Tunisian Silybum Species: Important Sources of Polyphenols, Organic Acids, Minerals, and Proteins across Various Plant Organs
Abstract
:1. Introduction
2. Results
2.1. Mineral Composition in Silybum marianum and Silybum eburneum Organs
2.2. Free Sugar Composition in Silybum marianum and Silybum eburneum Organs
2.3. Organic Acid Contents in Silybum marianum and Silybum eburneum Organs
2.4. Storage Protein Content in the Mature and Immature Seeds of S. marianum and S. eburneum
2.5. Phenolic Profiles and Antioxidant Activities of S. marianum and S. eburneum Organs
2.5.1. Spectroscopy Analysis
2.5.2. Liquid Chromatography Coupled with Mass Spectroscopy Analysis of Phenolic Acid Compounds
2.5.3. The Antioxidant Activities in the Different Parts of S. marianum and S. eburneum
2.6. Statistical Effects of Species, Organs, and Species–Organs Interaction
3. Discussion
4. Materials and Methods
4.1. Plant Collection
4.2. Minerals Analysis
4.3. Soluble Sugar Content
4.4. Organic Acid Content
4.5. Storage Protein Content
4.6. Secondary Metabolite Screening
4.6.1. Extraction of Active Ingredients
4.6.2. Total Polyphenol and Flavonoid Contents
4.6.3. Characterization of Extracts by LC-ESI/MS
4.7. Antioxidant Potential
4.7.1. Total Antioxidant Activity
4.7.2. DPPH Anti-Radical Activity
4.7.3. Reducing Power Potential
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, H. Sustainable Food Systems: Concept and Framework; FAO: Rome, Italy, 2018. [Google Scholar]
- Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. An International Regulatory Review of Food Health-Related Claims in Functional Food Products Labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. Innovation Trends in the Food Industry: The Case of Functional Foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Temple, N.J. A Rational Definition for Functional Foods: A Perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, W.; Abdelhady, S.; Metwaly, S.; Aly, F. Effect of Ethanolic Extract of Silybum marianum L. Gaertn. on Lipid Peroxidation Inhibition and Microbial Count in Minced Beef. Rom. Biotechnol. Lett. 2021, 26, 2773–2778. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: Cambridge, UK, 1964; Volume 1980, pp. 1–5. [Google Scholar]
- Adzet, T.; Iglesias, J.; Martinez, F. Flavonolignans in the Fruits of Silybum Genus Taxa: A Chromatographic and Mass Spectrometric Survey. Plantes Med. Phytother. 1993, 26, 117–129. [Google Scholar]
- Shaheen, A.; Sultana, S.; Lu, H.; Ahmad, M.; Asma, M.; Mahmood, T. Assessing the Potential of Different Nano-Composite (MgO, Al2O3-CaO and TiO2) for Efficient Conversion of Silybum eburneum Seed Oil to Liquid Biodiesel. J. Mol. Liq. 2018, 249, 511–521. [Google Scholar] [CrossRef]
- Gresta, F.; Avola, G.; Guarnaccia, P. Agronomic Characterization of Some Spontaneous Genotypes of Milk Thistle (Silybum marianum L. Gaertn.) in Mediterranean Environment. J. Herbs Spices Med. Plants 2007, 12, 51–60. [Google Scholar] [CrossRef]
- Montemurro, P.; Fracchiolla, M.; Lonigro, A. Effects of Some Environmental Factors on Seed Germination and Spreading Potentials of Silybum marianum Gaertner. Ital. J. Agron. 2007, 2, 315–320. [Google Scholar] [CrossRef]
- Karkanis, A.; Bilalis, D.; Efthimiadou, A. Cultivation of Milk Thistle (Silybum marianum L. Gaertn.), a Medicinal Weed. Ind. Crops Prod. 2011, 34, 825–830. [Google Scholar] [CrossRef]
