Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long “Non-Coding” RNAs
Abstract
:1. Introduction
2. Possible Effects of lncRNA-Encoded Peptides on Plant Physiology and Development
2.1. “Conventional” lncRNAs
2.2. Chemically Synthesized Plant miPEPs
2.2.1. Family Fabaceae
2.2.2. Family Sapindaceae
2.2.3. Family Brassicaceae
2.2.4. Family Vitaceae
2.2.5. Family Solanaceae
2.2.6. Family Rosaceae
2.2.7. Family Poaceae
3. Subcellular and Molecular Targets of Plant miPEPs
4. Possible Molecular Mechanisms Supporting Activity of Plant miPEPs
5. Chemically Synthesized Plant miPEPs and Potential Improvement of Agronomic Traits
6. Phenomenon of Complementary Peptides (cPEPs) in Plants and Its Potential Use in Biotechnology
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bardou, F.; Merchan, F.; Ariel, F.; Crespi, M. Dual RNAs in plants. Biochimie 2011, 93, 1950–1954. [Google Scholar] [CrossRef] [PubMed]
- Jouannet, V.; Crespi, M. Long Nonprotein-Coding RNAs in Plants. Prog. Mol. Subcell. Biol. 2011, 51, 179–200. [Google Scholar] [PubMed]
- Yamada, M. Functions of long intergenic non-coding (linc) RNAs in plants. J. Plant Res. 2017, 130, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cui, Y.; Feng, Y.; Hu, Y.; Liu, L.; Duan, L. Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, A.; Feschotte, C. Volatile evolution of long noncoding RNA repertoires: Mechanisms and biological implications. Trends Genet. 2014, 30, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, Y.; Chen, X.; Chen, Y. Plant Noncoding RNAs: Hidden players in development and stress responses. Annu. Rev. Cell Dev. Biol. 2019, 35, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Kopp, F.; Mendell, J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Zicola, J. The long noncoding RNA family gets bigger: Thousands of new loci identified in natural Arabidopsis accessions. Plant Cell 2023, 36, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell. Biol. 2021, 22, 96–118. [Google Scholar]
- Li, J.; Qu, L.; Sang, L.; Wu, X.; Jiang, A.; Liu, J.; Lin, A. Micropeptides translated from putative long non-coding RNAs. Acta Biochim. Biophys. Sin. 2022, 54, 292–300. [Google Scholar]
- Chao, H.; Hu, Y.; Zhao, L.; Xin, S.; Ni, Q.; Zhang, P.; Chen, M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int. J. Mol. Sci. 2022, 23, 3695. [Google Scholar] [CrossRef] [PubMed]
- Bhar, A.; Roy, A. Emphasizing the Role of Long Non-Coding RNAs (lncRNA), Circular RNA (circRNA), and Micropeptides (miPs) in Plant Biotic Stress Tolerance. Plants 2023, 12, 3951. [Google Scholar] [CrossRef] [PubMed]
- Palos, K.; Yu, L.; Railey, C.E.; Nelson Dittrich, A.C.; Nelson, A.D.L. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. Plant Cell 2023, 35, 1762–1786. [Google Scholar] [CrossRef] [PubMed]
- Chorostecki, U.; Bologna, N.G.; Ariel, F. The plant noncoding transcriptome: A versatile environmental sensor. EMBO J. 2023, 42, e114400. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rosas, E.; Hernández-Oñate, M.Á.; Fernandez-Valverde, S.L.; Tiznado-Hernández, M.E. Plant long non-coding RNAs: Identification and analysis to unveil their physiological functions. Front. Plant Sci. 2023, 14, 1275399. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, H.; Wang, B.; Yuan, F. Research progress on the roles of lncRNAs in plant development and stress responses. Front Plant Sci. 2023, 14, 1138901. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.N.; Tan, B.C.; Al-Idrus, A.; Teo, C.H. Small open reading frames in plant research: From prediction to functional characterization. 3 Biotech 2022, 12, 76. [Google Scholar] [CrossRef]
