response to abiotic stress [21–23], biotic stress has received far less attention. To
highlight a few studies, in Arabidopsis thaliana, AtALKBH9B demethylase was reported to
erase m6A from RNAs of alfalfa mosaic virus (AMV), and its interaction with the CP (coat
protein) of AMV resulted in successful viral infection. The suppression of AtALKBH9B
led to the hyper-methylation of AMV RNAs and attenuated AMV infectivity, whereas the
infection of cucumber mosaic virus (CMV) was unaffected, which might correspond to the
absence of interaction between AtALKBH9B and the CMV CP [24]. The mRNAs of certain
genes of pear (Pyrus bretschneideri) involved in defense mechanisms were m6A-modified to
enhance the abundance of defense-related transcripts against the inoculation of fire blight
pathogen Erwinia amylovora [25].

The plant defense regulation mechanism against pathogen assaults has been studied
over the years. Many genes were identified based on the changes in expression levels,
and the biological and biochemical roles were inferred. The involvement of NBS-LRR
genes in plant–pathogen interactions, MAPK signaling, and the biosynthesis of secondary
metabolites have been highlighted, and more detailed information is accumulating [26].
Similarly, the pathogenesis-related protein 1 (PR1), along with calcium-dependent protein
kinases and calmodulin genes, play crucial roles in plant–pathogen interactions, in signal
transduction. The biosynthesis pathways of phenylpropanoids and flavonoids have also
been demonstrated [27]. In a study, Wang et al., 2016, emphasized the significance of
mitogen-activated protein (MAP) kinase genes in the biosynthesis of phenylpropanoids,
flavonoids, stilbenoids, and defense-related pathways [28]. 3-ketoacyl-CoA synthase genes
are vital in transcription regulation, signal transduction, plant–pathogen interactions, and
MAPK signaling pathways [29]. Additionally, WRKY transcription factor genes, as reported
by Chen et al., 2014, are key players in carbohydrate metabolism, fatty acid metabolism,
oxidative phosphorylation, and defense and signal transduction pathways [30]. It has
also been reported that respiratory burst oxidase genes are involved in the regulation of
transcription, transport of organic acids and metal cations, carbohydrate metabolism, and
photosynthesis-antenna proteins [31]. Heat shock protein genes were shown to be critical in
transcription regulation, metabolism, and signal transduction in stress and defense-related
pathways [32]. In interactions between plants and pathogens, the significance of cysteine
protease genes in the biosynthesis of phenylpropanoids and defense mechanisms was
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explored [33] through the extensive identification and characterization of the differential
expression during biotic and abiotic stresses [34].

One of the most harmful diseases to affect wheat (Triticum aestivum) worldwide is
known as stripe rust or yellow rust disease and is brought on by Puccinia striiformis f.
sp. tritici (Pst). Pst leads to a substantial decrease in grain quality and in yield [35]. For
long-term field resistance, one aspect is to thoroughly understand the molecular-level inter-
action mechanisms between wheat and Pst, elucidating how wheat responds to stripe rust
infection at the molecular level. This study, from the perspective of m6A RNA methylation,
combined RNA-seq (RNA sequencing) and MeRIP-seq (methylated RNA immunoprecipi-
tation sequencing) analyses to understand the changes in gene expression levels and m6A
modifications in wheat–Pst compatible interaction. Expression level changes in m6A regu-
lators of wheat at various time points were also investigated, exploring how m6A-mediated
post-transcriptional regulation affects the Pst-infected wheat, emphasizing a further com-
plexity to the interactions in the pathosystem. We identified the genes going through m6A
methylation transcriptional regulations in many of the above pathways, introducing an
additional level of understanding to the changes in the expression levels.

2. Results
2.1. Transcriptome Profile of Wheat under Compatible Pst Interactions

To understand how the wheat transcriptome responds to attack by Puccinia striiformis
f. sp. tritici (Pst) and how it is modified in such an interaction, this study used the Chinese
yellow rust race, CYR32 (a virulent Pst race on many wheat cultivars in China [36]), to
inoculate Avocet/Yr7, creating a compatible interaction model. The total RNA extracted
from 7 dpi inoculated and CK samples were utilized for next-generation sequencing (NGS)
as input samples, followed by an in-depth analysis of the sequencing data (Figure 1A). The
phenotype of inoculated wheat leaves compared to CK showed slight chlorosis with the
infection sites exhibiting necrotic, chlorotic flecks and blotches and, only in a few, sporadic
sporulation (Figure 1B,C). The successful infection was verified with the expression, and
the accumulation of the protein synthesis elongation factor 1 gene, PsEF1, belonging to Pst
was verified with consistency across two biological replicates (Figures 1D and S1A).

RNA-seq data from two biological replicates each from CK and infected samples,
after filtering for adapters (Table S1), quality control (Table S2), and removal of rRNA
(Table S3), were aligned to the wheat reference genome (IWGSC CS RefSeq v2.1, https:
//www.ncbi.nlm.nih.gov/datasets/genome/GCF_018294505.1 (accessed on 10 September
2023)) (Table S4), producing approximately 37–61 million reads for each of the four samples.
Principal component analysis (PCA) of the four samples, considering the distribution of
sample points along PC1 and PC2, showed that I-1_In and I-2_In were closely related, as
were CK-1_In and CK-2_In (Figure 2A). Pearson correlation analysis of the four samples,
shown in a heatmap (Figure 2B), revealed that both the correlation coefficient between
I-1_In and I-2_In and between CK-1_In and CK-2_In exceeded 0.9. Integrating the PsEF1
expression data from the two biological replicates (Figure 1D), the sequencing quality
control, and genome alignment results (Tables S1–S4), along with the PCA and Pearson
correlation analysis (Figure 2A,B), we demonstrated the reproducibility of the data, which
are suitable for further analysis.

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_018294505.1
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_018294505.1
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Figure 1. An overview of the experimental setup in wheat after Pst infection, integrating MeRIP-
seq, RNA-seq, and qRT-PCR with phenotype analysis. (A) Schematic of the experimental workflow 
for MeRIP-seq, RNA-seq, and qRT-PCR in CK and Pst-infected wheat leaves. This diagram illus-
trates the step-by-step procedure adopted for analyzing both mock inoculation wheat leaves (CK) 
and Pst-infected wheat leaves (infected) at 7 dpi using NGS technology. The workflow highlights 
the incorporation of the MeRIP technique to selectively isolate m6A-modified RNA fractions for 
subsequent sequencing. (B) The phenotype of CK and infected wheat seedlings with Pst infection at 
7 dpi. The CK wheat leaves showed no visible symptoms, but the infected wheat leaves showed 

Figure 1. An overview of the experimental setup in wheat after Pst infection, integrating MeRIP-seq,
RNA-seq, and qRT-PCR with phenotype analysis. (A) Schematic of the experimental workflow for
MeRIP-seq, RNA-seq, and qRT-PCR in CK and Pst-infected wheat leaves. This diagram illustrates
the step-by-step procedure adopted for analyzing both mock inoculation wheat leaves (CK) and
Pst-infected wheat leaves (infected) at 7 dpi using NGS technology. The workflow highlights the
incorporation of the MeRIP technique to selectively isolate m6A-modified RNA fractions for subse-
quent sequencing. (B) The phenotype of CK and infected wheat seedlings with Pst infection at 7 dpi.
The CK wheat leaves showed no visible symptoms, but the infected wheat leaves showed chlorotic
patches and blotches. (C) The magnification of CK and infected wheat leaves in the dotted box in (B).
(D) sqRT-PCR assay of PsEF1 in CK and infected wheat leaves at 7 dpi.
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Figure 2. Comprehensive analysis of RNA-seq data from CK and infected wheat samples at 7 dpi. 
(A) Principal component analysis (PCA) of CK groups (green dots) and infected groups (yellow 
triangles) with two biological replicates each in RNA-seq. (B) Heatmap of Pearson correlation coef-
ficients across four samples. The gradient of colors, transitioning from white to dark blue, represents 
the correlation strength between each pair of samples, with darker shades indicating stronger cor-
relations. (C) Numbers of differentially expressed genes (DEGs) in wheat after Pst infection with 
|Log2 (FC)| > 1 and FDR (false discovery rate) < 0.05. (D) Heatmap of DEGs with 20 clusters. Rows, 
individual mRNA transcripts; columns, individual CK and infected samples. Red and blue repre-
sent up-regulation and down-regulation of mRNA levels in CK and infected samples, respectively. 
(E) Volcano plot showing up-regulated genes (red) and down-regulated genes (blue) in wheat with 

Figure 2. Comprehensive analysis of RNA-seq data from CK and infected wheat samples at 7 dpi.
(A) Principal component analysis (PCA) of CK groups (green dots) and infected groups (yellow
triangles) with two biological replicates each in RNA-seq. (B) Heatmap of Pearson correlation
coefficients across four samples. The gradient of colors, transitioning from white to dark blue,
represents the correlation strength between each pair of samples, with darker shades indicating
stronger correlations. (C) Numbers of differentially expressed genes (DEGs) in wheat after Pst
infection with |Log2 (FC)| > 1 and FDR (false discovery rate) < 0.05. (D) Heatmap of DEGs with
20 clusters. Rows, individual mRNA transcripts; columns, individual CK and infected samples. Red
and blue represent up-regulation and down-regulation of mRNA levels in CK and infected samples,
respectively. (E) Volcano plot showing up-regulated genes (red) and down-regulated genes (blue)
in wheat with Pst infection. The gene ID and corresponding gene descriptions for the three most
significantly up-regulated genes as well as the three most significantly down-regulated genes are
provided.
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2.2. Most Differentially Expressed Genes (DEGs) in Wheat Were Induced by Pst Infection, while a
Significant Decrease Was Observed in Genes Related to Photosynthesis

Expression levels were first presented as a raw read count, which indicates the number
of reads corresponding to a transcript. However, the raw read count is influenced by
sequencing depth and gene length, making it unsuitable for comparing differential gene
expression across samples. To ensure accuracy in subsequent analyses, we normalized the
sequencing depth, gene, or transcript length to obtain the TPM (transcript per kilobase
per million mapped reads) for each gene in four samples before further analysis (Table S5).
Without considering the FDR (false discovery rate), comparing TPM values of infected
and CK samples revealed a fold change (FC), with log2(FC) > 0 indicating 69,083 genes
with up-regulation in the infected sample and log2(FC) < 0 indicating 28,424 genes with
down-regulation. After further filtering for genes with |log2(FC)| > 1 and FDR < 0.05, the
differentially expressed genes (Table S6) were identified, 4100 up-regulated and 1814 down-
regulated genes (Figure 2C), showing that most differentially expressed genes in wheat
were induced by the pathogen.