- Andrzejewska, J.; Sadowska, K.; Mielcarek, S. Effect of Sowing Date and Rate on the Yield and Flavonolignan Content of the Fruits of Milk Thistle (Silybum marianum L. Gaertn.) Grown on Light Soil in a Moderate Climate. Ind. Crops Prod. 2011, 33, 462–468. [Google Scholar] [CrossRef]
- Dodd, J. Phenology and Seed Production of Variegated Thistle, Silybum marianum (L.) Gaertn., in Australia in Relation to Mechanical and Biological Control. Weed Res. 1989, 29, 255–263. [Google Scholar] [CrossRef]
- Sindel, B.M. A Review of the Ecology and Control of Thistles in Australia. Weed Res. 1991, 31, 189–201. [Google Scholar] [CrossRef]
- Ballero, M.; Mura, L.; Maxia, A. Usi Alimentari e Terapeutici Nella Tradizione Popolare Del Goceano (Sardegna Centrale). Atti Della Soc. Toscana Sci. Nat. Resid. Pisa Mem. Ser. B 2007, 114, 45–56. [Google Scholar]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean Non-Cultivated Vegetables as Dietary Sources of Compounds with Antioxidant and Biological Activity. LWT Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef]
- Abu Jadayil, S.; Tukan, S.K.; Takruri, H.R. Bioavailability of Iron from Four Different Local Food Plants in Jordan. Plant Foods Hum. Nutr. 1999, 54, 285–294. [Google Scholar] [CrossRef]
- Dop, M.C.; Kefi, F.; Karous, O.; Verger, E.O.; Bahrini, A.; Ghrabi, Z.; Ati, J.E.; Kennedy, G.; Termote, C. Identification and Frequency of Consumption of Wild Edible Plants over a Year in Central Tunisia: A Mixed-Methods Approach. Public Health Nutr. 2020, 23, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Valorization of Wild Edible Plants as Food Ingredients and Their Economic Value. Foods 2023, 12, 1012. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Díez-Marqués, C.; Molina, M.; Tardío, J. Nutrient Composition of Six Wild Edible Mediterranean Asteraceae Plants of Dietary Interest. J. Food Compos. Anal. 2014, 34, 163–170. [Google Scholar] [CrossRef]
- Tardío, J.; Pardo-De-Santayana, M.; Morales, R. Ethnobotanical Review of Wild Edible Plants in Spain. Bot. J. Linn. Soc. 2006, 152, 27–71. [Google Scholar] [CrossRef]
- Křen, V.; Walterová, D. Silybin and Silymarin—New Effects and Applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005, 149, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Marceddu, R.; Dinolfo, L.; Carrubba, A.; Sarno, M.; Di Miceli, G. Milk Thistle (Silybum marianum L.) as a Novel Multipurpose Crop for Agriculture in Marginal Environments: A Review. Agronomy 2022, 12, 729. [Google Scholar] [CrossRef]
- Li, F.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Han, L.; Yang, L. Chemical Composition, in Vitro Digestibility and Antioxidant Activity of Solid Wastes from the Fruits of Silybum marianum. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 2998–3001. [Google Scholar]
- Apostol, L.; Iorga, S.; Mosoiu, C.; Racovita, R.C.; Niculae, O.M. The effects of partially defatted milk thistle (Silybum marianum) seed flour on wheat flour. Agric. Food 2017, 5, 74–84. [Google Scholar]
- Denev, P.N.; Ognyanov, M.H.; Georgiev, Y.N.; Teneva, D.G.; Klisurova, D.I.; Yanakieva, I.Z. Chemical Composition and Antioxidant Activity of Partially Defatted Milk Thistle (Silybum marianum L.) Seeds. Bulg. Chem. Commun. 2020, 52, 182–187. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Oktay, M.; Gülçin, İ.; Küfrevioğlu, Ö.İ. Determination of In Vitro Antioxidant Activity of Fennel (Foeniculum Vulgare) Seed Extracts. LWT Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Ghafor, Y.; Mohammad, N.N.; Salh, D.M. Extraction and Determination of Chemical Ingredients from Stems of Silybum marianum. Extraction 2014, 6, 26–32. [Google Scholar]
