Plant Biotechnology—An Indispensable Tool for Crop Improvement
1. Introduction
2. Cereal Crops
3. Pulse Crops
4. Root and Tuber Crops
5. Industrial Crops
6. New Crops for Arid Regions
7. Ornamental Crops
8. Development of New Methodologies in Plant Biotechnology
Author Contributions
Conflicts of Interest
Abbreviations
Abbreviations | Full Name |
AS-PCR | allele-specific PCR |
Cas | Crispr associated protein |
CAM | Crassulacean Acid Metabolism |
CBSV | Cassava Brown Streak Virus; CMD—Cassava Mosaic Disease |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
DMC | Dry Matter Content |
DXS | Deoxy-d-xylulose-5-phosphate synthase |
FAO | Food and Agriculture Organization of the United Nations |
FRY | Fresh Root Yield |
KASP | Kompetitive Allele-Specific PCR |
PCR | Polymerase Chain Reaction |
PR | Perennial Rice |
QTL | Quantitative Trait Loci |
SNP | Single-nucleotide Polymorphism |
SPP | Single Plant Progeny |
TALENs | Transcription Activator-Like Effector Nucleases TILLING—Targeting Induced Local Lesions in Genomes |
UNGA | United Nations General Assembly |
ZFN | Zinc Finger Nucleases |
List of Contributions
- Nowicka, B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. Plants 2022, 11, 3430.
- Hamdan, M.F.; Karlson, C.K.S.; Teoh, E.Y.; Lau, S.-E.; Tan, B.C. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Plants 2022, 11, 2625.
- Buzdin, A.V.; Patrushev, M.V.; Sverdlov, E.D. Will Plant Genome Editing Play a Decisive Role in “Quantum-Leap” Improvements in Crop Yield to Feed an Increasing Global Human Population? Plants 2021, 10, 1667.
- Zhao, Y.; Feng, M.; Paudel, D.; Islam, T.; Momotaz, A.; Luo, Z.; Zhao, Z.; Wei, N.; Li, S.; Xia, Q.; et al. Advances in Genomics Approaches Shed Light on Crop Domestication. Plants 2021, 10, 1571.
- Prieto, P.; Palomino, C.; Cifuentes, Z.; Cabrera, A. Analysis of chromosome associations during early meiosis in wheat lines carrying chromosome introgressions from Agropyron cristatum. Plants 2021, 10, 2292, https://doi.org/10.3390/plants10112292.
- Dreiseitl, A.; Nesvadba, Z. Powdery mildew resistance genes in single-plant progenies derived from accessions of a winter barley core collection. Plants 2021, 10, 1988, https://doi.org/10.3390/plants10101988.
- Numan, M.; Khan, A.L.; Asaf, S.; Salehin, M.; Beyene, G.; Tadele, Z.; Ligaba-Osena, A. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [Eragrostis tef (Zucc.) Trotter]. Plants 2021, 10, 628.
- Tigist, S.G.; Sibiya, J.; Amelework, A.; Keneni, G. Agromorphological and physiological performance of Ethiopian common bean (Phaseolus vulgaris L.) Genotypes Under Different Agroecological Conditions. Plants 2023, 12, 2342, https://doi.org/10.3390/plants12122342.
- Purdy, S.J.; Fuentes, D.; Ramamoorthy, P.; Nunn, C.; Kaiser, B.N.; Merchant, A. The metabolic profile of young, watered chickpea plants can be used as a biomarker to predict seed number under terminal drought. Plants 2023, 12, 2172.
- Adly, W.M.R.M.; Niedbała, G.; EL-Denary, M.E.; Mohamed, M.A.; Piekutowska, M.; Wojciechowski, T.; Abd El-Salam, E.-S.T.; Fouad, A.S. Somaclonal variation for genetic improvement of starch accumulation in potato (Solanum tuberosum) tubers. Plants 2023, 12, 232.
- Amelework, A.B.; Bairu, M.W.; Marx, R.; Laing, M.; Venter, S.L. Genotype x Environment Interaction and stability analysis of selected cassava cultivars in South Africa. Plants 2023, 12, 2490.
- Nokihara, K.; Okada, Y.; Ohata, S.; Monden, Y. Transcriptome analysis reveals key genes involved in weevil resistance in the hexaploid sweetpotato. Plants 2021, 10, 1535.
