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Abstract: Rice is a major food crop for more than half of the world’s population, while its production
is seriously threatened by flooding, a common environmental stress worldwide. Flooding leads to
oxygen deficiency, which is a major problem for submerged plants. Over the past three decades,
significant progress has been made in understanding rice adaptation and molecular regulatory mech-
anisms in response to flooding. At the seed germination and seedling establishment stages, the
CIPK15-SnRK1A-MYBS1 signaling cascade plays a central role in determining rice submergence
tolerance. However, from seedlings to mature plants for harvesting, SUB1A- and SK1/SK2-regulated
pathways represent two principal and opposite regulatory mechanisms in rice. In addition, phytohor-
mones, especially gibberellins, induce adaptive responses to flooding throughout the rice growth
period. This review summarizes the significant adaptive traits observed in flooded rice varieties and
updates the molecular genetics and mechanisms of submergence tolerance in rice.

Keywords: Oryza sativa L.; flooding; CIPK15; SUB1A; SK1/SK2; phytohormones

1. Introduction

Flooding is one of the most destructive environmental stresses worldwide [1]. Rice, the
primary staple food crop for more than half of the world’s population, is usually cultivated
in paddy fields but is also affected by flooding in rain-fed and irrigated lowlands where
plants face a high risk of submergence during their life cycle. Flooding can lead to two
different stresses: (1) submergence stress, where the plant organ is completely under water,
and (2) water-logging stress, where the plant leaf and stem are partially submerged under
water [2]. Flooding is considered a compound stress, and its primary effect is restricted
oxygen (O2) and carbon dioxide (CO2) availability in plant tissues, owing to the slow
diffusion of gases in water [3,4]. The decline in molecular O2 results in the restriction of
ATP synthesis and carbohydrate resources, which has major consequences for growth and
survival [5].

Rice is the only crop that can successfully germinate and grow under submergence.
When germinated underwater, the coleoptile elongates rapidly, whereas the growth of
the roots and leaves are blocked. The rapid elongation of the hollow coleoptile acts as a
snorkel, extending to the water surface, thereby obtaining more O2 to support seedling
establishment. Thus, anaerobic germination (AG) and coleoptile elongation are two major
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adaptive traits during the early growth stage of rice upon submergence [6–9]. From
seedlings to mature plants for harvesting, submergence seriously compromises the overall
growth, development, and yield potential of rice [10]. Based on flooding regimes, rice
can be roughly divided into two major ecotypes: rain-fed lowland rice that experiences
shallow submergence, and deepwater rice that experiences medium to deep submergence
during the monsoon season [11–15]. In these cases, two completely different strategies,
quiescence and escape, are employed for optimal growth and survival. For example, certain
landraces of lowland rice (e.g., FR13A) show flooding tolerance for up to two weeks by
entering into an energy conservation mode, in which growth is temporarily arrested and
energy sources are conserved for regrowth after the stress conditions subside. In contrast,
deepwater rice exhibits the potential for rapid growth (especially internode elongation),
consuming carbohydrate resources, so that the upper leaves rise above the water level to
escape submergence [2,12,16].

From the middle of 1990 to now, the genetic basis of submergence tolerance in rice has
been gradually discovered, and several major regulators such as Submergence-1 (SUB1) and
SNORKEL1/2 (SK1/2) have been cloned and functionally characterized [17–19]. Recently,
several studies have revealed the molecular regulatory mechanisms underlying rice sub-
mergence tolerance during the seed germination and seedling establishment stages. In this
review, we highlight the significant adaptive traits observed in flooded rice varieties and
update the molecular genetics and the mechanism of submergence tolerance in rice.