- Tian, L.-M.; Qiu, X.-M.; Pan, Z.-J.; Lü, Y.; Yang, X.-B. Development of a new HPLC technique for analyzing monosaccharide composition and its application in the quality control of Silybum marianum polysaccharide]. Yao Xue Xue Bao 2010, 45, 498–504. [Google Scholar]
- Zhauynbaeva, K.S.; Rakhmanberdyeva, R.K.; Abdurakhmanov, B.A. Polysaccharides from Silybum marianum. Chem. Nat. Compd. 2017, 53, 820–822. [Google Scholar] [CrossRef]
- Eldalawy, R.; Kareem, W.A.; Al-Ani, W.M.K. GC-MS Analysis of Iraqi Silybum Marianum Flowers, Leaves and Seeds Extracts. Al Mustansiriyah J. Pharma Sci. 2020, 20, 93–112. [Google Scholar] [CrossRef]
- Rivasseau, C.; Boisson, A.-M.; Mongélard, G.; Couram, G.; Bastien, O.; Bligny, R. Rapid Analysis of Organic Acids in Plant Extracts by Capillary Electrophoresis with Indirect UV Detection. J. Chromatogr. A 2006, 1129, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Mucha, A.P.; Almeida, C.M.R.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Exudation of Organic Acids by a Marsh Plant and Implications on Trace Metal Availability in the Rhizosphere of Estuarine Sediments. Estuar. Coast. Shelf Sci. 2005, 65, 191–198. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Barreira, J.C.M.; Ferreira, I.C.F.R. Chromatographic Analysis of Organic Acids in Artichoke, Milk Thistle and Borututu Using UFLC-PDA. In 8° Encontro Nacional de Cromatografia; University of Beira Interior: Covilhã, Portugal, 2013; p. 213. [Google Scholar]
- Khan, R.U.; Naz, S.; Raziq, F.; Qudratullah, Q.; Khan, N.A.; Laudadio, V.; Tufarelli, V.; Ragni, M. Prospects of Organic Acids as Safe Alternative to Antibiotics in Broiler Chickens Diet. Environ. Sci. Pollut. Res. 2022, 29, 32594–32604. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild Vegetables of the Mediterranean Area as Valuable Sources of Bioactive Compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Li, F.; Wu, X.; Zhao, T.; Li, F.; Zhao, J.; Yang, L. Extraction, Physicochemical, and Functional Properties of Proteins from Milk Thistle Silybum marianum L. Gaernt Seeds. Int. J. Food Prop. 2013, 16, 1750–1763. [Google Scholar] [CrossRef]
- Sadowska, K.; Andrzejewska, J.; Woropaj-Janczak, M. Effect of Weather and Agrotechnical Conditions on the Content of Nutrients in the Fruits of Milk Thistle (Silybum marianum L. Gaertn.). Acta Sci. Pol. Hortorum Cultus 2011, 10, 197–207. [Google Scholar]
- Zhu, S.; Dong, Y.; Tu, J.; Zhou, Y.; Dai, C. Amino Acid Composition and in Vitro Digestibility of Protein Isolates from Silybum marianum. J. Food Agric. Environ. 2013, 11, 136–140. [Google Scholar]
- Shahat Mohamed, S.; Hussein Ahmed, S.; Hady Essam, A. Preparation of Bread Supplemented with Milk Thistle Flour and Its Effect on Acute Hepatic Damage Caused by Carbon Tetrachloride in Rats. Middle East J. Appl. Sci. 2016, 6, 531–540. [Google Scholar]
- Guemari, F.; Laouini, S.E.; Rebiai, A.; Bouafia, A. Phytochemical Screening and Identification of Polyphenols, Evaluation of Antioxidant Activity and Study of Biological Properties of Extract Silybum marianum (L.). Asian J. Res. Chem. 2020, 13, 190. [Google Scholar] [CrossRef]