Hierarchical clustering was performed on the expression patterns of 5914 differen-
tially expressed genes (Table S7), categorizing them into 20 clusters, and the clustering
results are displayed in the heatmap (Figure 2D). These genes, with similar expression
patterns, may have common functions or be involved in the same metabolic pathways
and signaling pathways. Among them, cluster No. 20, which is enriched with the
highest number of differentially expressed genes, involves 1010 genes that are in the
pathogen-infected samples. Within these 1010 genes, 13 genes are annotated in the KEGG
pathway as a “plant-pathogen interaction”, including Calmodulin (TraesCS1B03G1255400,
TraesCS5B03G0150400, TraesCS7B03G1109900, TraesCS7D03G1164400), NBS-LRR disease
resistance protein (TraesCS1A03G0059400, TraesCS7D03G0011300), pathogenesis-related
protein 1 (TraesCS5B03G1087600, TraesCS7D03G0450000), 3-ketoacyl-CoA synthase
(TraesCS4A03G0012800), calcium-dependent protein kinase (TraesCS4A03G0728000), cyclic
nucleotide-gated channel (TraesCS5D03G0900900), protein kinase family protein
(TraesCS6B03G0271200), and chaperone protein htpG family protein (TraesCS7A03G1288100),
indicating genes related to calcium ion channel regulation in plant immunity, showing a
degree of a coordinated response to combat Pst invasion.

The significantly expressed genes with up- and down-regulations in comparison to
CK are presented in the volcano plot with FDR values. Many of the genes appear within
the fold change values of 1 < |log2(FC)| < 5, having relatively low FDR values, with
highly credible differential changes. The three most significantly up-regulated genes are
TraesCS4B03G0119300, TraesCS5B03G1087600, and TraesCS5D03G0710500LC; the most sig-
nificantly down-regulated genes are TraesCS1A03G0499300, TraesCS5D03G0016200LC, and
TraesCS6D03G0396800 (Figure 2E). Among the up-regulated genes, TraesCS5B03G1087600,
a pathogenesis-related protein 1 (PR1), is considered an important defense protein. The
production and accumulation of plant PR proteins are key responses to various biotic
and abiotic stresses [37]. The two most significantly down-regulated genes are related to
photosynthesis. In summary, wheat RNA expression was mostly up-regulated by Pst.

Differential genes were mapped to terms in the Gene Ontology (GO) database (http:
//www.geneontology.org/ (accessed on 11 October 2022)) as a molecular function, cellular
component, and biological process. This mapping allowed for the determination of the
number of differentially expressed genes per term, yielding lists of differential genes as-
sociated with specific GO functions. A hypergeometric test was then applied to identify
GO terms significantly enriched among the differentially expressed genes in comparison to
the background, resulting in 3204 terms enriched in biological process, 1611 in molecular
function, and 540 in cellular component (Tables S8–S10). The top twenty enriched GO
terms are presented in a GO enrichment circle plot (Figure 3A), with fifteen items enriched
in biological process and five in molecular function. Each GO term predominantly fea-
tured more up-regulated than down-regulated genes, consistent with the overall changes
observed in differentially expressed genes. Specifically, the biological process GO terms

http://www.geneontology.org/
http://www.geneontology.org/
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GO:0016054 (organic acid catabolic process), GO:0046395 (carboxylic acid catabolic process),
and GO:0044282 (small molecule catabolic process) and the molecular function GO terms
GO:0016853 (isomerase activity) and GO:0016829 (lyase activity) showed a lower q-value
and a higher rich factor, contributing to high significance. Due to fewer entries in the cellu-
lar component, this GO term was not noticeable in the enrichment circle plot. Therefore,
the top 20 enriched items under cellular component were further highlighted (Figure 3B),
showing clear enrichment in terms such as “plastid”, “chloroplast”, and “thylakoid”, indi-
cating a relation to photosynthesis. To compare the ratio of up-regulated to down-regulated
genes within the main GO terms of biological process, molecular function, and cellular
component (Table S11), a GO enrichment bar chart was created (Figure 3C). Integrating
RNA-Seq data analysis, 24 annotations for 35 genes were identified in the GO term related
to the “immune system process”, elucidating the interplay of genes involved in plant
immune/defense mechanisms against pathogens (Table 1. In most GO terms, the number
of up-regulated differential genes exceeded that of down-regulated ones, except for a few
terms where down-regulated genes were more numerous: GO:0032991 (macromolecular
complex), GO:0044422 (organelle part), GO:0099512 (supramolecular fiber), GO:0009295
(nucleoid), GO:0031012 (extracellular matrix), GO:0044420 (extracellular matrix compo-
nent), GO:0005198 (structural molecule activity), GO:0045735 (nutrient reservoir activity),
and GO:0045182 (translation regulator activity).

Table 1. List of 24 annotations for 35 genes in the GO term related to “immune system process” using
RNA-Seq data.

Annotations/Description/Gene Symbol Gene ID Regulation

UDP-glucose: glycoprotein glucosyltransferase (UGGT) TraesCS1A03G0409400
TraesCS1D03G0377700 Up

Lectin receptor kinase (LECRK91) TraesCS1B03G1249300
TraesCS1D03G1014400 Up

Receptor-like protein kinase, putative, expressed (CRK6) TraesCS2B03G0583500 Up
GRAM domain family protein (VAD1) TraesCS2B03G0620400 Up
Cyclic nucleotide-gated channel (CNGC4) TraesCS3A03G0774300 Up
Calreticulin (CRT3) TraesCS3A03G0936700 Up

Pathogenesis-related protein PR-4 (PR4A, PR4B)
TraesCS3A03G1217600
TraesCS3B03G1460900
TraesCS3D03G1160600

Up

Glutamate decarboxylase (SPL) TraesCS3B03G0229400
TraesCS3D03G0168800 Up

MACPF domain protein (CAD1) TraesCS3D03G0628000 Up

Pheophorbide a oxygenase, chloroplastic (PAO) TraesCS4A03G1017200
TraesCS4B03G0809700 Up

Receptor protein kinase, putative (RLK7) TraesCS5A03G0031900 Up
Cysteine protease (CCP2) TraesCS5B03G0553900 Up
Aminotransferase-like protein (OAT) TraesCS5D03G0861400 Up
Pleiotropic drug resistance ABC transporter (ABCG48) TraesCS5D03G0992800 Up
E3 ubiquitin-protein ligase (ATL6) TraesCS6A03G0290200 Up

Alcohol dehydrogenase, putative (CAD2)
TraesCS6A03G0429300
TraesCS6B03G0520600
TraesCS6D03G0363400

Up

Allene oxide cyclase (AOC) TraesCS6B03G1030800
TraesCS6D03G0731500 Up

BZIP transcription factor protein (BZIP50) TraesCS7A03G0964400 Up
MACPF domain-containing protein (MACPF) TraesCS7B03G0282300 Up
WRKY transcription factor (WRKY28) TraesCS7D03G1174900 Up
GTPase Der (FZL) TraesCS1A03G0630100 Down
Apolipoprotein D (CHL) TraesCS2D03G1058400 Down

NAD(P)H-quinone oxidoreductase subunit N (ndhN)
TraesCS3A03G0952700
TraesCS3B03G1089400
TraesCS3D03G0886900

Down

Telomere-associated protein (RIF1) TraesCS7A03G0315600 Down
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Figure 3. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment analysis of differentially expressed genes (DEGs) identified based on the RNA-seq data
from CK and Pst-infected wheat leaves. (A) GO enrichment circle diagram of differentially expressed
genes (DEGs). From outer circle to inner circle: Circle 1: The top 20 enriched GO terms of DEGs, and
the coordinate scale outside the circle is the number of DEGs. Yellow and blue represent the GO
terms of biological process and molecular function, respectively. Circle 2: The background of DEGs
enriched in each GO term. The greater the number of DEGs, the longer the bar, and the smaller the
q-value, the redder the color. Circle 3: The bar of the proportion of up-regulated (dark purple) and
down-regulated (light purple) DEGs. The specific values are shown below. Circle 4: The rich factor
value of each GO term (the number of DEGs divided by the total number of genes in the GO term);
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each grid line of the background grid represents 0.1. (B) Bubble chart illustrating the top 20 enriched
GO terms in the cellular component category of DEGs based on q-value, with GO term ID and
annotation on the y-axis and rich factor on the x-axis. (C) The histogram of level 2 GO terms
enrichment classification of DEGs in infected samples in comparison to CK samples. The histogram
depicts the number of up-regulated (in red) and down-regulated (in green) genes in each GO term.
(D) KEGG pathway enrichment circle diagram of DEGs. From outer circle to inner circle: Circle 1: The
top 20 enriched A class KEGG pathways of DEGs, and the coordinate scale outside the circle is the
number of DEGs. Yellow represents the KEGG pathway of metabolism. Circle 2: The background of
DEGs enriched in each pathway. The greater the number of DEGs, the longer the bar, and the smaller
the q-value, the redder the color. Circle 3: The bar of the proportion of up-regulated (dark purple)
and down-regulated (light purple) DEGs enriched in each pathway. The specific values are shown
below. Circle 4: The rich factor value of each pathway (the number of DEGs divided by the total
number of genes in the pathway); each grid line of the background grid represents 0.1. (E) Bubble
chart illustrating the top 20 enriched KEGG pathways of DEGs based on q-value, with KEGG term
annotation on the y-axis and rich factor on the x-axis.