2. Tolerance of Rice to Submergence at Seed Germination and Seedling Establishment
Stages and Underlying Molecular Regulatory Mechanisms
2.1. Metabolism and Growth Change in Response to Submergence

In traditional rice cultivation, seeds are usually germinated in the nursery, and then,
well-established seedlings are transplanted into puddled fields for further growth. Recently,
direct seeding, whereby rice seeds are sown directly into the soil, has become an increasingly
popular cultivation method, owing to its low cost and convenience [20]. However, flooding
is common under direct seeding, particularly in rain-fed areas and fields with uneven
surfaces and heavy post-sowing rainfall. Flooding stress leads to unfavorable metabolic
stress for plants owing to insufficient oxygen supply. Oxygen deprivation compromises
the mitochondrial electron transport chain (mETC), leading to an oxidative burst and the
release of sequestered calcium into the cytosol. This surge in oxidative stress activates
the mitogen-activated protein kinase (MAPK) pathway, which in turn triggers multiple
signaling mechanisms to circumvent the energy crisis [21,22]. Although rice exhibits a
certain degree of tolerance to oxygen deficiency for AG and anaerobic seedling development
(ASD), the AG/ASD capabilities of most rice varieties are poor.

Numerous studies show that rice mainly employs ‘metabolic adaptation’ and ‘escape’
strategies to ensure seed germination and seedling development under flooded anaerobic
conditions [6,9,16]. Upon submergence, starch reserves within the endosperm are hy-
drolyzed to produce sugars for fermentation-mediated energy production to support seed
germination and seedling growth. During this process, alpha amylase enzymes, principally
the AMY1 and AMY2 subfamilies, enable the degradation of starch in rice grains [23]. In
air, the rice coleoptile is initially white and turns green after one day. Along with starch
degradation in the endosperm, energy supply enables primary root development [24].
When germinated underwater, coleoptiles can grow for several days and rapidly elongate
to reach the water surface, allowing O2 to diffuse into the endosperm to hydrolyze nutrients
and support vigorous seedling establishment [25]. However, flooded anaerobic conditions
completely inhibit root growth, which is only reinitiated as coleoptiles approach the water
surface. Several important regulators and signaling cascades of rice AG/ASD have been
established. CIPK15-mediated energy signaling and phytohormone signaling, including
gibberellins (GA), abscisic acid (ABA), and auxin, play essential roles in determining rice
seed germination and seedling establishment during submergence (Figure 1).
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rice submergence tolerance during seed germination and seedling establishment stages.

2.2. CIPK15-Mediated Sugar-Sensing Signaling in AG/AGD Regulation

It is well established that the CIPK15-SnRK1A-MYBS1 signaling cascade plays a critical
role in O2 deficiency tolerance during rice seed germination and seedling development
stages [26,27]. Submergence can trigger Ca2+ flux, which in turn induces conformational
changes in calcineurin B-like proteins (CBLs) to allow for their hydrophobic interactions
with other proteins [28]. Previous studies have demonstrated that several CBL calcium sen-
sors (CBL2-6) can interact with CBL protein-interacting protein kinases 14 and 15 (CIPK14
and CIPK15) [29]. Recently, Ye and his co-workers found that variations in the OsCBL10
promoter sequences contribute to this divergence in rice flooding tolerance. Flooding-
tolerant rice cultivars containing the OsCBL10 T-type promoter (which exhibits a much
lower response to flooding stress than the I-type promoter) have shown lower Ca2+ flow
and increased CIPK15 protein accumulation, aAmy3 expression, and total aAmy activity in
comparison to those in flooding-intolerant cultivars [30]. The interaction between CBLs
and CIPKs activates sucrose non-fermenting 1 (Snf1)-related protein kinase 1 (SnRK1A),
a global energy and stress sensor in rice, which results in the transcriptional activation
and phosphorylation of MYB SUCROSE 1 (MYBS1) transcription factor. Subsequently,
the expression of the starvation-induced α-amylase gene, αAmy3/RAmy3D, is activated by
MYBS1 [27]. MYB SUCROSE 2 (MYBS2) competes with MYBS1 to bind and suppress the
aAmy promoter during submergence [31].