- Datta, T.; Kumar, R.S.; Sinha, H.; Trivedi, P.K. Small but mighty: Peptides regulating abiotic stress responses in plants. Plant Cell Environ. 2024, 47, 1207–1223. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-Z.; Zhu, Q.-F.; Xue, J.; Chen, P.; Yu, Y. Shining in the dark: The big world of small peptides in plants. aBIOTECH 2023, 4, 238–256. [Google Scholar] [CrossRef]
- Sruthi, K.B.; Menon, A.; Akash, P.; Vasudevan Soniya, E. Pervasive translation of small open reading frames in plant long non-coding RNAs. Front. Plant Sci. 2022, 13, 975938. [Google Scholar] [CrossRef]
- Fesenko, I.; Shabalina, S.A.; Mamaeva, A.; Knyazev, A.; Glushkevich, A.; Lyapina, I.; Ziganshin, R.; Kovalchuk, S.; Kharlampieva, D.; Lazarev, V.; et al. A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Res. 2021, 49, 10328–10346. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, J.J.; Storz, G. Two for one: Regulatory RNAs that encode small proteins. Trends Biochem. Sci. 2023, 48, 1035–1043. [Google Scholar] [CrossRef]
- Couzigou, J.M.; Lauressergues, D.; Bécard, G.; Combier, J.P. miRNA-encoded peptides (miPEPs): A new tool to analyze the roles of miRNAs in plant biology. RNA Biol. 2015, 12, 1178–1180. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, F.; Yada, T.; Akimitsu, N. Micropeptides encoded in transcripts previously identified as long non-coding RNAs: A new chapter in transcriptomics and proteomics. Front. Genet. 2018, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Bazin, J.; Baerenfaller, K.; Gosai Sager, J.; Gregory Brian, D.; Crespi, M.; Bailey-Serres, J. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc. Natl. Acad. Sci. USA 2017, 114, E10018–E10027. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Sharma, N.; Prasad, M. Noncoding but Coding: Pri-Mirna into the Action. Trends Plant Sci. 2021, 26, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Song, Y.; Zhang, L.; Guo, D.; He, J.; Wang, L.; Song, S.; Xu, W.; Zhang, C.; Lers, A.; et al. Coding of Non-coding RNA: Insights Into the Regulatory Functions of Pri-MicroRNA-Encoded Peptides in Plants. Front. Plant Sci. 2021, 12, 641351. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.Y.; Ryazantsev, D.Y.; Erokhina, T.N. Possible functions of the conserved peptides encoded by the RNA-precursors of miRNAs in plants. Arch. Proteom. Bioinf. 2021, 2, 1–3. [Google Scholar]
- Erokhina, T.N.; Ryazantsev, D.Y.; Zavriev, S.K.; Morozov, S.Y. Regulatory miPEP Open Reading Frames Contained in the Primary Transcripts of microRNAs. Int. J. Mol. Sci. 2023, 24, 2114. [Google Scholar] [CrossRef] [PubMed]
- Ormancey, M.; Thuleau, P.; Combier, J.-P.; Plaza, S. The essentials on microRNA-encoded peptides from plants to animals. Biomolecules 2023, 13, 206. [Google Scholar] [CrossRef]
- Yadav, A.; Sanyal, I.; Rai, S.P.; Lata, C. An overview on miRNA-encoded peptides in plant biology research. Genomics 2021, 113, 2385–2391. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Meng, J.; Luan, Y. LncRNA-Encoded Short Peptides Identification Using Feature Subset Recombination and Ensemble Learning. Interdiscip. Sci. 2022, 14, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kumar, S.; Mohapatra, T. MicroRNA: Noncoding but still coding, another example of self-catalysis. Funct. Integr. Genom. 2022, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Gautam, H.; Sharma, A.; Trivedi, P.K. Plant microProteins and miPEPs: Small molecules with much bigger roles. Plant Sci. 2023, 326, 111519. [Google Scholar] [CrossRef]
- Rohrig, H.; Schmidt, J.; Miklashevichs, E.; Schell, J.; John, M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc. Natl. Acad. Sci. USA 2002, 99, 1915–1920. [Google Scholar] [CrossRef]