Pathway analysis based on KEGG (Kyoto Encyclopedia of Genes and Genomes), a
major public database for pathways, aids in further understanding the biological functions
of genes. Pathway significance enrichment analysis uses KEGG pathways as units and
applies a hypergeometric test to identify pathways significantly enriched among the dif-
ferential genes in comparison to the entire background. This analysis can determine the
primary biochemical metabolic and signal transduction pathways in which the genes are
involved (Table S12), enriching a total of 121 KEGG A class pathways, with 97 annotated as
metabolism. The list of the “plant-pathogen interaction pathway” through RNA-Seq data
and KEGG revealed 18 annotations for 80 genes, highlighting the dynamic battle where
increased pathogen virulence exerts selective pressure on plants to enhance or alter their
immune/defense mechanisms (Table 2). The top 20 enriched KEGG pathways are pre-
sented in a KEGG enrichment circle plot (Figure 3D), and those with the smallest q-values
are depicted (Figure 3E). Notably, the pathway KO00196 (photosynthesis-antenna proteins)
had the highest rich factor, and all the enriched genes were significantly down-regulated.
In summary, following infection by Pst, wheat’s transcriptome was predominantly up-
regulated, with fewer pathways of down-regulated genes. In particular, genes related to
photosynthesis were notably and comprehensively down-regulated.

Table 2. List of 18 annotations for 80 genes in the KEGG “plant-pathogen interaction pathway” using
RNA-Seq data.

Annotations/Description/Gene Symbol Gene ID Regulation

Glycerol kinase (GLPK) TraesCS2B03G1367900,
TraesCS2D03G1154600 Up

Cysteine proteinase (CCP1)

TraesCS2A03G0676600,
TraesCS2D03G0630100,
TraesCS5A03G0791200,
TraesCS5B03G0823900,
TraesCS5D03G0747200

Up

Calmodulin, putative (CML27, CML37, CML4)
TraesCS1B03G1255000,
TraesCS1B03G1255400,
TraesCS5A03G0918000

Up

Heat shock protein 90 (HSP81-1) TraesCS7A03G0555500,
TraesCS7D03G0537900 Up

Cyclic nucleotide-gated channel (CNGC2) TraesCS5D03G0900900 Up
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Table 2. Cont.

Annotations/Description/Gene Symbol Gene ID Regulation

Chaperone protein htpG family protein (HSP90-5, HSP90)

TraesCS5B03G0646100,
TraesCS5D03G0595900,
TraesCS7A03G1288100,
TraesCS7B03G1204400,
TraesCS7D03G1221800

Up

Calcium-dependent protein kinase (CPK15, CPK9, CPK10, CPK8, CPK4)

TraesCS1D03G0995500,
TraesCS4A03G0728000,
TraesCS5A03G1009700,
TraesCS5B03G1055900,
TraesCS5D03G0955400,
TraesCS5B03G1159600,
TraesCS5D03G1051900,
TraesCS6A03G0203200,
TraesCS6B03G0271200

Up

WRKY transcription factor (WRKY24)

TraesCS1A03G0172500,
TraesCS1A03G0743700,
TraesCS1B03G0235500,
TraesCS1B03G0848500,
TraesCS1D03G0166900,
TraesCS1D03G0711800

Up

Kinase family protein (PTI13) TraesCS2D03G0794500 Up

Respiratory burst oxidase (RBOHA, RBOHC, RBOHE)

TraesCS3A03G0705100,
TraesCS4B03G0848700,
TraesCS5A03G1171300,
TraesCS5D03G0694900,
TraesCS5B03G0560500,
TraesCS5D03G0519000,
TraesCS6D03G0366700

Up

Calcium-binding protein (CML19, CML27, CML36, CML5, CML21, CML8,
CML25)

TraesCS3B03G1378700,
TraesCS4B03G0485600,
TraesCS5A03G0382400LC,
TraesCS5B03G0150400,
TraesCS5B03G0370400,
TraesCS5D03G0789100,
TraesCS7B03G1109900,
TraesCS7B03G1175200,
TraesCS7D03G1164400

Up

Pathogenesis-related protein 1-1 (PRMS)

TraesCS5A03G0484700,
TraesCS5A03G1037300,
TraesCS5A03G1037400,
TraesCS5B03G0483900,
TraesCS5B03G1087600,
TraesCS5D03G0980700,
TraesCS5D03G0980800,
TraesCS7D03G0362800,
TraesCS7D03G0450000

Up

RPM1-interacting protein 4 (RIN4) TraesCS7A03G0593800 Up

NBS-LRR disease resistance protein, putative, expressed (RPM1, RPP13L4,
PIK-2, PIK6-NP)

TraesCS1A03G0059400,
TraesCS1D03G0032300,
TraesCS2D03G0030700,
TraesCS2D03G1070500,
TraesCS3D03G0966800,
TraesCSU03G0241100,
TraesCS1D03G0036500,
TraesCS7B03G0033000,
TraesCS7D03G0011300

Up
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Table 2. Cont.

Annotations/Description/Gene Symbol Gene ID Regulation

Disease resistance protein (NBS-LRR class) (RPS2)
TraesCS2A03G0930000,
TraesCS2B03G1021500,
TraesCS2D03G0868500

Up

3-ketoacyl-CoA synthase (FDH, KCS20, CUT1, KCS11)

TraesCS4A03G0012800,
TraesCS4A03G0046100,
TraesCS4B03G0728500,
TraesCSU03G0063000LC,
TraesCS7D03G0827800

Up

Mitogen-activated protein kinase (MPK5) TraesCS4A03G0218300 Up

Elongation factor Tu (TUFA) TraesCS6B03G0694200,
TraesCS6D03G0480200 Down

2.3. The Landscape of m6A Methylome in Pst-Infected Wheat Leaves

Methylated RNA immunoprecipitation (MeRIP) is based on the principle of recogniz-
ing and binding m6A-modified RNA with m6A-specific antibodies, enriching methylated
fragments through RNA immunoprecipitation, and combining this with high-throughput
sequencing to study regions of RNA undergoing m6A methylation modification across
the entire transcriptome (Figure 1A). Partial RNA from four samples for RNA-seq, CK-1,
CK-2, I-1, and I-2, underwent enrichment and elution with m6A-specific antibodies for
MeRIP-seq analysis. After filtering low-quality data and adapters (Table S13), quality
control (Table S14), and removal of rRNA (Table S15), the data were aligned to the wheat
reference genome (Table S16), resulting in approximately 41–54 million reads for each of
the four samples. Peak analysis identified regions and sites of RNA with m6A modification
across the whole genome. Using the R package exomePeak2 [38], peak scanning (peak
calling) was conducted on a group basis across the genome with a default threshold of
p-value < 0.05. This was followed by the analysis of the genomic location of peaks, peak
region sequence information, and annotation of genes (Tables S17 and S18), leading to the
screening and annotation of peak-associated genes (Tables S19 and S20).

Principal component analysis (PCA) was performed using uniquely mapped reads,
specifically by dividing the genome into 10 kb windows, counting the number of reads in
each window, and reducing the read counts across all windows to a few principal compo-
nents. PCA of the four MeRIP-seq samples, considering the distribution of sample points
along PC1 and PC2, showed that I-1_In and I-2_In were closely related, as were CK-1_In
and CK-2_In (Figure 4A). A heatmap was generated with the pairwise sample correlation
using uniquely mapped reads by dividing the genome into 10 kb windows, counting the
number of reads in each window, and then calculating the Pearson correlation coefficient
for read counts across all windows. The Pearson correlation coefficients for both I-1_In
vs. I-2_In and CK-1_In vs. CK-2_In were greater than 0.9. A higher correlation coefficient
indicated a higher similarity in RNA methylation patterns between samples (Figure 4B).
Integrating the PsEF1 expression data from the two biological replicates (Figure 1D), the
sequencing quality control, genome alignment, and peak calling results (Tables S13–S20),
along with the PCA and Pearson correlation analysis (Figure 4A,B), demonstrated repro-
ducibility among biological replicates, high sequencing quality, and alignment accuracy,
making the MeRIP-seq sequencing data suitable for further analysis.
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Figure 4. Comprehensive analysis of MeRIP-seq data from CK and infected wheat samples at 7 dpi.
(A) Principal component analysis (PCA) of CK groups (green dots) and infected groups (yellow
triangles) with two biological replicates each in MeRIP-seq. (B) Heatmap of Pearson correlation
coefficients across four samples in MeRIP-seq. The color from blue to red represents the correlation
from weak to strong. (C) Distribution and density of m6A peaks of CK sample and infected sample
within 5′UTR (untranslated region), CDS (coding sequence), and 3′UTR. (D) Motif analysis of
enriched RRACH and DRACH (R is A/G, H is A/U/C and D is A/G/U) conserved motifs for m6A
peaks in wheat from CK and Pst-infected samples. (E) Numbers of differentially m6A-modified peaks
(DMPs) in wheat after Pst infection with |log2(FC)| > 1 and p-value < 0.05. (F) Volcano plot showing
up-regulated (red) and down-regulated (blue) m6A peak-related genes in wheat after Pst infection.
The gene ID and corresponding gene descriptions for the three most significantly up-regulated
peak-related genes as well as the three most significantly down-regulated peak-related genes are
provided.