- Mhamdi, B.; Abbassi, F.; Smaoui, A.; Abdelly, C.; Marzouk, B. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities. Pak. J. Pharm. Sci. 2016, 29, 953. [Google Scholar] [PubMed]
- Ali, B.; Elsayed, A.; Doheem, M.; Eita, A.; Omar, A. Effect of Milk Thistle (Silybum marianum (L.) Gaertn) Seed Extract on Bacterial Activities and Growth of Human Liver Cancer Cells. J. Biotechnol. Res. 2020, 6, 27–33. [Google Scholar] [CrossRef]
- Lucini, L.; Kane, D.; Pellizzoni, M.; Ferrari, A.; Trevisi, E.; Ruzickova, G.; Arslan, D. Phenolic Profile and in Vitro Antioxidant Power of Different Milk Thistle [Silybum marianum (L.) Gaertn.] Cultivars. Ind. Crops Prod. 2016, 83, 11–16. [Google Scholar] [CrossRef]
- Aziz, M.; Saeed, F.; Ahmad, N.; Ahmad, A.; Afzaal, M.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical Profile of Milk Thistle (Silybum marianum L.) with Special Reference to Silymarin Content. Food Sci. Nutr. 2021, 9, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Benchaachoua, A.; Bessam, H.; Saidi, I. Effects of Different Extraction Methods and Solvents on the Phenolic Composition and Antioxidant Activity of Silybum Marianum Leaves Extracts. Int. J. Med. Sci. Clin. Invent. 2018, 5, 3641–3647. [Google Scholar] [CrossRef]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Anwar, S.; Basir, A. DPPH Free Radical Scavenging Activity and Phenotypic Difference in Hepatoprotective Plant (Silybum marianum L.). Toxicol. Ind. Health 2013, 29, 460–467. [Google Scholar] [CrossRef]
- Meddeb, W.; Rezig, L.; Zarrouk, A.; Nury, T.; Vejux, A.; Prost, M.; Bretillon, L.; Mejri, M.; Lizard, G. Cytoprotective Activities of Milk Thistle Seed Oil Used in Traditional Tunisian Medicine on 7-Ketocholesterol and 24S-Hydroxycholesterol-Induced Toxicity on 158N Murine Oligodendrocytes. Antioxidants 2018, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Zarrouk, A.; Martine, L.; Grégoire, S.; Nury, T.; Meddeb, W.; Camus, E.; Badreddine, A.; Durand, P.; Namsi, A.; Yammine, A.; et al. Profile of Fatty Acids, Tocopherols, Phytosterols and Polyphenols in Mediterranean Oils (Argan Oils, Olive Oils, Milk Thistle Seed Oils and Nigella Seed Oil) and Evaluation of Their Antioxidant and Cytoprotective Activities. Curr. Pharm. Des. 2019, 25, 1791–1805. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Boughalleb, F.; Maaloul, S.; Zaidi, S.; Bakhshandeh, E.; Abdellaoui, R. The Effect of Seasonality on the Phytochemical Composition of Two Limonium Species Naturally Growing in a Mediterranean Arid-Salt Marsh: Harvesting Time Optimization by Modeling Approach. Sci. Hortic. 2023, 309, 111616. [Google Scholar] [CrossRef]
- Maaloul, S.; Abdellaoui, R.; Mahmoudi, M.; Bouhamda, T.; Bakhshandeh, E.; Boughalleb, F. Seasonal Environmental Changes Affect Differently the Physiological and Biochemical Responses of Two Limonium Species in Sabkha Biotope. Physiol. Plant 2021, 172, 2112–2128. [Google Scholar] [CrossRef]
- Osborne, T.B. The Vegetable Proteins; Longmans, Green and Company: London, UK, 1924. [Google Scholar]