- de Araújo, P.M.; Grativol, C. In silico identification of candidate miRNA-encoded Peptides in four Fabaceae species. Comput. Biol. Chem. 2022, 97, 107644. [Google Scholar] [CrossRef]
- Dragomir, M.P.; Manyam, G.C.; Ott, L.F.; Berland, L.; Knutsen, E.; Ivan, C.; Lipovich, L.; Broom, B.M.; Calin, G.A. FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs. Noncoding RNA 2020, 6, 41. [Google Scholar] [CrossRef]
- Liu, S.J.; Lim, D.A. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep. 2018, 19, e46955. [Google Scholar] [CrossRef]
- Li, J.; Liu, C. Coding or Noncoding, the Converging Concepts of RNAs. Front. Genet. 2019, 10, 496. [Google Scholar] [CrossRef]
- Fesenko, I.; Kirov, I.; Kniazev, A.; Khazigaleeva, R.; Lazarev, V.; Kharlampieva, D.; Grafskaia, E.; Zgoda, V.; Butenko, I.; Arapidi, G.; et al. Distinct types of short open reading frames are translated in plant cells. Genome Res. 2019, 29, 1464–1477. [Google Scholar] [CrossRef]
- Sharma, A.; Badola, P.K.; Bhatia, C.; Sharma, D.; Trivedi, P.K. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat. Plants 2020, 6, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Mamaeva, A.; Knyazev, A.; Glushkevich, A.; Fesenko, I. Quantitative proteomic dataset of the moss Physcomitrium patens PSEP3 KO and OE mutant lines. Data Brief 2021, 40, 107715. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ke, T.; Liu, R.; Yu, J.; Dong, C.; Cheng, M.; Huang, J.; Liu, S. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus. PLoS ONE 2015, 10, e0137414. [Google Scholar] [CrossRef] [PubMed]
- Staehelin, C.; Charon, C.; Boller, T.; Crespi, M.; Kondorosi, A. Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc. Natl. Acad. Sci. USA 2001, 98, 15366–15371. [Google Scholar] [CrossRef] [PubMed]
- Gultyaev, A.P.; Koster, C.; van Batenburg, D.C.; Sistermans, T.; van Belle, N.; Vijfvinkel, D.; Roussis, A. Conserved structured domains in plant non-coding RNA enod40, their evolution and recruitment of sequences from transposable elements. NAR Genom. Bioinform. 2023, 5, lqad091. [Google Scholar] [CrossRef] [PubMed]
- Kouchi, H.; Takane, K.; So, R.B.; Ladha, J.K.; Reddy, P.M. Rice ENOD40: Isolation and expression analysis in rice and transgenic soybean root nodules. Plant J. 1999, 18, 121–129. [Google Scholar] [CrossRef]
- Casson, S.A.; Chilley, P.M.; Topping, J.F.; Evans, I.M.; Souter, M.A.; Lindsey, K. The POLARIS gene of arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 2002, 14, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
- Chilley, P.M.; Casson, S.A.; Tarkowski, P.; Hawkins, N.; Wang, K.L.; Hussey, P.J.; Beale, M.; Ecker, J.R.; Sandberg, G.K.; Lindsey, K. The POLARIS peptide of arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 2006, 18, 3058–3072. [Google Scholar] [CrossRef] [PubMed]
- Narita, N.N.; Moore, S.; Horiguchi, G.; Kubo, M.; Demura, T.; Fukuda, H.; Goodrich, J.; Tsukaya, H. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J. 2004, 38, 699–713. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Yamaguchi, T.; Kazama, T.; Ito, T.; Horiguchi, G.; Tsukaya, H. ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot. Plant Cell. Physiol. 2011, 52, 59–69. [Google Scholar] [CrossRef]
- Butenko, M.A.; Patterson, S.E.; Grini, P.E.; Stenvik, G.E.; Amundsen, S.S.; Mandal, A.; Aalen, R.B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 2003, 15, 2296–2307. [Google Scholar] [CrossRef] [PubMed]