In CK and infected samples, the number of peaks was 15,249 and 17,864, respectively
(Table S21); the infected ones not only showed a higher number of peaks in comparison
to CK but also a greater chromosomal peak coverage (Figure S2). Further analysis of
the distribution of peaks in the 5′ UTR (untranslated region), start codon, CDS (coding
sequence), stop codon, and 3′ UTR (Figure 4C and Figure S3) showed that the number
of peaks in infected samples was higher across different gene functional elements in
comparison to CK, with the largest increases observed at the 5′ UTR and start codon, which
were 40.34% and 30.37%, respectively. The smallest increase was in the 3′ UTR at 11.78%,
but the changes in the 3′ UTR peaks were concentrated in the middle position of the 3′
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UTR. Meanwhile, the peak distribution in this study shows a similar m6A modification
distribution to other plant species, regardless of whether they are monocots or dicots,
whether in fruits or other tissues or under some stress conditions [39].

The m6A modification is the most prevalent internal modification in eukaryotic mRNA,
with m6A methylation being highly conserved, typically embedded in conserved consensus
sequences like 5’-DRACH-3’ and 5’-RRACH-3’ (D = G/A/U, R = G/A, H = A/U/C). The
frequency distribution of specific motifs (RRACH, DRACH) within all peaks across all
samples was analyzed using HOMER to construct average base frequency matrices. In CK
sample two, in the infected sample, three significant motifs were identified, two of which
were very similar to the two motifs found in the control sample. A particular motif emerged
as a unique methylation site motif, GTACAA, which might specifically be determined
by Pst (Figure 4D). We found that 6174 genes with this motif were methylated in our
experiments. These genes associated with disease resistance include RPP13-like, RGA2-like
EDR2L, putative RGA1, and RPM1-like. Similarly, genes related to the immune response,
including those involved in the immune system and effector processes, such as WD repeat-
containing protein 7, RRP44A, MACPF domain-containing protein, and numerous others
like Histone acetyltransferase and IAN9 (immune-associated nucleotide-binding protein 9),
are essential for the robust functioning of the immune system. These genes were identified
in a sample infected with Pst having the GTACAA motif, which is a novel methylation
site linked to this pathogen. The discovery of this unique methylation motif indicates a
specific epitranscriptional response to Pst infection, suggesting a sophisticated mechanism
of plant–pathogen interaction and defense regulation (Figure 4D, Table S22).

2.4. The Majority of Wheat Genes Associated with Differentially Methylated Peaks (DMPs)
Showed Hyper-Methylation in Response to Pst

RNA-seq data from “CK” and “Infected” samples (Table S5) and peak data (Tables S19
and S20) were merged, resulting in 22,629 merged peaks and their peak-related gene
expression counts and annotations across the four sequencing samples (Table S23). TPM and
p-values were further calculated. The filtering criteria of |log2(FC)| > 1 and p-value < 0.05
identified differentially expressed genes associated with differentially methylated peaks
(DMP-related genes) (Table S24), totaling 1804 DMP-related genes. Of these, 1167 were up-
regulated DMP-related genes (indicating hyper-methylation) and 518 were down-regulated
DMP-related genes (indicating hypo-methylation) (Figure 4E), suggesting that most DMP-
related genes exhibit a trend towards hyper-methylation upon Pst infection.

Volcano plot analysis was conducted for DMP-related genes comparing infected
samples to CK samples (Figure 4F). The volcano plot displays the situation of differentially
expressed DMP-related genes, with genes closer to edges showing greater differences.
DMP-related genes around |log2(FC)| = 10 had relatively lower FDR values, indicating
more credible and significant changes. The three most significantly hyper-regulated genes
were TraesCS3B03G1139000, TraesCS2A03G0079700, and TraesCS7D03G0606900; the most
significantly hypo-regulated genes were TraesCS1A03G0058100, TraesCS7D03G0910600,
and TraesCS1A03G0605600 (Figure 4F). Among the significantly hypo-regulated genes,
TraesCS1A03G0058100 is annotated as a putative NBS-LRR disease resistance protein. To
our knowledge, this may be the first report of an NBS-LRR gene showing hypo-methylation
after Pst–wheat compatible interaction, suggesting that the m6A mechanism could directly
regulate key genes, such as resistance genes, in plant immunity.

DMP-related genes were enriched in the GO categories of biological process, cellu-
lar component, and molecular function, with respective counts of 2838, 571, and 1274
(Tables S25–S27). The top 20 enriched GO terms, all from the biological process category
(Table S25), were presented in a GO enrichment circle plot (Figure 5A), with a relatively
high rich factor for GO:0006767 (water-soluble vitamin metabolic process), GO:1901607
(alpha-amino acid biosynthetic process), and GO:0008652 (cellular amino acid biosyn-
thetic process) and a relatively low q-value for GO:1901564 (organonitrogen compound
metabolic process), GO:0044711 (single-organism biosynthetic process), and GO:0044283
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(small molecule biosynthetic process). The top 20 entries under the cellular component
category (Table S26) showed enrichment as in the RNA-seq cellular component results,
with DMP-related genes enriched in GO cellular component annotations related to photo-
synthesis, such as “chloroplast”, “plastid”, “thylakoid”, and “stroma” (Figure 5B). Further
analysis of the quantity and annotations of DMP-related genes in the main GO terms
of biological process, cellular component, and molecular function (Table S28) led to the
creation of a GO enrichment bar chart (Figure 5C).
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MeRIP-seq data from Pst-infected wheat leaves in comparison to CK samples. (A) GO enrichment
circle diagram of differentially m6A-modified peak (DMP)-related genes. From outer circle to inner
circle: Circle 1: The top 20 enriched GO terms of DMP-related genes, and the coordinate scale outside
the circle is the number of DMP-related genes. Yellow represents the GO term of biological process.
Circle 2: The background of DMP-related genes enriched in each GO term. The greater the number
of DMP-related genes, the longer the bar, and the smaller the q-value, the redder the color. Circle 3:
The number of DMP-related genes enriched in each GO term. Circle 4: The rich factor value of
each GO term (the number of DMP-related genes divided by the total number of genes in the GO
term); each grid line of the background grid represents 0.1. (B) Bubble chart illustrating the top
20 enriched GO terms in the cellular component category of DMP-related genes based on q-value,
with GO term ID and annotation on the y-axis and rich factor on the x-axis. (C) The histogram of level
2 GO terms enrichment classification of DMP-related genes in infected samples in comparison to CK
samples. (D) KEGG pathway enrichment circle diagram of DMP-related genes. From outer circle to
inner circle: Circle 1: The top 20 enriched A class KEGG pathways of DMP-related genes, and the
coordinate scale outside the circle is the number of DMP-related genes. Yellow and pink represent
the KEGG pathways of metabolism and genetic information processing, respectively. Circle 2: The
background of DMP-related genes enriched in each pathway. The greater the number of DMP-related
genes, the longer the bar, and the smaller the q-value, the redder the color. Circle 3: The number of
DMP-related genes enriched in each pathway. Circle 4: The rich factor value of each pathway (the
number of DMP-related genes divided by the total number of genes in the pathway); each grid line of
the background grid represents 0.1. (E) Bubble chart illustrating the top 20 enriched KEGG pathways
of DMP-related genes based on q-value, with KEGG term annotation on the y-axis and rich factor on
the x-axis.

Significant enrichment in KEGG pathways identifies the primary biochemical metabolic
and signal transduction pathways involved by DMP-related genes (Table S29), enriching a
total of 115 KEGG A class pathways, with 84 annotated as metabolism. The top 20 enriched
KEGG pathways are presented in the KEGG enrichment circle plot (Figure 5D); those with
the smallest q-values are depicted in a bubble chart (Figure 5E). In the KEGG enrichment
circle plot, sixteen entries were enriched in metabolism and four in genetic information
processing. The bubble chart shows that aside from the first 14 pathways with q-values
less than 0.05 indicating significance, the q-values of other enriched pathways were greater
than 0.05, suggesting lower significance. The pathways with higher enrichment factors and
smaller q-values include KO00860 (porphyrin metabolism), KO00920 (sulfur metabolism),
KO00030 (pentose phosphate pathway), KO00410 (beta-alanine metabolism), KO00280
(valine, leucine, and isoleucine degradation), and KO00300 (lysine biosynthesis). This
suggests that in wheat, upon compatible interaction with stripe rust, these pathways of
secondary metabolism were regulated by the m6A mechanism, thereby affecting wheat’s
growth and development.