Several regulators/substrates of SnRK1A have been reported to modulate rice sub-
mergence tolerance. Two hypoxia-inducible SnRK1A-INTERACTING NEGATIVE REGU-
LATORs (SKIN1/2) can inhibit the expression of MYBS1 and aAmy3, leading to the suppres-
sion of starch-to-sugar hydrolysis, thus delaying germination and seedling growth under
submergence [32]. TREHALOSE-6-PHOSPHATE PHOSPHATASE 7 (TPP7) is another
important regulator of SnRK1A, which promotes AG/ARD [33]. TPP7 is the genetic deter-
minant of a major quantitative trait locus (QTL), qAG-9-2, which catalyzes the conversion of
T6P to trehalose. Reduced T6P levels release the inhibition of the CIPK15-SnRK1A-MYBS1
pathway and allow for increased starch mobilization in the form of readily fermentable
sugars, thus enhancing coleoptile elongation and embryo germination [33]. Recently, a
member of the FLC-like zinc finger (FLZ) protein family, FLZ18, was found to interact with
SnRK1A and repress its transcriptional activation to αAmy3. Consistent with this, FLZ18-
overexpressing rice plants are more sensitive to submergence than wild-type Nipponbare
plants during the seed germination stage [34]. EBP89, a member of the AP2/ERF subfamily,
was recently identified as a substrate of SnRK1A that can repress the expression of genes
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involved in the ROS-scavenging system, for example ascorbate peroxidase 1 (APX1), thus
negatively regulating AG/ASD [35].

2.3. Hormone Signaling in AG/AGD Regulation

Plant hormones are central regulators of plant growth, development, and responses
to changing environments. Recent studies have revealed the critical roles of GA, ABA,
and auxin in rice AG/ASD regulation. GA is a well-known hormone that can promote
seed germination and seedling growth, whereas ABA represses these two processes. The
balance between GA and ABA signaling determines the final seed germination performance.
Recently, the 14-3-3 protein, GF14h, was shown to confer tolerance to rice AG/AGD.
GF14h can interact with HOX3 and enhance its transcriptional repression activity toward
downstream PYL5, an ABA receptor gene, to attenuate ABA signaling. GF14h can also
interact with OsVP1, a transcription activator of ABA signaling, thus precisely controlling
ABA response under submergence conditions. Interestingly, GF14h also promotes GA
biosynthesis, possibly through the upregulation of GA20ox1 expression, along with other
unknown transcription factors. Therefore, GF14h can act as a signal switch to balance ABA
signaling and GA biosynthesis, thereby boosting the seeding rate of anaerobic-sensitive
varieties under flooded direct-seeded conditions [36]. After germination, rapid elongation
of coleoptiles is important for conferring tolerance to submergence. Most recently, He et al.
reported that the natural variation in rice coleoptile length subjected to submergence is
determined by UGT75A, a glucosyl-transferase-encoding gene that decreases free ABA and
jasmone acid (JA) levels by promoting the glycosylation of these two phytohormones under
submergence conditions [37]. In addition, they found that UGT75A accelerates coleoptile
elongation by inhibiting the interactions between JASMONATE ZIMDOMAIN (JAZ) and
ABSCISIC ACID-INSENSITIVE (ABI) proteins. This study further highlights the negative
effects of ABA signaling on AG/AGD in rice.

Rapid coleoptile elongation during submergence is mainly attributed to cell elon-
gation. Auxin plays an essential role in this process [38]. MiR393 can shear the mRNA
of TRANSPORT INHIBI-TOR RESPONSE 1 (TIR1)/AUXIN SIGNALING F-BOX 2 (AFB2)
auxin receptors, which regulate AUXIN RESPONSE FACTOR (ARF) expression [39]. Sub-
mergence downregulates the expression of miR393, thus activating the auxin signaling
pathway and stimulating coleoptile elongation in rice [40]. Interestingly, a recent report has
shown that a certain threshold level of endogenous auxin is required for rice germination
and early seedling growth during submergence [41]. Lee and his co-workers showed that a
submergence-repressed miR167 is involved in the metabolic regulation of IAA through the
miR167a-ARF-GH3 pathway [41]. MiR167-directed ARF mRNA cleavage is accompanied
by the downregulation of glycoside hydrolase 3 (GH3) [42]. GH3-8 encodes an IAA-amido
synthetase that prevents free IAA accumulation and maintains auxin homeostasis [43].
Reduced miR167 levels or increased GH3-8 levels reduce the endogenous levels of free
IAA, thus promoting rice AG/AGD [41]. Recently, OsPIN2, a gene encoding an auxin
efflux transporter, was found to negatively regulate hypoxia tolerance by affecting auxin
transport and ROS accumulation [44]. These findings indicate that plant hormones are
important regulators of AG/AGD in rice.