- Mahmoudi, M.; Abdellaoui, R.; Boughalleb, F.; Yahia, B.; Bouhamda, T.; Bakhshandeh, E.; Nasri, N. Bioactive Phytochemicals from Unexploited Lotus Creticus L. Seeds: A New Raw Material for Novel Ingredients. Ind. Crops Prod. 2020, 151, 112462. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Abdellaoui, R.; Boughalleb, F.; Yahia, B.; Mabrouk, M.; Nasri, N. Characterization of Lipids, Proteins, and Bioactive Compounds in the Seeds of Three Astragalus Species. Food Chem. 2021, 339, 127824. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Abdellaoui, R.; Feki, E.; Boughalleb, F.; Zaidi, S.; Nasri, N. Analysis of Polygonum aviculare and Polygonum maritimum for Minerals by Flame Atomic Absorption Spectrometry (FAAS), Polyphenolics by High-Performance Liquid Chromatography-Electrospray Ionization–Mass Spectrometry (HPLC-ESI-MS), and Antioxidant Properties by Spectrophotometry. Anal. Lett. 2021, 54, 2940–2955. [Google Scholar] [CrossRef]
- Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS Method Development for the Determination of the Phenolic Compounds of Tunisian Ephedra Alata Hydro-Methanolic Extract and Its Fractions and Evaluation of Their Antioxidant Activities. S. Afr. J. Bot. 2019, 124, 102–110. [Google Scholar] [CrossRef]
- Khan, N.; Choi, J.Y.; Nho, E.Y.; Hwang, I.M.; Habte, G.; Khan, M.A.; Park, K.S.; Kim, K.S. Determination of Mineral Elements in Milk Products by Inductively Coupled Plasma-Optical Emission Spectrometry. Anal. Lett. 2014, 47, 1606–1613. [Google Scholar] [CrossRef]
- Brahmi, F.; Vejux, A.; Sghaier, R.; Zarrouk, A.; Nury, T.; Meddeb, W.; Rezig, L.; Namsi, A.; Sassi, K.; Yammine, A.; et al. Prevention of 7-Ketocholesterol-Induced Side Effects by Natural Compounds. Crit. Rev. Food Sci. Nutr. 2019, 59, 3179–3198. [Google Scholar] [CrossRef]
Na | K | Ca | Mg | Cu | Fe | Mn | ||
---|---|---|---|---|---|---|---|---|
SM | L | 18.7 ± 2.1 A | 39.6 ± 6.3 B | 154.5 ± 6.1 B | 5.1 ± 0.3 A | 0.04 ± 0.01 B | 0.4 ± 0.03 A | 0.07 ± 0.002 A |
S | 19.8 ± 3.3 A | 44.2 ± 8.3 A | 100.5 ± 8.3 C | 3.3 ± 0.2 C | 0.1 ± 0.01 A | 0.2 ± 0.03 C | 0.05 ± 0.003 B | |
Fl | 9.9 ± 0.9 B | 27.2 ± 0.9 C | 166.3 ± 1.0 B | 3.9 ± 0.3 BC | 0.1 ± 0.01 A | 0.3 ± 0.02 B | 0.05 ± 0.003 B | |
M.S | 6.9 ± 6.8 B | 8.1 ± 1.0 D | 114.0 ± 31.7 C | 5.1 ± 0.8 A | 0.1 ± 0.02 A | 0.2 ± 0.03 B | 0.05 ± 0.01 B | |
I.S | 6.8 ± 0.4 B | 11.4 ± 0.4 D | 326.9 ± 9.1 A | 4.5 ± 0.3 AB | 0.1 ± 0.01 A | 0.2 ± 0.02 B | 0.06 ± 0.01 B | |
SE | L | 50.9 ± 3.3 a | 56.3 ± 11.1 b | 224.6 ± 30.0 a | 24.2 ± 5.4 a | 0.05 ± 0.01 ab | 0.3 ± 0.1 a | 0.1 ± 0.004 a |
S | 58.3 ± 17.8 a | 103.4 ± 22.5 a | 178.9 ± 18.3 a | 21.0 ± 2.6 ab | 0.02 ± 0.001 b | 0.2 ± 0.02 a | 0.1 ± 0.01 a | |
Fl | 64.9 ± 3.4 a | 93.6 ± 5.7 a | 230.2 ± 21.7 a | 13.5 ± 1.8 c | 0.1 ± 0.02 a | 0.3 ± 0.1 a | 0.1 ± 0.01 a | |
M.S | 41.4 ± 8.8 a | 54.7 ± 8.1 b | 106.9 ± 28.3 b | 16.1 ± 0.7 bc | 0.1 ± 0.03 a | 0.3 ± 0.1 a | 0.1 ± 0.02 a | |
I.S | 48.2 ± 13.2 a | 46.2 ± 8.8 b | 116.3 ± 47.2 b | 16.7 ± 1.9 bc | 0.1 ± 0.03 a | 0.3 ± 0.01 a | 0.04 ± 0.02 a |
Fructose | Glucose | Sucrose | Maltose | ||
---|---|---|---|---|---|
SM | L | 0.3 ± 0.02 C | 12.1 ± 3.5 A | 0.1 ± 0.02 B | ND |
S | 3.5 ± 0.4 A | 17.7 ± 14.8 A | 0.2 ± 0.01 B | ND | |
Fl | 1.1 ± 0.1 B | 4.2 ± 0.3 A | 0.2 ± 0.16 B | ND | |
M.S | 0.01 ± 0.01 C | 0.5 ± 0.1 B | 0.6 ± 0.02 A | ND | |
I.S | 0.02 ± 0.01 C | ND | 0.1 ± 0.02 B | ND | |
SE | L | 5.0 ± 1.3 a | 3.8 ± 1.0 a | 3.3 ± 2.8 a | ND |
S | 5.5 ± 1.3 a | 0.8 ± 0.7 b | 1.6 ± 0.4 a | ND | |
Fl | 4.8 ± 0.3 a | 1.6 ± 0.3 b | 1.1 ± 0.7 a | ND | |
M.S | 0.3 ± 0.1 b | 3.6 ± 0.8 a | 2.7 ± 0.3 a | ND | |
I.S | 0.6 ± 0.01 b | 0.2 ± 0.03 b | 3.4 ± 0.4 a | 2.3 ± 0.2 |
p-Values | |||
---|---|---|---|
Species | Organs | Species × Organs | |