- Blanvillain, R.; Young, B.; Cai, Y.M.; Hecht, V.; Varoquaux, F.; Delorme, V.; Lancelin, J.M.; Delseny, M.; Gallois, P. The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J. 2011, 30, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Lauressergues, D.; Couzigou, J.M.; Clemente, H.S.; Martinez, Y.; Dunand, C.; Bécard, G.; Combier, J.P. Primary transcripts of microRNAs encode regulatory peptides. Nature 2015, 520, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Couzigou, J.M.; Lauressergues, D.; Andre, O.; Gutjahr, C.; Guillotin, B.; Becard, G.; Combier, J.P. Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe 2017, 21, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Lauressergues, D.; Ormancey, M.; Guillotin, B.; Gervais, V.; Plaza, S.; Combier, J.P. Characterization of plant microRNA-encoded peptides (miPEPs) reveals molecular mechanisms from the translation to activity and specificity. Cell Rep. 2022, 38, 110339. [Google Scholar] [CrossRef] [PubMed]
- Couzigou, J.M.; Andre, O.; Guillotin, B.; Alexandre, M.; Combier, J.P. Use of microRNA_encoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol. 2016, 211, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Ormancey, M.; Guillotin, B.; Ribeyre, C.; Medina, C.; Jariais, N.; San Clemente, H.; Thuleau, P.; Plaza, S.; Beck, M.; Combier, J.P. Immune-enhancing miPEPs reduce plant diseases and offer new solutions in agriculture. Plant Biotechnol. J. 2024, 22, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Su, L.Y.; Zhang, S.T.; Xu, X.P.; Chen, X.H.; Li, X.; Jiang, M.Q.; Huang, S.Q.; Chen, Y.K.; Zhang, Z.H.; et al. Analyses of microRNA166 gene structure, expression, and function during the early stage of somatic embryogenesis in Dimocarpus longan Lour. Plant Physiol. Biochem. 2020, 147, 205–214. [Google Scholar] [CrossRef]
- Ormancey, M.; Le Ru, A.; Duboe, C.; Jin, H.; Thuleau, P.; Plaza, S.; Combier, J.P. Internalization of miPEP165a into Arabidopsis roots depends on both passive diffusion and endocytosis-associated processes. Int. J. Mol. Sci. 2020, 21, 2266. [Google Scholar] [CrossRef]
- Ormancey, M.; Guillotin, B.; San Clemente, H.; Thuleau, P.; Plaza, S.; Combier, J.P. Use of microRNA-encoded peptides to improve agronomic traits. Plant Biotechnol. J. 2021, 19, 1687–1689. [Google Scholar] [CrossRef]
- Erokhina, T.N.; Ryazantsev, D.Y.; Samokhvalova, L.V.; Mozhaev, A.A.; Orsa, A.N.; Zavriev, S.K.; Morozov, S.Y. Activity of chemically synthesized peptide encoded by the miR156A precursor and conserved in the brassicaceae family plants. Biochemistry 2021, 86, 551–562. [Google Scholar] [CrossRef]
- Kumar, R.S.; Sinha, H.; Datta, T.; Asif, M.H.; Trivedi, P.K. microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis. Plant Physiol. 2023, 192, 837–856. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.J.; Deng, B.H.; Gao, J.; Zhao, Z.Y.; Chen, Z.L.; Song, S.R.; Wang, L.; Zhao, L.P.; Xu, W.P.; Zhang, C.X.; et al. A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation. Plant Physiol. 2020, 183, 656–670. [Google Scholar] [CrossRef]
- Vale, M.; Rodrigues, J.; Badim, H.; Gerós, H.; Conde, A. Exogenous application of non-mature miRNA-encoded miPEP164c inhibits proanthocyanidin synthesis and stimulates anthocyanin accumulation in grape berry cells. Front. Plant Sci. 2021, 12, 706679. [Google Scholar] [CrossRef]
- Chen, Q.J.; Zhang, L.P.; Song, S.R.; Wang, L.; Xu, W.P.; Zhang, C.X.; Wang, S.P.; Liu, H.F.; Ma, C. Vvi-miPEP172b and vvi-miPEP3635b increase cold tolerance of grapevine by regulating the corresponding MIRNA genes. Plant Sci. 2022, 5, 111450. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.Y.; Ryazantsev, D.Y.; Erokhina, T.N. Bioinformatics analysis of the novel conserved micropeptides encoded by the plants of family Brassicaceae. J. Bioinf. Syst. Biol. 2019, 2, 066–077. [Google Scholar] [CrossRef]