3. The Tolerance of Rice to Submergence at the Vegetative Stage and the Underlying
Molecular Regulatory Mechanisms
3.1. Morphologic Adaptation to Submergence at the Vegetative Stage

In natural fields, from seedlings to mature plants for harvesting, rice is frequently
subjected to submergence stress, which seriously compromises its growth, development,
and yield. As a wetland plant species, rice possesses several adaptive traits, such as
aerenchyma and adventitious roots, to cope with submergence stress.
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3.1.1. Aerenchyma Formation

The major adaptive feature of rice in response to submergence is the formation of
aerenchyma, which is well-developed in the leaves, sheaths, roots, and internodes [2,10].
Ethylene triggers the formation of aerenchyma in maize and rice [5]. This aerenchyma
constitutes gas spaces and becomes interconnected, which allows oxygen to transit from the
above-water parts of the plant to the submerged roots. Generally, aerenchyma formation
begins at the apical parts of the roots and gradually increases toward the basal parts of
the roots [45]. There are two main types of aerenchyma: schizogenous and lysigenous.
Lysigenous aerenchyma has been well studied, which can be constitutively formed in
roots even under well-drained soil conditions, and its formation can be further induced
under waterlogging conditions [46]. In addition, aerenchyma formation is less extensive in
non-wetland plant species than in wetland plant species. Consistent with this, non-wetland
plants are less tolerant to waterlogging than wetland plants such as rice [45,47]. Hence,
the capacity to produce enough aerenchyma is important for increasing the tolerance to
waterlogging in dryland crops [48,49].

3.1.2. Adventitious Roots Formation

One of the most prominent outcomes of flooding is the low oxygen availability, which
severely inhibits root growth. Limited oxygen availability impedes cell division and
elongation, thus inhibiting the elongation of rice roots [50]. Under submerged conditions,
rice root systems tend to become shallower and more compact, accompanied by an increase
in adventitious roots (ARs) [10]. Adventitious roots reduce the distance between oxygen
and the nutrient supply from the shoot. Pre-existing and newly formed ARs emerge upon
submergence to replace the primary root system, which becomes easily dysfunctional
when flooded under water. This adaptation enables plants to acquire oxygen and nutrients
efficiently under flooded conditions. Recently, Lin et al. found that rice cultivar T65
produces only one type of AR, whereas NIL-12 (near-isogenic lines) enables the production
of two types of ARs following partial submergence. Further morphological and anatomical
traits suggest that AR2 (type 2 ARs, emergence several days later at the nodal region above
type 1 ARs) is better adapted to flooding than AR1 (type 1 ARs, emergence from nodes
early during submergence) [51].

3.1.3. Shoot Elongation

Under flooded conditions, shoot elongation in rice is observed to be a response to
flooding. Depending on the depth and duration of submergence, rice cultivars employ
two different approaches to modulate shoot morphology. One of the approaches is the
quiescence strategy, in which shoot elongation is arrested so that carbohydrates can be
preserved for regrowth after floodwater recedes [4,6,52]. A comprehensive study per-
formed on a group of 903 cultivars from the International Rice Research Institute provided
strong evidence supporting the negative correlation between shoot elongation and submer-
gence tolerance [53]. This deliberate reduction in shoot elongation allows these genotypes
to effectively allocate resources and increase their probability of survival during the re-
covery stage [54]. Another approach is the escape strategy, which is characteristic of
upland cultivars, in which the shoot/internode elongates rapidly to potentially grow above
water [4,6,52]. Deepwater rice cultivars frequently use this approach to optimize survival
under submerged conditions during the monsoon season [2].

3.2. Genetic Mechanism of Submergence Tolerance

The genetic basis of rice submergence tolerance at the vegetative stage is becoming
increasingly clear. An overview picture is shown in Figure 2. ‘Quiescence’ and ‘Escape’ are
two major and opposite strategies employed to counteract the effects of submergence by
lowland rice and deepwater rice, respectively (Figure 2).
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3.2.1. SUB1A Pathway