- Roy, C.B.; Goonetilleke, S.N.; Joseph, L.; Krishnan, A.; Saha, T.; Kilian, A.; Mather, D.E. Analysis of genetic diversity and resistance to foliar pathogens based on genotyping-by-sequencing of a para rubber diversity panel and progeny of an interspecific cross. Plants 2022, 11, 3418.
- Carra, A.; Catalano, C.; Pathirana, R.; Sajeva, M.; Inglese, P.; Motisi, A.; Carimi, F. Increased Zygote-Derived Plantlet Formation through In Vitro Rescue of Immature Embryos of Highly Apomictic Opuntia ficus-indica (Cactaceae). Plants 2023, 12, 2758.
- Vilcherrez-Atoche, J.A.; Silva, J.C.; Clarindo, W.R.; Mondin, M.; Cardoso, J.C. In Vitro Polyploidization of Brassolaeliocattleya Hybrid Orchid. Plants 2023, 12, 281.
- Sherpa, R.; Devadas, R.; Bolbhat, S.N.; Nikam, T.D.; Penna, S. Gamma Radiation Induced In-Vitro Mutagenesis and Isolation of Mutants for Early Flowering and Phytomorphological Variations in Dendrobium ‘Emma White’. Plants 2022, 11, 3168.
- Lim, S.-H.; Kim, D.-H.; Cho, M.-C.; Lee, J.-Y. Chili pepper AN2 (CaAN2): A visible selection marker for nondestructive monitoring of transgenic plants. Plants 2022, 11, 820.
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023; FAO: Rome, Italy, 2023. [Google Scholar]
- Pathirana, R.; Carimi, F. Management and utilization of plant genetic resources for a sustainable agriculture. Plants 2022, 11, 2038. [Google Scholar] [CrossRef] [PubMed]
- Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- UNDESA. UN/DESA Policy Brief #102: Population, Food Security, Nutrition and Sustainable Development. Available online: https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-102-population-food-security-nutrition-and-sustainable-development/ (accessed on 19 March 2024).
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Chapter 31—Agricultural productivity and food supply to meet increased demands. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. [Google Scholar]
- Wijerathna-Yapa, A.; Pathirana, R. Sustainable agro-food systems for addressing climate change and food security. Agriculture 2022, 12, 1554. [Google Scholar] [CrossRef]
- Gill, G.P.; Harvey, C.F.; Gardner, R.C.; Fraser, L.G. Development of sex-linked PCR markers for gender identification in Actinidia. Theor. Appl. Genet. 1998, 97, 439–445. [Google Scholar] [CrossRef]
- Guo, D.; Wang, R.; Fang, J.; Zhong, Y.; Qi, X. Development of sex-linked markers for gender identification of Actinidia arguta. Sci. Rep. 2023, 13, 12780. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, C.; Jorben, J.; Rao, A.; Roorkiwal, M.; Patil, B.S.; Jayalakshmi; Ahammed, S.K.; Saxena, D.R.; Yasin, M.; Jahagirdar, J.E.; et al. Development of high yielding fusarium wilt resistant cultivar by pyramiding of “genes” through marker-assisted backcrossing in chickpea (Cicer arietinum L.). Front. Genet. 2022, 13, 924287. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Shao, C.; Yang, R.; Feng, Y.; Gao, Y.; Ding, Y.; Li, J.; Qian, W. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor. Appl. Genet. 2020, 133, 1313–1319. [Google Scholar] [CrossRef]
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.A.; Martin, A.C.; et al. Enhancing climate change resilience in agricultural crops. Curr. Biol. 2023, 33, R1246–R1261. [Google Scholar] [CrossRef]
- Crews, T.E.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1, e11. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Pérez-Rodríguez, P. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. Agric. Ecosyst. Environ. 2022, 325, 107747. [Google Scholar] [CrossRef]
- Baik, B.-K.; Hoagland, L.A.; Jones, S.S.; Murphy, K.M.; Reeves, P.G. Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew. Agric. Food Syst. 2009, 24, 285–292. [Google Scholar] [CrossRef]
- Zhang, X.; Sallam, A.; Gao, L.; Kantarski, T.; Poland, J.; DeHaan, L.R.; Wyse, D.L.; Anderson, J.A. Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome 2016, 9, 1–18. [Google Scholar] [CrossRef]
- Dorn, K.M.; Poland, J. Thinopyrum intermedium v2.1. Available online: https://phytozome-next.jgi.doe.gov/info/Tintermedium_v2_1 (accessed on 23 January 2024).