2.5. Association Analysis of DEGs and DMP-Related Genes in Pst-Infected Leaves in Comparison
to CK

To further clarify the relationship between gene expression levels and m6A modifica-
tions, an analysis was conducted based on the number of genes (Table S5) and the number
of peaks (Table S23) detected in both CK and infected samples from combined RNA-seq
and MeRIP-seq data, leading to Figure 6A. Comparing the number of m6A modification
peaks between CK and infected samples, there were 11,685 common peaks, 3565 unique
peaks in CK samples, and 6179 unique peaks in infected samples, showing an approximate
73% increase in peak types, indicating that m6A modifications increase due to infection
(Figure 6A, left panel). Further analysis of the number of genes associated with these peaks
revealed 11,727 common genes, 2928 unique genes in CK samples, and 5313 unique genes
in infected samples (Figure 6A, right panel). Typically, one or more peaks map to a gene,
so the number of genes associated with peaks is less than the number of peaks. In this
study, the total number of peaks in CK and infected samples was 21,428, with 19,968 genes
associated with peaks, aligning with the expected mapping ratio between peaks and genes



Plants 2024, 13, 982 16 of 29

(Figure 6A). However, the number of common genes is slightly higher than the number
of common peaks, possibly because most peaks are not regulated upon Pst infection asso-
ciated with genes having only one m6A modification peak, leading to a similar count of
common genes and peaks. Also, a gene may have multiple transcripts, and if a peak maps
to an overlapping part of a transcript, it could be associated with multiple transcripts, thus
increasing the count of common genes over common peaks. Interestingly, the number of
genes associated with peaks in both CK and infected samples is significantly lower than the
number of peaks, suggesting that genes associated with unique peaks are more likely to be
regulated by more than one m6A modification. Genes modified by multiple peaks are more
likely to be involved in response to the Pst pathogen, and their numbers are substantial,
indicating that the transcriptome is extensively regulated by the m6A mechanism by the
pathogen.

Table 3. List of 48 genes that exhibit a significant differentiation in both m6A-modified peaks and
transcript abundance in Pst-infected wheat leaves in comparison to CK.

Gene ID, Strand a Description b Pattern c Peak
Annotation d

Peak
Start e

Peak
End f

IP_
L2FC g

In_
L2FC h

TraesCS6B03G0561000, + Cytochrome P450 family
protein Hyper-up 5′, start, CDS 284010639 284010814 5.01 1.64

TraesCS1D03G0829400, − Chaperone DnaJ Hyper-up stop, 3′ 440701051 440701101 4.64 4.02
TraesCS2B03G0935100, − Malate synthase Hyper-up start, CDS 526103000 526103125 4.48 4.57
TraesCS5B03G0999600, + Chitinase Hyper-up start, CDS 583600714 583600764 4.50 3.12

TraesCS7A03G1159700, + Ferredoxin--NADP
reductase 2 Hyper-up start, CDS 676526476 676526576 4.23 2.61

TraesCS3A03G0941700, − Tropinone reductase-like
protein Hyper-up 5′, start, CDS 647714736 647714861 4.87 3.22

TraesCS4D03G0669200, − DUF1997 family protein Hyper-up start, CDS 453670930 453670980 4.48 3.28
TraesCS5A03G0935200, − Cysteine protease, putative Hyper-up 5′, start, CDS 588519570 588519733 6.03 5.66
TraesCS3B03G0133200, − D-Ala-D/L-Ala epimerase Hyper-up start, CDS 39875470 39875545 5.02 3.99
TraesCS5B03G0752100, − Serine aminopeptidase S33 Hyper-up 5′, start, CDS 479815861 479816011 4.64 4.80

TraesCS1D03G0951700, + GDP-mannose-3’,5’-
epimerase Hyper-up 5′ 474501754 474501829 4.19 3.12

TraesCS2D03G0725900, + Kinesin-like protein Hyper-up stop, 3′ 407828185 407828373 6.57 3.53

TraesCS3D03G0726600, + 3-hydroxyacyl-CoA
dehydrogenase Hyper-up stop, 3′ 434958844 434958919 4.51 1.83

TraesCS4A03G0035700, − plant/protein Hyper-up start, CDS 13580848 13580923 4.77 1.69

TraesCS5D03G0513000, + Jasmonate zim-domain
protein Hyper-up start, CDS 331598315 331598415 4.73 2.48

TraesCS2A03G0387200, + vacuolar sorting-associated
protein Hyper-up CDS 153236044 153236119 4.14 2.20

TraesCS3B03G0090100, + Nuclease S1 Hyper-up 5′, start, CDS 24977420 24977620 4.13 2.69
TraesCS1B03G0217600, + AAA+ ATPase Hyper-up start, CDS 75657827 75657977 4.38 1.63

TraesCS2B03G1234100, − Amine oxidase family
protein Hyper-up 5′ 695509349 695509524 4.68 1.63

TraesCS2D03G0901800, − SPX domain-containing
protein Hyper-up stop, 3′ 509963790 509963915 4.27 2.57

TraesCS2D03G0880500, − Aldehyde dehydrogenase Hyper-up stop, 3′ 493975195 493975320 4.19 2.57

TraesCS1A03G0652200, + Pyruvate phosphate
dikinase Hyper-up stop, 3′ 446585467 446585567 4.43 4.06

TraesCS7D03G0606900, + Peptidylprolyl isomerase Hyper-down start, CDS 254192941 254192991 3.17 −1.75
TraesCS3B03G1139000, + Alpha/beta hydrolase Hyper-down CDS 720605293 720605423 2.39 −1.57
TraesCS3B03G1515300LC, + P-loop NTPase Hypo-up CDS, stop 847160574 847160674 −1.53 1.80
TraesCS7D03G0910600, + ABC transporter Hypo-up start, CDS 502724870 502724945 −3.19 2.70
TraesCS3A03G0325200, + GDSL esterase/lipase Hypo-up CDS, stop 131460529 131460623 −3.15 1.80
TraesCS3A03G0354000, + Cytochrome P450, putative Hypo-up CDS 155007091 155007221 −1.50 1.98

TraesCS1D03G0777100, + Cysteine protease family
protein Hypo-up 5′, start 421851652 421851802 −2.47 3.29

TraesCS1A03G0652400, − Pyruvate phosphate
dikinase Hypo-up start, CDS 447084657 447084809 −1.59 1.71

TraesCS6B03G0574100, − CASP-like protein Hypo-up 5′, start, CDS 296054675 296054825 −2.69 1.97

TraesCS5A03G0517600, − Homeobox protein,
putative Hypo-up 5′ 404317960 404318085 −2.37 2.24

TraesCS1B03G0741000, + Pyruvate phosphate
dikinase Hypo-up 5′, start 471557711 471557786 −1.85 2.48

TraesCS1B03G0574200, − Glutathione S-transferase Hypo-up 5′, start, CDS 355708499 355708549 −2.56 1.52
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Table 3. Cont.

Gene ID, Strand a Description b Pattern c Peak
Annotation d

Peak
Start e

Peak
End f

IP_
L2FC g

In_
L2FC h

TraesCS1D03G0954900, + Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 475689826 475689876 −2.17 −3.10

TraesCS2D03G0959100, − Cold-responsive
proteinWCOR15 Hypo-down 5′, start, CDS 540101549 540101599 −3.47 −2.90

TraesCS5D03G1027900, − Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 511061211 511061286 −1.67 −3.89

TraesCS1D03G0729600, − Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 405463983 405464083 −2.37 −3.47

TraesCS1B03G1053300, + Chlorophyll a/b binding
protein Hypo-down start, CDS 629357113 629357163 −3.85 −3.69

TraesCS6A03G0217100, + Chlorophyll a/b binding
protein Hypo-down start, CDS 64267362 64267412 −2.64 −3.37

TraesCS5B03G1135900, − Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 638614728 638614778 −2.47 −3.18

TraesCS1B03G1053200, + Chlorophyll a/b binding
protein Hypo-down start, CDS 629262631 629262681 −3.97 −3.86

TraesCS5D03G1027800, − Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 511058147 511058297 −3.14 −3.25

TraesCS1A03G0988100, + Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 569868615 569868715 −4.36 −3.34

TraesCS1D03G0873500, − Chlorophyll a/b binding
protein Hypo-down CDS 454772861 454772911 −4.66 −3.19

TraesCS1A03G0761900, − Chlorophyll a/b binding
protein Hypo-down 5′, start, CDS 500100318 500100462 −5.01 −3.65

TraesCS1B03G0871200, − Chlorophyll a/b binding
protein Hypo-down 5′, start 549194399 549194449 −3.22 −3.48

TraesCS2D03G0286600LC,
−

RING/U-box superfamily
protein Hypo-down start, CDS 82356920 82356989 −2.24 −3.05

a The numbers and letters in bold in wheat gene names represent the chromosome where the gene is located.
Wheat genes come from the sense strand (+) or antisense strand (−) of DNA; b gene descriptions come from
WheatOmics (http://wheatomics.sdau.edu.cn/ (accessed on 13 February 2024)) or UniProtKB (https://www.
uniprot.org/uniprotkb (accessed on 13 February 2024)); c The pattern indicates whether the m6A-modified peak
of the differential gene is hyper-methylated or hypo-methylated and whether the transcript is up-regulated or
down-regulated. The background colors are pink for hyper-up, purple for hyper-down, yellow for hypo-up, and
green for hypo-down. d Distribution of m6A-modified peaks on different gene functional elements. “5′ “is 5′

untranslated region (UTR), “start” is start codon, “CDS” is coding sequence, “stop” is stop codon, and “3′ “is
3′ UTR. e The starting position of the m6A-modified peak in the chromosome; f the termination position of the
m6A-modified peak in the chromosome. g In MeRIP-seq (IP) analysis, the fold change (FC) of m6A-modified
peaks in infected samples relative to the CK is calculated and then subjected to log2 transformation (L2); h in
RNA-seq (Input, In) analysis, the fold change (FC) of transcripts in infected samples relative to the CK is calculated
and then subjected to log2 transformation (L2). The colors distinguish the genes showing differential patterns of
regulation: pink for hyper-up, purple for hyper-down, yellow for hypo-up, and green for hypo-down, the same
color scheme was used in Figure 6C.