- Lu, L.; Chen, X.; Chen, J.; Zhang, Z.; Zhang, Z.; Sun, Y.; Wang, Y.; Xie, S.; Ma, Y.; Song, Y.; et al. MicroRNA-encoded regulatory peptides modulate cadmium tolerance and accumulation in rice. Plant Cell Environ. 2024, 47, 1452–1470. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, A.; Smoczynska, A.; Bielewicz, D.; Pacak, A.; Hensel, G.; Kumlehn, J.; Maciej Karlowski, W.; Grabsztunowicz, M.; Sobieszczuk-Nowicka, E.; Jarmolowski, A.; et al. PEP444c encoded within the MIR444c gene regulates microRNA444c accumulation in barley. Physiol. Plant. 2023, 175, e14018. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, W.; Chen, S.; Qian, J.; Li, L. Genome-Wide Identification and Characterization of Small Peptides in Maize. Front. Plant Sci. 2021, 12, 695439. [Google Scholar] [CrossRef]
- Combier, J.P.; Lauressergues, D.; Becard, G.; Payre, F.; Plaza, S.; Cavaille, J. Micropeptides and Use of Same for Modulating Gene Expression. US Patent US 20200131234A1, 30 April 2020. [Google Scholar]
- Gonzalo, L.; Tossolini, I.; Gulanicz, T.; Cambiagno, D.A.; Kasprowicz-Maluski, A.; Smolinski, D.J.; Mammarella, M.F.; Ariel, F.D.; Marquardt, S.; Szweykowska-Kulinska, Z.; et al. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. Nat. Plants 2022, 8, 402–418. [Google Scholar] [CrossRef]
- Crossley, M.P.; Bocek, M.; Cimprich, K.A. R-loops as cellular regulators and genomic threats. Mol. Cell. 2019, 73, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Boque-Sastre, R.; Soler, M.; Oliveira-Mateos, C.; Portela, A.; Moutinho, C.; Sayols, S.; Villanueva, A.; Esteller, M.; Guil, S. Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc. Natl. Acad. Sci. USA 2015, 112, 5785–5790. [Google Scholar] [CrossRef]
- Kumar, R.S.; Datta, T.; Sinha, H.; Trivedi, P.K. Light-dependent expression and accumulation of miR408-encoded peptide, miPEP408, is regulated by HY5 in Arabidopsis. Biochem. Biophys. Res. Commun. 2024, 706, 149764. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Badola, P.K.; Gautam, H.; Gaddam, S.R.; Trivedi, P.K. HY5 regulates light-dependent expression and accumulation of miR858a-encoded peptide, miPEP858a. Biochem. Biophys. Res. Commun. 2022, 589, 204–208. [Google Scholar] [CrossRef]
- Ormancey, M.; Guillotin, B.; Merret, R.; Camborde, L.; Duboé, C.; Fabre, B.; Pouzet, C.; Impens, F.; Van Haver, D.; Carpentier, M.C.; et al. Complementary peptides represent a credible alternative to agrochemicals by activating translation of targeted proteins. Nat. Commun. 2023, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- Krouk, G.; Szponarski, W.; Ruffel, S. Unleashing the potential of peptides in agriculture and beyond. Trends Plant Sci. 2023, 28, 734–736. [Google Scholar] [CrossRef]
Plant Family, Plant Species, miPEP Name and Size | Molecular and Sub-Cellular Targets of Synthetic Plant miPEPs | Biological Activity of Synthetic Plant miPEPs | Reference |
---|---|---|---|
Fabaceae Medicago truncatula Mt-miPEP171b 20 aa * | GFP-fusion localizes in the nucleus and cytoplasm after expression in tobacco leaf cells | activates transcription of pri-miR171b, increases expression of plant gene LOM1, stimulates arbuscular mycorrhization, reduces lateral root density | [53] |
Medicago truncatula Mt-miPEP171a 10 aa | unknown | decreases mycorrhization rate and LOM1 expression | [54] |
Lotus japonicus Lj-miPEP171b 22 aa | unknown | increases expression of pri-miRNA and mycorrhization rate | [54] |
Glycine max Gm-miPEP172c 16 aa | unknown | stimulates pri-miR172c expression, significantly increases the nodule number observed in plants | [56] |
Phaseolus vulgaris Pv-miPEP169h 23 aa | unknown | significant resistance to necrotrophic fungus Botrytis cinerea | [57] |