Antioxidant | |||
Total phenol content | <0.0001 | <0.0001 | <0.0001 |
Total flavonoid content | <0.0001 | <0.0001 | <0.0001 |
Total antioxidant activities | <0.0001 | <0.0001 | <0.0001 |
DPPH | 0.001 | <0.0001 | <0.0001 |
FRAP | <0.0001 | <0.0001 | <0.0001 |
Sugars | |||
Fructose | <0.0001 | <0.0001 | <0.0001 |
Glucose | 0.034 | 0.059 | 0.059 |
Sucrose | <0.0001 | 0.176 | 0.132 |
Maltose | <0.0001 | <0.0001 | <0.0001 |
Organic acids | |||
Oxalic acid | <0.0001 | 0.001 | 0.001 |
Quinic acid | <0.0001 | <0.0001 | <0.0001 |
Citric acid | <0.0001 | <0.0001 | <0.0001 |
Malic acid | <0.0001 | <0.0001 | <0.0001 |
Succinic acid | <0.0001 | <0.0001 | <0.0001 |
Lactic acid | <0.0001 | <0.0001 | <0.0001 |
Formica cid | 0.005 | <0.0001 | <0.0001 |
Acetic acid | 0.075 | <0.0001 | 0.039 |
Propionic acid | 0.005 | <0.0001 | <0.0001 |
Minerals | |||
Na | <0.0001 | 0.015 | 0.141 |
K | <0.0001 | <0.0001 | 0.002 |
Ca | 0.912 | <0.0001 | <0.0001 |
Mg | <0.0001 | 0.002 | 0.002 |
Cu | |||
Fe | |||
Mn | |||
Polyphenolic compounds | |||
Gallic acid | 0.323 | 0.416 | 0.486 |
Protocatechuic acid | 0.055 | 0.675 | 0.606 |
30.4-di-O-caffeoyquinic acid | <0.0001 | <0.0001 | <0.0001 |
40.5-di-O-caffeoyquinic acid | <0.0001 | <0.0001 | <0.0001 |
Quinic acid | <0.0001 | <0.0001 | <0.0001 |
10.3-di-O-caffeoyquinic acid | 0.029 | <0.0001 | 0.050 |
Salviolinic acid | <0.0001 | <0.0001 | <0.0001 |
Chlorogenic acid | 0.059 | 0.015 | 0.015 |
Trans ferulic acid | <0.0001 | <0.0001 | <0.0001 |
Syringic acid | 0.151 | 0.604 | 0.611 |
p-coumaric acid | 0.106 | 0.656 | 0.688 |
Rosmarinic acid | <0.0001 | <0.0001 | <0.0001 |
o-coumaric acid | 0.162 | 0.587 | 0.623 |
Caffeic acid | <0.0001 | <0.0001 | <0.0001 |
Salviolinic acid | <0.0001 | <0.0001 | <0.0001 |
Trans cinnamic acid | 0.532 | 0.118 | 0.161 |
Luteolin | 0.185 | 0.551 | 0.570 |
Cirsilineol | 0.173 | 0.570 | 0.569 |
Rutin | 0.284 | 0.453 | 0.453 |
Luteolin-7-o-glucoside | 0.305 | 0.446 | 0.444 |
Epicatechin | 0.453 | 0.353 | 0.479 |
Acacetin | 0.299 | 0.450 | 0.450 |
Catechin (+) | 0.004 | <0.0001 | <0.0001 |
Cirsiliol | 0.191 | 0.490 | 0.490 |
Quercetin-3-o-galactoside | 0.979 | 0.315 | 0.101 |
Naringin | 0.046 | 0.092 | 0.092 |
Quercetrin | 0.021 | 0.002 | 0.002 |
Apegenin-7-o-glucoside | 0.329 | 0.431 | 0.431 |
Kaempferol | 0.329 | 0.431 | 0.431 |
Quercetin | <0.0001 | <0.0001 | <0.0001 |
Naringenin | <0.0001 | <0.0001 | <0.0001 |
Apigenin | <0.0001 | <0.0001 | <0.0001 |
Oxalic Acid | Quinic Acid | Citric Acid | Malic Acid | Succinic Acid | Lactic Acid | Formic Acid | Acetic Acid | Propionic Acid | ||
---|---|---|---|---|---|---|---|---|---|---|
SM | L | ND | ND | 6.5 ± 1.3 | 15.0 ± 1.6 A | 1.0 ± 0.1 A | 0.6 ± 0.03 B | 0.2 ± 0.04 C | 37.3 ± 2.3 A | 0.5 ± 0.03 A |
S | ND | ND | ND | 5.2 ± 0.6 C | 0.1 ± 0.04 B | 0.2 ± 0.1 B | 0.04 ± 0.01 D | 1.9 ± 0.7 B | 0.2 ± 0.002 C | |
Fl | ND | ND | ND | 11.1 ± 3.3 B | 0.2 ± 0.1 B | 0.6 ± 0.4 B | 0.2 ± 0.01 C | 2.1 ± 0.4 B | 0.4 ± 0.1 B | |
M.S | ND | ND | ND | 0.3 ± 0.02 D | ND | 0.3 ± 0.01 B | 0.5 ± 0.01 A | 0.4 ± 0.01 B | 0.2 ± 0.02 C | |
I.S | ND | ND | ND | 1.7 ± 0.1 D | ND | 3.7 ± 0.1 A | 0.3 ± 0.05 B | 0.5 ± 0.04 B | 0.2 ± 0.02 C | |
SE | L | 0.03 ± 0.02 a | 0.7 ± 0.3 b | 0.2 ± 0.1 ab | 0.45 ± 0.1 ab | 1.2 ± 0.2 a | ND | 0.2 ± 0.03 c | 38.8 ± 3.8 a | 0.4 ± 0.1 b |
S | 0.003 ± 0.002 b | 1.1 ± 0.2 a | 0.3 ± 0.1 a | 0.3 ± 0.1 bc | ND | ND | 0.2 ± 0.01 c | 0.2 ± 0.04 c | ND | |