To further correlate m6A modification with gene expression, a co-differential gene
analysis was conducted. This involved combining differentially expressed genes from
RNA-seq (Table S6) with differential m6A peaks from MeRIP-seq (Table S24) together
(Table S30). By using a filter criterion that required |log2(FC)| > 1 in both RNA-seq
and MeRIP-seq, an FDR < 0.05 in RNA-seq data, and a p-value < 0.05 in MeRIP-seq
data, a total of 1242 significant co-differential genes were filtered (Table S31). A quadrant
volcano plot allows for the presentation of the expression level and the methylation level
changes together (Figure 6B). The largest group consisted of 642 genes with significant
hyper-methylation and up-regulated gene expressions. Following this, 556 genes showed
significant hypo-methylation with down-regulated expression. Additionally, 34 genes had
significant hypo-methylation with up-regulated expression, and 10 genes had significant
hyper-methylation with down-regulated expression.

http://wheatomics.sdau.edu.cn/
https://www.uniprot.org/uniprotkb
https://www.uniprot.org/uniprotkb
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Figure 6. Conjoint analysis of MeRIP-seq and RNA-seq data. (A) Dual Venn diagrams of m6A-
modified peaks and their corresponding genes in CK and infected samples. Left: numbers of unique
peaks in CK and infected samples, along with common peaks. Right: numbers of these peaks
represent genes of the two groups. (B) A four-quadrant diagram illustrating significant changes in
DEGs and DMP-related genes, comparing infected samples to CK. |log2(FC)| > 1 in both MeRIP-seq
and RNA-seq; FC is fold change. (C) Bar chart and heat map of the hyper-up, hyper-down, hypo-up,
and hypo-down genes are shown in Table 3.

To focus deeper on the annotation information and function of markedly co-differentiated
genes, the filtering criteria were further tightened by adjusting |log2(FC)| > 1.5 in both
RNA-seq and MeRIP-seq data, FDR < 0.05 in RNA-seq data, and a p-value < 0.05 in MeRIP-
seq data. Under these new settings, 346 genes were identified in the hyper-up category,
212 in hypo-down, 10 in hypo-up, and 2 in hyper-down. For genes in the hyper-up and
hypo-down categories, the ones with the lowest FDR and p-value were further selected.
A total of 48 genes are presented in Table 3, along with gene IDs, annotations, expression
patterns, peak distributions, peak start positions, IP_log2(FC) values, and Input_log2(FC)
values. The expression levels of these 48 genes and the |log2(FC)| from MeRIP-seq are
displayed as histograms, and |log2(TPM + 1)| from RNA-seq are shown as heatmaps in
Figure 6C. Unlike the genes in the hyper-up category, the overall expression level of signifi-
cantly up-regulated genes in the hypo-up category was lower across the transcriptome. In
the hypo-down category, except for TraesCS1D03G0954900 and TraesCS2D03G0286600LC,
the other 12 significant co-differential genes were annotated as chlorophyll a/b binding
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proteins. Overall, this study found that by stripe rust invasion, most genes in wheat re-
sponded in a hyper-up manner, consistent with the observation that most genes in RNA-seq
were up-regulated and most genes in MeRIP-seq showed hyper-methylation. A notable
discovery was that photosynthesis-related genes, possibly due to the secretion of effectors
or other pathogenic factors from Pst, might be involved in the regulation of the wheat
m6A mechanism, leading to hypo-methylation modifications, decreased expression of
photosynthesis-related genes, and impaired photosynthesis function, thus affecting basic
biomolecular metabolism and secondary metabolite production, further reducing the wheat
resistance to stripe rust and resulting in successful invasion.

2.6. Divergent Expression Dynamics of m6A Regulators in Response to Pst Invasion

Since previous research rarely focused on the expression changes in m6A regulators in
the wheat–Pst pathosystem, we further analyzed the expression patterns of m6A regulators
in RNA-seq and MeRIP-seq data. According to a review by Yue et al., (2019) [40], which
analyzed and annotated 90 wheat m6A regulator genes, including 20 m6A writers, 29 m6A
erasers, and 41 m6A readers (Table S32), 28 of these m6A regulator genes were detectable in
our RNA-seq and MeRIP-seq data, consisting of 12 m6A writers, 5 m6A erasers, and 11 m6A
readers (Figure 7A). We further combined the average of TPM + 1 from two biological
replicates of CK and infected samples in RNA-seq and MeRIP-seq and created a heatmap
after converting to log2(TPM + 1) (Figure 7A). The heatmap shows that these 28 m6A
regulator genes exhibit a variety of different expression patterns, whether they are m6A
writers, m6A erasers, or m6A readers, or in terms of their expression patterns in RNA-seq
and MeRIP-seq, indicating that the m6A regulatory mechanism in wheat–Pst interactions is
complex and diverse. However, it is still possible to observe that some m6A regulator genes
have relatively similar expression patterns in both RNA-seq and MeRIP-seq data, as well as
in terms of expression levels, such as TaHAKAI1-A and TaHAKAI1-B among m6A writers,
TaALKBH3B and TaALKBH4B among m6A erasers, and TaECT21 and TaECT31 among m6A
readers. To further understand the temporal changes of m6A regulators after virulent
Pst infection, we selected four writers, two erasers, and three readers for time-dependent
expression analysis (Figure 1A). To test the changes in expression levels of m6A regulators
after Pst infection, wheat materials without infection were collected as CK (also noted
as 0 dpi) and at 0.25, 1, 4, 7, and 10 dpi after infection, with three biological replicates
each. sqRT-PCR (semi-quantitative reverse transcription and polymerase chain reaction)
products of the PsEF1 gene in each sample showed that the infection was successful, with
the intensity of the bands increasing over time and consistent across the three biological
replicates (Figure 7B). To determine the relative expression levels of the PsEF1 gene, the
intensity of the bands in Figure 7B was analyzed using ImageJ (Figures 7C and S1B). In the
early stages of infection (0.25, 1 dpi), the expression levels of PsEF1 were lower, indicating
no significant proliferation of Pst, but to some extent, transcriptomic activity was already
present due to the formation of haustoria. As the infection progressed, the amplification of
PsEF1 significantly increased, reflecting the clear increase in the biomass of stripe rust with
the duration of infection, indicating the successful colonization in the host by overcoming
its immune system.

Figure 7D–L show the relative expression levels of nine m6A regulators over time as
the infection progresses using the qRT-PCR (Real-Time Quantitative Reverse Transcription
PCR) assay, revealing that different m6A regulators exhibit various dynamic response
patterns during the wheat response to Pst infection. For the two eraser genes, TaALKBH11B
and TaALKBH4B (Figure 7H,I), it was observed that TaALKBH11B showed a clear response
and induced expression in the early and initial stages of infection (0.25, 1, 4 dpi), while
TaALKBH4B was clearly responsive and induced expression during the colonization phase
(7, 10 dpi) of Pst inoculation. The three m6A reader genes detected all showed lower
relative expression levels at 1 dpi (Figure 7J–L), which may be due to the lower response of
m6A writer genes at 1 dpi (Figure 7D,F,G), indicating that the expression of m6A readers is
subject to feedback regulation by the function of m6A writers. Unlike other writer genes,
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TaFIP37-2D continuously increased its induced expression throughout the infection stages
(Figure 7E).
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and RNA-seq data in CK and infected samples. The color scale within the dendrogram represents
the log2(TPM + 1) of each m6A regulator gene. Gene names in bold were further analyzed in (D–L).
(B) Agarose gel (2.5%) electrophoresis displaying the sqRT-PCR products of PsEF1 in Pst-infected
wheat leaves collected from 0 (CK), 0.25, 1, 4, 7, 10 dpi with three biological replicates. (C) Quantitative
analysis of band intensity for sqRT-PCR products of PsEF1, as depicted in (B). Intensity values of all
samples are normalized against the intensity value of the 0.25 dpi sample. (D–L) Relative expression
levels of m6A regulators in Pst-infected wheat determined by RT-PCR. Each panel corresponds
to a different m6A regulator gene: (D) TaVIR-D, (E) TaFIP37-2D, (F) TaVIR-A, (G) TaHAKAI1-A,
(H) TaALKBH11B, (I) TaALKBH4B, (J) TaECT25, (K) TaECT31, and (L) TaECT21. Expression levels are
normalized to those detected in the CK (0 dpi). The small case letters on the bars of the figures refer
to the relative expression levels.

3. Discussion

This study combines RNA-seq and MeRIP-seq to analyze genes with significant
differences in mRNA and m6A modifications in wheat after compatible Pst interaction
transcriptome-wide. We also examined the temporal changes in wheat m6A regulators
after Pst infection through qRT-PCR analysis (Figure 1A). From the perspective of m6A
regulation, this study elucidates how wheat responds to Pst infection and how stripe rust
interferes with wheat growth, metabolism, and immune pathways to successfully colonize.
This research provides an important theoretical basis for understanding the disruption of
m6A regulatory mechanisms and the genes regulated by the m6A mechanism during the
infection process of biotrophic fungi in plants.