Sapindaceae Dimocarpus longan Dl-miPEP166 S338 50 aa | unknown | increases the expression of own pri-miRNA and inhibits plant gene ATHB15 | [58] |
Brassicaceae Arabidopsis thaliana At-miPEP165a 18 aa | mostly cytoplasm | increases expression of pri-miRNA and increases primary root length due to the stimulation of cellular proliferation rather than an increase in cell length | [53,59] |
A. thaliana At-miPEP397a 18 aa | unknown | increases the expression of their cognate pri-miRNAs and total root development | [60] |
A. thaliana At-miPEP858a 44 aa | Unknown | enhances the transcription of the corresponding pri-miRNA and causes increased root length and modulated levels of flavonoids | [41] |
Brassica oleraceae Bo-miPEP156a 33 aa | mostly nucleus in plant and animal cells | enhances the transcription of the corresponding pri-miRNA and causes increased root length | [55,61] |
B. oleraceae Bo-miPEP397a 10 aa | unknown | increases the expression of their respective pri-miRNAs and increases total plant size | [60] |
A. thaliana At-miPEP408 35 aa | unknown | increases the sensitivity of seedlings toward low sulfur and arsenite As(III) stresses | [62] |
VitaceaeVitis vinifera Vvi-miPEP171d1 7 aa | mainly in the cytoplasm and partially in the nucleus | increases expression of Vvi-miR171d and pri-miR171d and the number of adventitious roots | [63] |
Vitis vinifera Vvi-miPEP164c 16 aa | unknown | the upregulated transcript levels of pre-miR164c and inhibited proanthocyanidin synthesis | [64] |
V. vinifera Vvi-MIR172b 16 aa | unknown | increases the expression of corresponding miRNAs; plant tissue exhibits a higher cold tolerance | [65] |
SolanaceaeSolanum lycopersicum Sl-miPEP169d 10 aa | unknown | exogenic application lowers the level of tomato leaf infection by Alternaria solani | [57] |
RosaceaeFragaria vesca Fv-miPEP169h 21 aa | unknown | significantly decreases lesion size after leaf inoculation with B. cinerea spores | [57] |
Plant Family, Plant Species, miPEP Name and Size | Molecular and Sub-Cellular Targets of Synthetic Plant miPEPs | Biological Activity of Synthetic Plant miPEPs | Reference |
---|---|---|---|
PoaceaeOryza sativa Os-miPEP156e 36 aa | unknown | enhances the transcript level of pri-miR156e and reduces inhibition of seedling growth resulting in an increase in root length and biomass under Cd stress | [67] |
Oryza sativa Os-miPEP172b 9 aa | unknown | increases the expression of pri-miRNA and improves the resistance of rice seedlings against Cd stress | [67] |
Hordeum vulgare Hv-miPEP444c 119 aa | unknown | CRISPR-cas9 mediated gene editing of Hv-miPEP444c coding sequence has revealed that a reduction of root and shoot surface area | [68] |
Zea mays Zma-miPEP159d | unknown | unknown | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erokhina, T.N.; Ryazantsev, D.Y.; Zavriev, S.K.; Morozov, S.Y. Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long “Non-Coding” RNAs. Plants 2024, 13, 1137. https://doi.org/10.3390/plants13081137
Erokhina TN, Ryazantsev DY, Zavriev SK, Morozov SY. Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long “Non-Coding” RNAs. Plants. 2024; 13(8):1137. https://doi.org/10.3390/plants13081137
Chicago/Turabian StyleErokhina, T. N., D. Y. Ryazantsev, S. K. Zavriev, and S. Y. Morozov. 2024. "Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long “Non-Coding” RNAs" Plants 13, no. 8: 1137. https://doi.org/10.3390/plants13081137
APA StyleErokhina, T. N., Ryazantsev, D. Y., Zavriev, S. K., & Morozov, S. Y. (2024). Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long “Non-Coding” RNAs. Plants, 13(8), 1137. https://doi.org/10.3390/plants13081137