Fl | ND | 1.1 ± 0.1 a | 0.2 ± 0.04 ab | 0.6 ± 0.2 a | 0.9 ± 0.3 b | ND | 0.2 ± 0.03 c | 6.4 ± 1.5 b | 0.5 ± 0.1 b | |
M.S | 0.01 ± 0.001 ab | 0.2 ± 0.02 c | 0.1 ± 0.03 b | 0.1 ± 0.01 c | 0.5 ± 0.1 c | 0.2 ± 0.02 a | 0.3 ± 0.1 b | 0.6 ± 0.04 c | ND | |
I.S | 0.02 ± 0.01 a | ND | 0.1 ± 0.01 b | 0.2 ± 0.03 c | ND | 0.2 ± 0.08 a | 0.4 ± 0.03 a | 1.4 ± 0.3 c | 1.0 ± 0.2 a |
Total Phenol Content (mg GAE/g DE) | Flavonoid Content (mg QRE/g DE) | Antioxidant Activity | ||||
---|---|---|---|---|---|---|
TAA (mg GAE/g DE) | DPPH (mg TRE/g DE) | FRAP (mg TRE/g DE) | ||||
SM | L | 1.7 ± 0.1 D | 7.4 ± 1.0 D | 19.9 ± 2.0 C | 0.8 ± 0.1 D | 1.4 ± 0.1 D |
S | 0.7 ± 0.1 E | 2.9 ± 0.3 E | 8.1 ± 0.7 D | 0.5 ± 0.03 E | 1.3 ± 0.2 D | |
Fl | 5.9 ± 0.7 C | 12.3 ± 0.5 C | 28.6 ± 2.4 A | 1.5 ± 0.2 C | 3.9 ± 0.2 C | |
M.S | 161.4 ± 13.9 A | 41.9 ± 0.4 A | 24.7 ± 0.4 B | 3.4 ± 0.004 B | 44.9 ± 1.1 A | |
I.S | 55.9 ± 8.3 B | 23.9 ± 1.1 B | 31.2 ± 0.5 A | 4.4 ± 0.01 A | 31.4 ± 3.1 B | |
SE | L | 1.4 ± 0.2 e | 3.6 ± 0.2 d | 5.8 ± 0.3 b | 0.6 ± 0.1 c | 1.6 ± 0.3 e |
S | 4.7 ± 1.6 d | 7.9 ± 2.5 c | 3.9 ± 2.0 b | 1.5 ± 0.4 b | 3.3 ± 0.6 d | |
Fl | 24.6 ± 6.0 c | 16.9 ± 2.0 a | 22.6 ± 1.1 a | 2.5 ± 0.3 a | 8.1 ± 0.9 c | |
M.S | 57.9 ± 4.6 a | 17.5 ± 1.5 a | 5.9 ± 0.4 b | 2.1 ± 0.01 a | 16.0 ± 0.5 a | |
I.S | 41.7 ± 8.0 b | 13.2 ± 0.3 b | 4.6 ± 0.4 b | 2.5 ± 0.1 a | 9.7 ± 0.6 b |
Sylibum marianum (SM) | Sylibum eburneum (SE) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | S | Fl | M.S. | I.S. | L | S | Fl | M.S. | I.S. | |
-Gallic acid | ND | ND | ND | ND | ND | ND | ND | 2.9 ± 0.7 b | 0.7 ± 0.2 c | 3.3 ± 0.7 a |
-Protocatechuic acid | 326.4 ± 65.3 B | ND | 4133.5 ± 826.7 A | ND | ND | ND | 20.3 ± 15.9 b | 56.7 ± 16.6 a | 4.6 ± 0.2 c | 3.6 ± 0.7 d |
-3,4-di-O-caffeoylquinic acid | 11405.2 ± 135.1 B | 3402.4 ± 10.5 C | 20538 ± 3109 A | ND | ND | ND | ND | ND | ND | ND |
-4,5-di-O-caffeoylquinic acid | 2269.1 ± 58 A | 503.2 ± 12.58 B | ND | ND | ND | ND | ND | ND | ND | ND |
-Quinic acid | 72.1 ± 5.1 E | 104.0 ± 3.9 D | 357.9 ± 49.9 C | 10404.5 ± 390.2 A | 6389.3 ± 127.9 B | 4.6 ± 0.8 e | 16.01 ± 5.9 d | 34.2 ± 4.9 c | 64.6 ± 15 b | 107.5 ± 24.5 a |
-1,3-di-O-caffeoylquinic acid | 3.5 ± 0.6 A | 2.2 ± 1.8 B | ND | ND | ND | 2.6 ± 0.2 b | ND | 7.4 ± 1.3 a | ND | ND |
-Salviolinic acid | 19.2 ± 0.4 | ND | ND | ND | ND | ND | ND | ND | ND | ND |
-Chlorogenic acid | ND | ND | ND | ND | ND | 82.4 ± 18.8 a | ND | 33.9 ± 6.4 b | ND | ND |
-Trans ferulic acid | 5.9 ± 0.6 C | ND | 58.3 ± 7 B | 1103.9 ± 132.5 A | ND | 0.2 ± 0.01 b | 0.7 ± 0.3 a | 0.8 ± 0.1 a | ND | ND |
-Syringic acid | 103.6 ± 22.8 B | ND | 1374.3 ± 189 A | ND | ND | 13.2 ± 4.7 c | 168.1 ± 28.9 a | 110.02 ± 10.7 b | ND | 6.02 ± 1.3 d |
-P-coumaric acid | 207.8 ± 10.4 B | ND | ND | ND | 2663.9 ± 133.2 A | 0.5 ± 0.04 d | 0.2 ± 0.1 e | 3.2 ± 0.3 a | 2.1 ± 0.04 b | 1.7 ± 0.1 c |
-Rosmarinic acid | ND | 114.2 ± 61.6 | ND | ND | ND | ND | ND | ND | ND | ND |
-O-coumaric acid | ND | 214.4 ± 134.6 B | 29.4 ± 5.9 C | 1175.2 ± 176.3 A | ND | ND | ND | ND | ND | ND |
-Caffeic acid | ND | 27.6 | ND | ND | ND | ND | ND | ND | 8.2 ± 0.6 a | 0.8 ± 0.4 b |
-Salviolinic acid | ND | Nd | 6.2 ± 0.5 | ND | ND | ND | ND | ND | ND | ND |
-Trans cinnamic acid | 482.1 ± 43.4 B | Nd | ND | 7319.9 ± 658.8 A | ND | ND | ND | ND | 2.1 ± 0.3 b | 7.5 ± 0.8 a |