Regarding the omics studies on the interaction between Pst and wheat, with the
development of sequencing technologies, improved genome assembly and annotation
for wheat [41] and Pst (https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=27350
(accessed on 15 February 2024)) have led to the accumulation of data. Our research
previously reviewed some of the transcriptome, microarray, and proteome omics analyses
of wheat and Pst, analyzing potential Pst effector candidates [42,43]. Recently, the study of
the pan-genome of Pst has laid the foundation for the population genetics and comparative
genomics research of the Pst population [44]. Currently, dual RNA sequencing seems
more suitable for samples that cannot be separated from the host wheat after Pst infection.
This sequencing technology uses unique molecular identifier (UMI) tags for sequencing,
which involves several more rounds of amplification of the reverse-transcribed templates
than other sequencing methods. This approach optimizes the issue where plant RNA is
abundant and pathogen RNA is relatively less abundant and harder to detect in plant
samples after pathogen infection [45]. It is known that RNA has over 100 modifications,
with m6A methylation being the most common modification in eukaryotic mRNA. Studies
have found that m6A modification is involved in plant responses to biotic or abiotic stress,
but there have been no reports on wheat response to Pst infection in this aspect. Therefore,
this study combines RNA-seq and MeRIP-seq data to analyze the RNA response and m6A
modification in wheat after virulent infection with stripe rust.

Research on photosynthesis and its related genes in the interaction between stripe
rust and wheat has been reported from various perspectives. Chen et al. (2015) [46]
found that after infection by stripe rust, resistant wheat had higher levels of D1 protein
and light-harvesting complex II (LHCII) accumulation compared to susceptible wheat.
The light-harvesting antenna protein CP29 in both resistant and susceptible wheat was
phosphorylated under stripe rust infection, with more significant phosphorylation in re-
sistant wheat. The thylakoid membranes in susceptible wheat suffered more extensive
damage [46]. In this study, we also found a significant decrease in the expression of many
light-harvesting antenna protein genes. Wang et al. (2019) discovered that the peripheral
protein of photosystem II, PsbO, could be regulated by phosphorylation by a protein kinase
WKS1 encoded by YR36, inhibiting ascorbate peroxidase, leading to the accumulation of
substrate hydrogen peroxide, initially inhibiting the growth of the pathogen. Subsequently,
photosystem II, without the protection of PsbO, acts as a source of hydrogen peroxide

https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=27350
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production in the broad-spectrum disease resistance process, inhibiting the reproduction
of stripe rust and demonstrating plant resistance [47]. During the normal photosynthesis
process, zeaxanthin epoxidase 1 (ZEP1) can transfer singlet oxygen to zeaxanthin, produc-
ing violaxanthin, avoiding the accumulation of reactive oxygen species and protecting the
photosynthetic system. Chang et al. (2023) found that ZEP1 mutation could inhibit the
growth of stripe rust, promote the accumulation of reactive oxygen species at the invasion
site, and significantly enhance wheat resistance [48]. Xu et al. (2019) discovered that the
effector protein Pst_12806 could be transported to chloroplasts, where it interacts with the
Rieske structure of the plant cytochrome b6f protein subunit TaISP (iron–sulfur protein),
weakening the electron transfer capability of the TaISP Rieske domain during photosyn-
thesis, thereby disrupting plant photosynthesis, inhibiting chloroplast-mediated reactive
oxygen species, and further promoting pathogen colonization in the plant [49]. In this study,
we found three genes of Rieske-type iron–sulfur protein enriched in the level 2 GO term
annotated as an immune system process, and their m6A modifications showed significant
changes after stripe rust infection. Andac et al. (2020) also identified a stripe rust effector,
PstCTE1, which, despite lacking a clear conserved transport signal peptide as predicted
by TargetP and ChloroP, was found to localize in chloroplasts regardless of whether the
N-terminus was tagged [50]. The discovery of Pst effectors Pst_12806 and PstCTE1 suggests
that disrupting host wheat photosynthetic machinery proteins is one of the strategies for
Pst to infect the host. The above research on photosynthesis-related mechanisms in the
interaction between stripe rust and wheat mostly focused on post-translational modifica-
tions. In contrast, this study provides new insights into the level of post-transcriptional
regulation, specifically m6A modification of RNA. We found that photosynthesis-related
genes with m6A modifications mostly showed hypo-methylation after stripe rust infection
(Table S24), particularly among the most significantly hypo-methylated genes, most of
which are related to photosynthesis (Figure 5B, Tables 1 and S28). Thus, on one hand, the
expression of photosynthesis-related genes may decrease, leading to a reduction in related
proteins, and on the other hand, the regulation of m6A modifications may also interfere
with the translation level of related proteins, ultimately leading to reduced photosynthesis,
decreased substance accumulation, and increased plant susceptibility. Further research
on photosynthesis and plant immunity is needed at the molecular level. Photosynthe-
sis is a complex and precise regulatory mechanism, and genetic modification of a few
photosynthesis-related genes might enhance disease resistance. However, the balance of
the photosynthesis mechanism itself is easily disturbed and broken. Since photosynthesis
is closely related to yield and specific agricultural practices do not wish to sacrifice yield
for increased disease resistance, seeking a balance between the two is necessary.

4. Materials and Methods
4.1. Plant Materials and Pst Inoculation

The wheat cultivar MingXian169 (MX169) was cultivated in a growth chamber with a
light intensity of 200 µmol·m−2·s, temperature maintained at 18 ◦C, and humidity at 80%.
The light–dark cycle was set at 16 h of light and 8 h of darkness. When MX169 reached
the two-leaf stage with fully expanded leaves, it was used for inoculation with Pst spores.
Spores of Chinese yellow rust race CYR32 stored at −80 ◦C were used, and they were
incubated in a 42 ◦C water bath for 10 min. Wheat leaves were sprayed with 2 mg/mL of
Novec 7100, followed by the inoculation of spores. Infected MX169 were kept in darkness
at 12 ◦C with 100% humidity for 1 d, then transferred to a growth chamber under normal
conditions. After 2 weeks, the leaves showed abundant fresh spores, which were used
to inoculate wheat cultivar Avocet/Yr7 (Avocet/Yr7 the stripe rust Avocet differential
lines were originally generated by C.R. Wellings of Plant Breeding Institute, Narrabri,
Australia). Inoculation conditions were the same as those for MX169. Infected Avocet/Yr7
were collected at 0.25, 1, 4, 7, and 10 dpi. Avocet/Yr7 only sprayed with 2 mg/mL of Novec
7100 solution without inoculation were used as control (CK) samples. Three biological
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replicates were collected for both CK and infected samples with different time points and
then stored at −80 ◦C for subsequent RNA extraction.

4.2. RNA Extraction and Library Construction for RNA-Seq and MeRIP-Seq

Total RNA was extracted from samples stored at −80 ◦C using the TRIzol reagent (Life
Technologies, Carlsbad, CA, USA, cat15596026) with the user guide of the manufacturer
involving the homogenization of leaf tissue, phase separation with chloroform, RNA
precipitation, and purification. Extracted RNA quality was assessed using the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), ensuring suitability for
library preparation and sequencing. Then, mRNA enriched by Oligo(dT) magnetic beads
was fragmented into short fragments using a fragmentation buffer. Fragmented RNA
was divided into two parts, one of which was used as the input (no immunoprecipitation
experiment was performed). The other RNA enriched with an m6A-specific antibody
was used as the IP. The input RNA and IP RNA were reversely transcribed into cDNA
with random primers using NEBNext® UltraTM RNA Library Prep Kit for Illumina (New
England Biolabs, MA, USA catE7530). Next, the cDNA fragments were end-repaired, “A”
base-tailed, and ligated to Illumina sequencing universal adapters. Finally, the qualified
cDNA library with PCR amplification was sequenced using Illumina Novaseq6000 by
GENE DENOVO Biotechnology Co., Ltd. (Guangzhou, China).

4.3. Data Analysis of Sequencing

In preprocessing RNA-seq and MeRIP-seq raw data, FASTQ v0.18.0 [51] was employed
as a trimming adapter, filtering reads exceeding 10% N content, removing poly A sequences,
and discarding low-quality reads. High-quality clean reads were aligned to the species ribo-
some database using Bowtie2 [52], with ribosomal RNA reads subsequently removed, and
HISAT2 [53] was used for genome alignment. Differential gene expression was identified
using criteria of FDR < 0.05 and |log2(FC)| > 1, classifying genes with significant changes
in expression. PCA was performed with the R package models (http://www.r-project.org/
(accessed on 8 October 2022)). Differential RNA methylation was analyzed with Diff-
Bind v1.20.0 [54], identifying peaks as significantly differential with p-value < 0.05 and
|log2(FC)| > 1. StringTie v1.3.1 was utilized to assemble RNA-seq data from each sample
against a known genome [55,56]. RSEM calculated TPM (transcript per kilobase per million
mapped reads) values to quantify RNA transcript expression levels, enabling accurate
across-sample comparisons [57]. GO [58] (http://www.geneontology.org/ (accessed on
11 October 2022)) and KEGG [59] enrichment was analyzed to clarify the function of dif-
ferentially expressed genes. Using MACS2 [60] (version 2.1.2), read-enriched regions in
MeRIP-seq data were identified through a dynamic Poisson distribution, defining peaks
with a q-value < 0.05 and retaining those with over 50% overlap in at least two of the biolog-
ical duplicates for further analysis. By analyzing the genomic location and gene annotation
of peaks, related genes were confirmed, and the distribution of peaks across functional
regions like 5′ UTR, CDS, and 3′ UTR was assessed [61]. Motif analysis was performed by
HOMER [62], and significant motif identification in peak-associated transcripts was carried
out by the MEME Suite (http://meme-suite.org/meme/ (accessed on 6 October 2022))
and DREME (http://meme-suite.org/tools/dreme (accessed on 6 October 2022)). The
clustering heatmap (http://cloud.oebiotech.com/task/detail/heatmap/?id=31 (accessed
on 11 February 2024)) and quadrant image (www.omicstudio.cn/tool/31 (accessed on 21
January 2024)) were formed using online software.