- Zhang, S.; Huang, G.; Zhang, Y.; Lv, X.; Wan, K.; Liang, J.; Feng, Y.; Dao, J.; Wu, S.; Zhang, L.; et al. Sustained productivity and agronomic potential of perennial rice. Nat. Sustain. 2023, 6, 28–38. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, M.; Li, Y.; Wu, Z.; Li, Y.; Li, X.; He, R.; Yang, C.; Zhao, Y.; Li, H.; et al. Tripsazea, a Novel Trihybrid of Zea mays, Tripsacum dactyloides, and Zeaperennis. G3 Genes|Genomes|Genet. 2020, 10, 839–848. [Google Scholar] [CrossRef]
- Kruglova, N.N.; Zinatullina, A.E. In Vitro Culture of Autonomous Embryos as a Model System for the Study of Plant Stress Tolerance to Abiotic Factors (on the Example of Cereals). Biol. Bull. Rev. 2022, 12, 201–211. [Google Scholar] [CrossRef]
- Pathirana, R.; Wijithawarna, W.A.; Jagoda, K.; Ranawaka, A.L. Selection of rice for iron toxicity tolerance through irradiated caryopsis culture. Plant Cell Tissue Organ Cult. 2002, 70, 83–90. [Google Scholar]
- Abate, E.; Hussien, S.; Laing, M.; Mengistu, F. Aluminium toxicity tolerance in cereals: Mechanisms, genetic control and breeding methods. Afr. J. Agric. Res. 2013, 8, 711–722. [Google Scholar] [CrossRef]
- Krishania, S. Abiotic Stress Tolerance in Eleusine coracana (L.) Gaertn by Manipulation of Tissue Culture Media; IIS University: Jaipur, India, 2010. [Google Scholar]
- Pathirana, R. Mutations in plant evolution, crop domestication and breeding. Trop. Agric. Res. Ext. 2021, 24, 124–157. [Google Scholar] [CrossRef]
- Acevedo-Garcia, J.; Spencer, D.; Thieron, H.; Reinstädler, A.; Hammond-Kosack, K.; Phillips, A.L.; Panstruga, R. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 2017, 15, 367–378. [Google Scholar] [CrossRef]
- Bigini, V.; Camerlengo, F.; Botticella, E.; Sestili, F.; Savatin, D.V. Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants 2021, 10, 1146. [Google Scholar] [CrossRef]
- Ceoloni, C.; Kuzmanovic, L.; Forte, P.; Virili, M.E.; Bitti, A. Wheat-perennial Triticeae introgressions: Major achievements and prospects. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics; Molnár-Láng, M., Ceoloni, C., Doležel, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 273–313. [Google Scholar]
- FAO. International Year of Pulses 2016. Available online: https://www.fao.org/pulses-2016/en/ (accessed on 22 November 2023).
- FAO. World Pulse Day/10 February. Available online: https://www.fao.org/world-pulses-day/en/ (accessed on 22 November 2023).
- FAO. FAOSTAT; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Bernard, R.L. Two genes affecting stem termination in soybeans. Crop Sci. 1972, 12, 235–239. [Google Scholar] [CrossRef]
- Krylova, E.A.; Khlestkina, E.K.; Burlyaeva, M.O.; Vishnyakova, M.A. Determinate growth habit of grain legumes: Role in domestication and selection, genetic control. EcoGen 2020, 18, 43–58. [Google Scholar] [CrossRef]
- Sharma, K.K.; Dumbala, S.R.; Bhatnagar-Mathur, P. Biotech Approaches for Crop Improvement in the Semi-arid Tropics. In Plant Biotechnology: Experience and Future Prospects; Ricroch, A., Chopra, S., Fleischer, S.J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 193–207. [Google Scholar]
- Raman, R.B.; Sinhamahapatra, S.P. A dwarf determinate plant type for achieving higher and stable yield in blackgram (Vigna mungo L. Hepper). Bioscan 2014, 9, 497–500. [Google Scholar]
- Duc, G.; Agrama, H.; Bao, S.; Berger, J.; Bourion, V.; De Ron, A.M.; Gowda, C.L.L.; Mikic, A.; Millot, D.; Singh, K.B.; et al. Breeding annual grain legumes for sustainable agriculture: New methods to approach complex traits and target new cultivar ideotypes. Crit. Rev. Plant Sci. 2015, 34, 381–411. [Google Scholar] [CrossRef]
- IAEA. International Atomic Energy Agency, Mutant Database. Available online: https://nucleus.iaea.org/sites/mvd/SitePages/Home.aspx (accessed on 20 January 2024).