-Luteolin | 3.8 ± 0.6 D | Nd | 24.8 ± 2.7 C | 118.3 ± 20.1 A | 126.8 ± 21.6 A | 2.1 ± 0.2 b | ND | 68.7 ± 12 a | ND | ND |
-Cirsilineol | 128 ± 19.2 B | 181.4 ± 1.8 A | ND | ND | ND | 4.7 ± 0.7 | ND | ND | ND | ND |
-Rutin | 5.4 ± 0.3 C | 1.7 ± 0.1 D | 14.6 ± 2.2 B | ND | 509.1 ± 76.4 A | ND | ND | ND | ND | ND |
-Luteolin-7-o-glucoside | 4.9 ± 0.8 A | 4.7 ± 0.7 A | ND | ND | ND | 16.9 ± 7.1 b | 20.9 ± 5.9 a | ND | 1.2 ± 0.2 c | ND |
-Epicatechin | ND | 157.0 ± 31.4 B | 216.4 ± 58 A | ND | ND | ND | ND | ND | ND | ND |
-Acacetin | ND | ND | 32.8 ± 22.7 | ND | ND | ND | ND | ND | ND | ND |
-Catechin (+) | ND | ND | 6.8 ± 0.5 | ND | ND | ND | ND | ND | ND | ND |
-Cirsiliol | ND | ND | ND | ND | ND | 0.4 ± 0.1 d | 18.2 ± 10.1 b | ND | 10.8 ± 0.5 c | 77.8 ± 3.7 a |
-Quercetin-3-o-galactoside | 18.4 ± 2.1 D | 10.4 ± 6.3 E | 101.9 ± 11.9 C | 194.1 ± 27.2 B | 454.0 ± 77.2 A | 6.1 ± 0.9 b | 4.4 ± 1.9 c | ND | ND | 454.0 ± 90.8 a |
-Naringin | 28.9 ± 4.8 B | 4.8 ± 2.3 C | 50.7 ± 11.1 A | ND | ND | ND | 34.1 ± 10.8 | ND | ND | ND |
-Quercetrin | 16.9 ± 2.7 C | 3.2 ± 0.4 D | 266.2 ± 20.6 A | ND | 226.8 B | 10.4 ± 0.7 c | 21.9 ± 5.3 b | 140.7 ± 40.4 a | ND | ND |
-Apegenin-7-o-glucoside | 3.8 ± 1.6 C | 1.3 ± 0.02 D | ND | 8.9 ± 0.5 B | 30.5 ± 2.1 A | 63.6 ± 0.9 b | 139.9 ± 54.1 a | ND | 3.3 ± 0.2 c | 2.5 ± 0.1 d |
-Kaempferol | 5.01 ± 1.2 D | ND | 19.8 ± 14.5 C | 152.6 ± 30.5 B | 198.1 ± 27.7 A | 17.3 ± 0.5 b | ND | 1281.3 ± 82.2 a | ND | ND |
-Quercetin | 3.4 ± 0.2 E | 104.7 ± 139.6 C | 5.3 ± 3.1 D | 1470.9 ± 250.0 B | 1814.9 ± 326.7 A | ND | 1.4 ± 0.04 b | ND | ND | 3.9 ± 0.1 a |
-Naringenin | 141.2 ± 19.7 D | 24.0 ± 2.2 E | 469.9 ± 140.5 C | 3091.5 ± 401.9 A | 1694.4 ± 203.2 B | 11.7 ± 1.2 c | 9.8 ± 4.5 e | 160.1 ± 17.3 a | 26.5 ± 3.6 b | 10.1 ± 2.9 d |
-Apigenin | 322.1 ± 124.7 C | 114.2 ± 73.4 D | 7077.5 ± 16.1 A | ND | 936.5 ± 84.3 B | 11.1 ± 1 c | 27.3 ± 7.1 b | 877.5 ± 158.6 a | 0.4 ± 0.1 e | 1.4 ± 0.05 d |
-Detected compounds | 22 | 18 | 19 | 10 | 11 | 16 | 14 | 13 | 11 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maaloul, S.; Mahmoudi, M.; Mighri, H.; Ghzaiel, I.; Bouhamda, T.; Boughalleb, F.; El Midaoui, A.; Vejux, A.; Lizard, G.; Abdellaoui, R. Tunisian Silybum Species: Important Sources of Polyphenols, Organic Acids, Minerals, and Proteins across Various Plant Organs. Plants 2024, 13, 989. https://doi.org/10.3390/plants13070989
Maaloul S, Mahmoudi M, Mighri H, Ghzaiel I, Bouhamda T, Boughalleb F, El Midaoui A, Vejux A, Lizard G, Abdellaoui R. Tunisian Silybum Species: Important Sources of Polyphenols, Organic Acids, Minerals, and Proteins across Various Plant Organs. Plants. 2024; 13(7):989. https://doi.org/10.3390/plants13070989
Chicago/Turabian StyleMaaloul, Samah, Maher Mahmoudi, Hédi Mighri, Imen Ghzaiel, Talel Bouhamda, Fayçal Boughalleb, Adil El Midaoui, Anne Vejux, Gérard Lizard, and Raoudha Abdellaoui. 2024. "Tunisian Silybum Species: Important Sources of Polyphenols, Organic Acids, Minerals, and Proteins across Various Plant Organs" Plants 13, no. 7: 989. https://doi.org/10.3390/plants13070989
APA StyleMaaloul, S., Mahmoudi, M., Mighri, H., Ghzaiel, I., Bouhamda, T., Boughalleb, F., El Midaoui, A., Vejux, A., Lizard, G., & Abdellaoui, R. (2024). Tunisian Silybum Species: Important Sources of Polyphenols, Organic Acids, Minerals, and Proteins across Various Plant Organs. Plants, 13(7), 989. https://doi.org/10.3390/plants13070989