4.4. sqRT-PCR and qRT-PCR

After adjusting the concentration of RNA extracted from CK and 0.25, 1, 4, 7, and
10 dpi infected samples were ensured to be the same as 350 ng/µL. The genomic DNA
was removed and synthesis of the first cDNA strand was performed according to the
specifications of SweScript RT II First Strand cDNA Synthesis Kit (Servicebio, Wuhan
China catG3333). A 10 µL genome removal reaction mixture was prepared with 8 µL RNA
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adjusted to 350 ng/µL, 1 µL 10×gDNA remover buffer, and 1 µL gDNA remover, lightly
mixed and briefly centrifuged, then incubated at 37 ◦C for 2 min and placed on ice for
later use. Then, 20 µL reverse transcription reaction mixture was prepared, including
10 µL genome removal mixture, 3 µL nuclease-free water, 4 µL 5 × reaction buffer, 1 µL
100 µmol/L oligo (dT)18 primer, 1 µL 100 µmol/L random hexamer primer, and 1 µL
SweScript RT II enzyme mix, lightly mixed and briefly centrifuged, then incubated at 25 ◦C
for 5 min, 55 ◦C for 15 min, and 85 ◦C for 5 s. The synthesized cDNA was stored at −20 ◦C.

A 20 µL sqRT-PCR mixture was prepared, which included 1 µL cDNA of each sample
as a template, 10 µL 2 × Fast sTaq PCR master mix (Servicebio, Wuhan China catG3304),
0.8 µL 10 µM forward primer, 0.8 µL 10 µM reverse primer, and 7.4 µL nuclease-free water.
The primers for gene PsEF1 (Puccinia striiformis elongation factor 1, accession number:
KNE93481) are shown in Table S33. After being gently mixed and briefly centrifuged,
the sqRT-PCR mixture was denatured at 95 ◦C for 2 min, then 30 cycles were amplified
according to the setting of “denaturation at 95 ◦C for 10 s, annealing at 57 ◦C for 30 s,
extension at 72 ◦C for 10 s” and finally extended at 72 ◦C for 10 min. Then, 5 µL of PCR
product was loaded on 2.5% agarose gel containing 4S Green Plus Nucleic Acid Stain, and
electrophoresis was performed using the setting “100 V, 45 min”. Grey-scale analysis of
electrophoresis images was performed by ImageJ to indicate the relative expression level of
PsEF1 in each sample.

A 15 µL qRT-PCR mixture was prepared, which contained 1 µL cDNA of each sample
as a template, 7.5 µL universal blue SYBR green qPCR master mix (Servicebio, Wuhan
China G3326), 0.3 µL of 10 µM forward primer, 0.3 µL 10 µM reverse primer, and 5.9 µL
nuclease-free water. The primers of reference gene TaEF1α (Triticum aestivum elongation
factor 1 alpha, accession number: Q03033) and m6A regulator genes are shown in Table S33.
After the qRT-PCR mixture was gently mixed and briefly centrifuged, it was placed in
the CFX Connect fluorescent quantitative PCR detection system. The detection mode was
adjusted to SYBR, and the denaturation was set at 95 ◦C for 30 s, and then 45 cycles were
amplified according to the program of “denaturation at 95 ◦C for 15 s, annealing and
extension at 60 ◦C for 30 s”. Finally, the melting curve was made at intervals of 0.5 ◦C
for 5 s between 65 ◦C and 95 ◦C to determine the specificity of PCR amplification. Then,
the amplified gene name, sample name, and operation repetition for each reaction well
were set in CFX Maestro v2.2, and TaEF1α was set as the reference gene. The relative
expression levels of each tested gene were calculated by the 2−∆∆Ct method [63]. Each test
was repeated five times.

5. Conclusions

In the differential gene analysis of RNA-seq, we found that among the significantly
up-regulated 4100 genes (Figure 2C), 1010 wheat genes had similar expression patterns
after stripe rust infection (Figure 2D, Table S7), including 18 genes annotated in the KEGG
pathway as “Plant-pathogen interaction”, indicating that disease-resistance-related genes
synergistically respond to resist the stripe rust assault. Among these eighteen genes, two
are NBS-LRR disease resistance proteins (TraesCS1A03G0059400, TraesCS7D03G0011300),
with TraesCS1A03G0059400 annotated in UniProt as disease resistance protein RPM1 and
TraesCS7D03G0011300 as Rx N-terminal domain-containing protein. Two of them are
pathogenesis-related protein 1 (TraesCS5B03G1087600, TraesCS7D03G0450000), and also,
a significantly up-regulated PR1 gene was found among the overall up-regulated genes
(Figure 2E), indicating that the TaPR1 gene is indeed an important gene in response to stripe
rust, worthy of further research [37]. Six genes are annotated as “Calmodulin”, “Calcium-
dependent protein kinase”, and “Cyclic nucleotide-gated channel”, indicating that calcium
regulation plays a significant role in plant immune responses to affect the invasion of
pathogens. Additionally, among the genes with the most significant decrease in m6A
modification, we found that the most significantly down-regulated TraesCS1A03G0058100
is annotated as an NBS-LRR disease-resistance protein. NBS-LRR genes play a crucial role
in plant resistance against pathogens. This might be the first report of NBS-LRR genes
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showing hypo-methylation after infection in a Pst–wheat compatible interaction, suggesting
that the m6A mechanism can directly regulate key genes in the plant immune pathway and
affect the plant response to pathogens.

We observed how host wheat actively responds to stripe rust infection through the
perspective of up-regulated genes suppressing the host wheat immune system for the
successful invasion and colonization of Pst. We also turned our attention to the analysis of
down-regulated genes. Among these genes, the two most significantly down-regulated
are related to photosynthesis: TraesCS1A03G0499300 (protein PAM68, chloroplast) and
TraesCS5D03G0016200LC (photosystem I assembly protein Ycf4). When we further analyzed
the overall significantly up-regulated and down-regulated genes in the enrichment of GO
terms and KEGG pathways (Figure 3), we found that in the cellular component category
of GO terms, there were strikingly multiple photosynthesis-related GO terms (Figure 3B,
Table S10). Similarly, in the KEGG pathway enrichment, KO00196 (photosynthesis-antenna
proteins) had the highest rich factor and the lowest q-value, with all 80 enriched genes
being down-regulated (Figure 3D,E). This indicates that after compatible Pst infection,
the photosynthesis-related genes in host wheat were significantly disrupted, and their
regulatory levels were disturbed. The reduction in photosynthesis affects the accumulation
of substances within the plant and the regulatory level of secondary biomass metabolism,
as we also found that the regulatory levels of pathway genes in basic metabolism and sec-
ondary metabolism were reduced (for example, KO00710: carbon fixation in photosynthetic
organisms; KO00630: glyoxylate and dicarboxylate metabolism) (Figure 3D,E). This may
lead to a reduction in wheat resistance during the early stage of stripe rust infection. In
the later stages of infection, the reduction in photosynthesis and substance accumulation
forces the Pst to absorb nutrients from the host nearby leaf tissue, further expanding the
invasion and colonization of Pst.

Additionally, this study also focused on the expression changes in m6A regulators in
wheat after stripe rust infection. Among the 90 wheat m6A regulator genes summarized
and annotated by Yue et al. (2019) [40], 28 m6A regulator genes were detected in this
study (Figure 7A), indicating that these m6A regulator genes are closely associated with
the response to stripe rust infection and are involved in m6A regulation. At the same
time, the m6A modification levels of some m6A regulator genes themselves also showed
significant changes after infection, such as hyper-methylation in TaECT21 and TaECT31 and
hypo-methylation in TaHAKAI1-A and TaHAKAI1-B. This suggests that the regulation of
m6A modification by m6A regulators is also under the control of the m6A mechanism, im-
plying that the m6A mechanism is a precisely regulated biological process. The regulatory
genes show time-point-dependent expressions; different genes have divergent dynamic
response patterns, suggesting that the m6A methylation mechanism dynamically responds
to the infection process. It is noticed that at 1 dpi, the expression levels of all tested m6A
readers were lower. The observation is in accordance with the lower expression levels of
m6A writers (Figure 7D–L), which is supported by previous results [40], indicating that
most m6A writer genes also had lower expression levels in the early stages of stripe rust
infection. Using the rust expression browser (http://www.rust-expression.com (accessed
on 24 February 2024)) [64], we examined the expression levels of eight searchable m6A
writer genes (TaVIR-D, TaVIR-A, TaMTA-D, TaMTB-D, TaMTA-B, TaMTB-B, TaFIP37-2D,
TaFIP37-2A) in the wheat variety “Vuka” after infection with Pst isolates 87/66 at 0, 1, 2, 3,
5, 7, 9, and 11 dpi [65] (Figure S4) and found that most m6A writer genes also had lower
expression levels in the early stages of stripe rust infection (2, 3 dpi).

Overall, we have produced an immense amount of data determining the genes under-
going m6A methylation for the first time in the wheat–Pst pathosystem. There is no doubt
that these data will facilitate further in-depth analyses in system biology.

http://www.rust-expression.com
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