- Bohra, A.; Singh, N.P. Whole genome sequences in pulse crops: A global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol. Lett. 2015, 37, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Carrasco, B.; Schwember, A.R. Advances in breeding and biotechnology of legume crops. Plant Cell Tiss Organ Cult 2016, 127, 561–584. [Google Scholar] [CrossRef]
- Jegadeesan, S.; Raizada, A.; Dhanasekar, P.; Suprasanna, P. Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. Sci. Rep. 2021, 11, 11247. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Pandey, M.K.; Bohra, A.; Singh, V.K.; Thudi, M.; Saxena, R.K. Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor. Appl. Genet. 2019, 132, 797–816. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bohra, A.; Mir, R.R.; Sharma, R.; Tiwari, A.; Khan, M.A.; Varshney, R.K. Next generation breeding in pulses: Present status and future directions. Crop Breed. Appl. Biotechnol. 2021, 21, 1–22. [Google Scholar] [CrossRef]
- Asati, R.; Tripathi, M.K.; Tiwari, S.; Yadav, R.K.; Tripathi, N. Molecular breeding and drought tolerance in chickpea. Life 2022, 12, 1846. [Google Scholar] [CrossRef]
- Diaz, L.M.; Ricaurte, J.; Tovar, E.; Cajiao, C.; Teran, H.; Grajales, M.; Polania, J.; Rao, I.; Beebe, S.; Raatz, B. QTL analyses for tolerance to abiotic stresses in a common bean (Phaseolus vulgaris L.) population. PLoS ONE 2018, 13, e0202342. [Google Scholar] [CrossRef]
- Sultana, R.; Choudhary, A.K.; Pal, A.K.; Saxena, K.B.; Prasad, B.D.; Singh, R. Abiotic stresses in major pulses: Current status and strategies. In Approaches to Plant Stress and their Management; Gaur, R.K., Sharma, P., Eds.; Springer: New Delhi, India, 2014; pp. 173–190. [Google Scholar]
- Koundinya, A.V.V.; Das, A.; Hegde, V. Mutation breeding in tropical root and ruber crops. In Mutation Breeding for Sustainable Food Production and Climate Resilience; Penna, S., Jain, S.M., Eds.; Springer Nature: Singapore, 2023; pp. 779–809. [Google Scholar]
- Bradshaw, J.E. A Brief History of the Impact of Potato Genetics on the Breeding of Tetraploid Potato Cultivars for Tuber Propagation. Potato Res. 2022, 65, 461–501. [Google Scholar] [CrossRef]
- Yan, M.; Nie, H.; Wang, Y.; Wang, X.; Jarret, R.; Zhao, J.; Wang, H.; Yang, J. Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. Plant Commun. 2022, 3, 100332. [Google Scholar] [CrossRef] [PubMed]
- FAO. What is Hidden Hunger. In Proceedings of the Second International Confefrence on Nutrition, Rome, Italy, 19–21 November 2014; Available online: https://www.fao.org/about/meetings/icn2/news-archive/news-detail/en/c/265240 (accessed on 22 January 2024).