Genetic mapping studies have associated the submergence-tolerant phenotype with
a single QTL on chromosome 9 in FR13A, named SUB1. This QTL accounts for 69%
of the phenotypic variation in rice flooding tolerance [55]. Further studies have shown
that the SUB1 locus contains three genes, SUB1A, SUB1B, and SUB1C, which encode
proteins belonging to the Group VII ethylene-responsive factor (ERFVII) [17,19,56]. Most
rice varieties contain SUB1B and SUB1C genes, whereas SUB1A only exists in flooding-
tolerant varieties [15,57]. Upon submergence, SUB1A and SUB1C expression is rapidly
induced; however, the expression of SUB1B is only slightly responsive [17]. Populations
carrying SUB1A have two alleles, SUB1A-1 and SUB1A-2. The only difference between
the two alleles is the presence of a proline residue at position 186 in SUB1A-2, instead of a
serine residue in SUB1A-1 [15,17,19,58]. SUB1A-1 is specifically identified in submergence-
tolerant cultivars, such as FR13A, and it can be strongly induced upon submergence to
exert a determinant role in submergence stress responses, whereas the SUB1A-2 allele,
which is only found in submergence-sensitive cultivars, such as IR29, is poorly induced
during submergence [15,58].

Under flooding conditions, ethylene inhibits internode growth in submergence-tolerant
rice cultivars by inducing SUB1A expression [19]. As a transcription factor, SUB1A-1 can
regulate a spectrum of genes involved in anaerobic metabolism, reactive oxygen species
regulation, and leaf senescence during and after submergence by directly interacting with
the GCC box in their promoters. During submergence, mitogen-activated protein kinase3
(MPK3) can specifically interact with and phosphorylate SUB1A-1 to activate it. Interest-
ingly, activated SUB1A-1 can promote the expression of MPK3 by binding to the GCC box
in its promoter, thus forming a positive feedback loop during submergence [59]. SUB1A-1
also activates the transcription of other Group VII ERF transcription factors, such as ERF66
and ERF67, and enhances submergence tolerance by regulating various hypoxia-responsive
genes [60]. Recently, one report showed that SUB1A-1 can interact with ADA2b (ALTER-
ATION/DEFICIENCY IN AC-TIVATION 2) of the ADA2b-GCN5 (GENERAL CONTROL
NON-REPRESSIBLE 5) acetyltransferase complex and recruits this complex to modify the
chromatin structure of the ERF66/ERF67 promoter region and activate gene expression,
which in turn enhances rice submergence tolerance [58]. In addition, the expression of
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DWARF1 (DWF1) and DWARF4 (DWF4), two key genes involved in the biosynthesis of
brassinosteroids (BRs), is significantly higher in M202-Sub1 (tolerant variety) than in M202
(intolerant variety) during submergence, suggesting that SUB1A-1 can activate BR signaling.
Consistent with the gene expression data, the SUB1A genotype has higher BR levels after
submergence than those of the intolerant genotype. BRs in turn activate the transcription
of the GA catabolic gene GA2 oxidase7 (GA2ox7) or the protein accumulation of slender
rice-1 (SLR1) and SLR1 like-1 (SLRL1), which negatively regulate GA responsiveness [61,62].
Apart from GA and BR signaling, the increase in ethylene levels also promotes the ex-
pression of ABA 8′-hydroxylases (ABA8ox), which stimulates the catabolism of bioactive
ABA to unstable ABA. However, the presence or absence of SUB1A does not affect the
decline in ABA levels in response to submergence, suggesting that growth inhibition
in these submergence-tolerant plants is mainly brought about through the regulation of
GA synthesis and signaling [63]. SUB1A overexpression also delays leaf yellowing and
enhances recovery from dark stress. Physiological analysis revealed that SUB1A post-
pones dark-induced senescence by maintaining chlorophyll and carbohydrate reserves
in the photosynthetic tissue. In line with this, RT-PCR results showed that SUB1A can
downregulate the expression of senescence-associated genes (SAGs), including stay-green
(SGR), red chlorophyll catabolite reductase1 (RCCR1), and non-yellow coloring1 (NYC1), when
submerged [64].

Interestingly, the above shown SUB1A-mediated regulatory mechanisms are not usu-
ally active for anoxic seed germination [14], whereas the CIPK15 pathway is essential for
this growth stage. But both SUB1A and CIPK15 play important roles in carbohydrate
consumption in adult plants upon submergence. SUB1A can inhibit SUB1C, a positive
regulator of the CIPK15-SnRK1A-MYBS1-RAmy3D pathway, resulting in limited growth
under submerged conditions [65].