- Howeler, R.; Lutaladio, N.; Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification; FAO: Rome, Italy, 2013. [Google Scholar]
- Chavez, A.L.; Bedoya, J.; Sánchez, T.; Iglesias, C.; Ceballos, H.; Roca, W. Iron, carotene, and ascorbic acid in cassava roots and leaves. Food Nutr. Bull. 2000, 21, 410–413. [Google Scholar]
- Narayanan, N.; Beyene, G.; Chauhan, R.D.; Gaitán-Solís, E.; Gehan, J.; Butts, P.; Siritunga, D.; Okwuonu, I.; Woll, A.; Jiménez-Aguilar, D.M.; et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 2019, 37, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Shah, T.; Falquet, L.; Niazi, A.; Stavolone, L.; Bongcam-Rudloff, E.; Gisel, A. Haplotype-resolved genome of heterozygous African cassava cultivar TMEB117 (Manihot esculenta). Sci. Data 2023, 10, 887. [Google Scholar] [CrossRef]
- Patil, B.L.; Fauquet, C.M. Cassava mosaic geminiviruses: Actual knowledge and perspectives. Mol. Plant Pathol. 2009, 10, 685–701. [Google Scholar] [CrossRef]
- Beyene, G.; Chauhan, R.D.; Ilyas, M.; Wagaba, H.; Fauquet, C.M.; Miano, D.; Alicai, T.; Taylor, N.J. A virus-derived stacked RNAi construct confers robust resistance to cassava brown streak disease. Front. Plant Sci. 2017, 7, 240414. [Google Scholar]
- Mmbando, G.S. The legal aspect of the current use of genetically modified organisms in Kenya, Tanzania, and Uganda. GM Crops Food 2023, 14, 1–12. [Google Scholar] [CrossRef]
- ACB. Push Back against Risky and Unsafe RNAi GM Cassava Cultivation in Kenya. Available online: https://acbio.org.za/gm-biosafety/push-back-against-risky-unsafe-rnai-gm-cassava-cultivation-kenya/ (accessed on 14 February 2024).
- Kimno, L.C.; Kinyua, M.G.; Bimpong, I.K.; Were, J.O. Field screening of elite cassava (Manihot esculenta) mutant lines for their response to mosaic and brown streak viruses. J. Exp. Agric. Int. 2023, 45, 205–215. [Google Scholar] [CrossRef]
- Sapakhova, Z.; Raissova, N.; Daurov, D.; Zhapar, K.; Daurova, A.; Zhigailov, A.; Zhambakin, K.; Shamekova, M. Sweet potato as a key crop for food security under the conditions of global climate change: A Review. Plants 2023, 12, 2516. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.R.; Sheela, M.N.; Visalakshi Chandra, C.; Krishna Radhika, N.; Asha, K.I. Status of biofortification in tropical root and tuber crops. Curr. Sci. 2023, 120, 169–175. [Google Scholar]
- Yang, J.; Bi, H.P.; Fan, W.J.; Zhang, M.; Wang, H.X.; Zhang, P. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.). Plant Sci. 2011, 181, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.R.; Maria, M.S.; Benavides, J.; Zhang, D.P.; Zhang, Y.Z.; Ghislain, M. Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam) via organogenesis. Afr. J. Biotechnol. 2006, 5, 1851–1857. [Google Scholar]
- Choi, H.J.; Chandrasekhar, T.; Lee, H.-Y.; Kim, K.-M. Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell Tissue Organ Cult. 2007, 91, 235–242. [Google Scholar] [CrossRef]
- Yang, K.Y.; Yi, G.B.; Kim, Y.M.; Choi, G.; Shin, B.C.; Shin, Y.M.; Kim, K.M. Production of transgenic sweet potato (Ipomoea batatas (L.) Lam.) lines via microprojectile bombardment. Korean J. Breed. 2005, 37, 236–240. [Google Scholar]
- Okada, Y.; Saito, A.; Nishiguchi, M.; Kimura, T.; Mori, M.; Hanada, K.; Sakai, J.; Miyazaki, C.; Matsuda, Y.; Murata, T. Virus resistance in transgenic sweetpotato [Ipomoea batatas L. (Lam)] expressing the coat protein gene of sweet potato feathery mottle virus. Theor. Appl. Genet. 2001, 103, 743–751. [Google Scholar] [CrossRef]
- Leclerc, Y.; Donnelly, D.J.; Coleman, W.K.; King, R.R. Microtuber dormancy in three potato cultivars. Am. Potato J. 1995, 72, 215–223. [Google Scholar]
- Suttle, J.C. Involvement of ethylene in potato microtuber dormancy. Plant Physiol. 1998, 118, 843–848. [Google Scholar]
- Pathirana, R.; Harris, J.C.; McKenzie, M.J. A comparison of microtubers and field-grown tubers of potato (Solanum tuberosum L.) for hexoses, sucrose and their ratios following postharvest cold storage. Postharvest Biol. Technol. 2008, 49, 180–184. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, B.; Li, H.; Zhou, W.; Takeuchi, Y.; Yoneyama, K. Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiol. Plant. 2005, 27, 481–489. [Google Scholar]
- Wang, X.; Gu, X.; Xu, Z.; Yin, Z.; Yang, X.; Lin, R.; Zhou, Q.; Huang, H.; Huang, T. Current achievements and future challenges of genotype-dependent somatic embryogenesis techniques in Hevea brasiliensis. Forests 2023, 14, 1891. [Google Scholar] [CrossRef]
- Rahman, A.Y.A.; Usharraj, A.O.; Misra, B.B.; Thottathil, G.P.; Jayasekaran, K.; Feng, Y.; Hou, S.; Ong, S.Y.; Ng, F.L.; Lee, L.S.; et al. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genom. 2013, 14, 75. [Google Scholar] [CrossRef]
- Lau, N.-S.; Makita, Y.; Kawashima, M.; Taylor, T.D.; Kondo, S.; Othman, A.S.; Shu-Chien, A.C.; Matsui, M. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci. Rep. 2016, 6, 28594. [Google Scholar] [CrossRef]
- Tang, C.; Yang, M.; Fang, Y.; Luo, Y.; Gao, S.; Xiao, X.; An, Z.; Zhou, B.; Zhang, B.; Tan, X.; et al. The rubber tree genome reveals new insights into rubber production and species adaptation. Nat. Plants 2016, 2, 16073. [Google Scholar] [CrossRef]
- Pootakham, W.; Sonthirod, C.; Naktang, C.; Ruang-Areerate, P.; Yoocha, T.; Sangsrakru, D.; Theerawattanasuk, K.; Rattanawong, R.; Lekawipat, N.; Tangphatsornruang, S. De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species. Sci. Rep. 2017, 7, 41457. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Wu, S.; Shi, M.; Xu, X.; Gao, Q.; Du, H.; Gao, B.; Guo, D.; Yang, S.; Zhang, S.; et al. Genomic insight into domestication of rubber tree. Nat. Commun. 2023, 14, 4651. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshan, P.M. Molecular markers to devise predictive models for juvenile selection in Hevea rubber. Plant Breed. 2022, 141, 159–183. [Google Scholar] [CrossRef]
- Hajek, O.L.; Knapp, A.K. Shifting seasonal patterns of water availability: Ecosys-tem responses to an unanticipated dimension of climate change. New Phytol. 2022, 233, 119–125. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization, Water. Available online: https://www.fao.org/water/en/ (accessed on 20 January 2024).
- WEF. The World Economic Forum’s Global Risks Report 2021. The Global Risks Report 2021, 16th ed. 2021. ISBN: 978-2-940631-24-7. Available online: http://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2021.pdf (accessed on 22 November 2023).
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Shedbalkar, U.U.; Adki, V.S.; Jadhav, J.P.; Bapat, V.A. Opuntia and other cacti: Applications and biotechnological insights. Trop. Plant Biol. 2010, 3, 136–150. [Google Scholar]
- Gabellini, S.; Scaramuzzi, S. Evolving consumption trends, marketing strategies, and governance settings in ornamental horticulture: A grey literature review. Horticulturae 2022, 8, 234. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The contribution of ornamental plants to urban ecosystem services. Earth 2022, 3, 1258–1274. [Google Scholar] [CrossRef]
- Rihn, A.L.; Knuth, M.J.; Behe, B.K.; Hall, C.R. Benefit information’s impact on ornamental plant value. Horticulturae 2023, 9, 740. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Martinelli, A.P.; Teixeira da Silva, J.A. A novel approach for the selection of Cattleya hybrids for precocious and season-independent flowering. Euphytica 2016, 210, 143–150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathirana, R.; Carimi, F. Plant Biotechnology—An Indispensable Tool for Crop Improvement. Plants 2024, 13, 1133. https://doi.org/10.3390/plants13081133
Pathirana R, Carimi F. Plant Biotechnology—An Indispensable Tool for Crop Improvement. Plants. 2024; 13(8):1133. https://doi.org/10.3390/plants13081133
Chicago/Turabian StylePathirana, Ranjith, and Francesco Carimi. 2024. "Plant Biotechnology—An Indispensable Tool for Crop Improvement" Plants 13, no. 8: 1133. https://doi.org/10.3390/plants13081133
APA StylePathirana, R., & Carimi, F. (2024). Plant Biotechnology—An Indispensable Tool for Crop Improvement. Plants, 13(8), 1133. https://doi.org/10.3390/plants13081133