3.2.2. SK1/SK2 Pathway

In contrast to the quiescent strategy, deepwater rice adapts to submergence by rapidly
elongating its internodes, thereby maintaining its leaves above the water surface. Through
map-based cloning, another major submergence tolerance QTL of qTIL12 in deepwater rice
was cloned, which contains two ERF transcription factors genes: SNORKEL1 (SK1) and
SNORKEL2 (SK2) [18]. SK1/SK2 is not expressed under aerobic conditions; however, as early
as 3 h of submergence treatment leads to their rapid accumulation. The expression of SK1
and SK2 is significantly induced by ethylene treatments, and overexpression of these genes
promotes internode elongation in normal paddy rice, suggesting that SK1 and SK2 regulate
internode elongation in response to ethylene [18]. SK1/SK2 cultivars can accumulate higher
levels of GAs that promote internode elongation [18]. EIL1, a rice homolog of Arabidopsis
EIN3, positively regulates ethylene response in rice [66]. A recent study showed that EIL1
can target the promoters of SK1 and SK2 to activate their expression.

SEMIDWARF1 (SD1), encoding a GA biosynthesis enzyme, was identified as the
qTIL1 causative gene [67]. Two amino acid differences in SD1 exist between the deepwater
rice variety C9285 and normal paddy rice, resulting in higher enzymatic activities in
deepwater rice than in normal paddy rice. EIL1 can also directly bind to and activate SD1
expression, thus promoting GA accumulation, particularly GA4, which promotes internode
elongation. Recently, a gene in the SUB1A-binding protein family, SAB23, encoding a
plant homeodomain (PHD)-type transcription factor, was identified as a novel negative
regulator of submergence tolerance in rice. SAB23 binds to the promoter of CYTOCHROME
P450 714B2 (CYP714B2), which encodes a GA13-oxidase that catalyzes the conversion of
GA53 to GA19, thus promoting the accumulation of bioactive GAs [68]. These findings
clearly indicate that the activation of GA signaling is a key step in conferring submergence
tolerance to deepwater rice.

Recently, an antagonistic regulatory mechanism of the GA-regulated stem growth in
deepwater rice has been explored. ACCELERATOR OF IN-TERNODE ELONGATION 1
(ACE1), which encodes a protein of unknown function, confers cells of the intercalary



Plants 2024, 13, 1178 8 of 11

meristematic region with the competence for cell division, leading to internode elongation
in the presence of GA. In contrast, DECEL-ERATOR OF INTERNODE ELONGATION 1
(DEC1), which encodes a zinc finger transcription factor, suppresses internode elongation
in response to GA [69]. More importantly, an analysis of genetic diversity suggests that
mutations in ACE1 and DEC1 have historically contributed to the selection of shorter plants
in domesticated populations of rice to increase their resistance to lodging, and of taller
plants in wild species of rice to adapt to grow in deep water. Based on these findings, the
regulation or modification of the GA pathway will be an efficient strategy for the molecular
breeding of submergence-tolerant rice cultivars.

4. Conclusions and Perspectives

During evolution, rice has developed several different strategies to cope with flood-
ing/submergence stress, which employ different genes or proteins to induce various
morphological and physiological changes to survive and grow. During the seed germina-
tion and seedling establishment stages, CIPK15-mediated sugar signaling and the crosstalk
between GA, ABA, JA, and auxin signaling commonly determine the tolerance of rice to
submergence. At the vegetative growth stage, SUB1A functions as the central component
of the submergence response that regulates multiple processes, such as entering a quiescent
stage to preserve carbohydrate resources and helping the submerged plants acclimate
during de-submergence. In contrast, SK1/SK2 promotes GA accumulation and triggers
rapid shoot/internode elongation using carbohydrate reserves to escape flooding. Despite
these exciting findings, the entire landscape of submergence tolerance in rice is not entirely
depicted, and further exploration in the field is necessary to completely understand the
mechanisms. In addition, the identification of genes that regulate submergence tolerance
at both the seeding establishment and vegetative growth stages will be quite useful. In
future, CRISPR-CAS9-mediated gene editing technology and molecular marker-assisted
crossing breeding will be used to develop valuable commercialized varieties that harbor
better tolerance to flooding.
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