Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Climate Conditions
2.2. Experimental Design, Treatments and Crop Management Practices
2.2.1. Field Experimentation
2.2.2. Pot Experimentation
2.3. Measurements
2.3.1. Growth Parameters and Fruit Yield
2.3.2. Physiological Parameter (Stomatal Conductance)
2.3.3. Biochemical Parameters (Proline and Glycine Betaine)
2.3.4. Soil Salinity
2.4. Statistical Analysis
3. Results
3.1. Red Pepper in Field Experimentation
3.1.1. Salinity × P-Fertilization Interaction Effects on Stomatal Conductance
3.1.2. Salinity × P-Fertilization Interaction Effects on Fruit Yield of Red Pepper
3.1.3. Salinity × P-Fertilization Interaction Effects on Fruit Diameter of Red Pepper
3.2. Interaction Effects of Organic Matter and P-Fertilization with Saline Water Irrigation on Soil Salinity, and Red Pepper under Pot Experiment
3.2.1. Salinity × (Organic Matter-P Supply) Interaction Effects on Soil Salinity
3.2.2. Salinity × (Organic Matter-P Supply) Interaction Effects on Proline Accumulation
3.2.3. Salinity × (Organic Matter-P Supply) Interaction Effects on Glycine Betaine Accumulation
3.2.4. Salinity × (Organic Matter-P Supply) Interaction Effects on Stomatal Conductance
3.2.5. Salinity × (Organic Matter-P Supply) Interaction Effects on Root Development
4. Discussion
4.1. Salinity × P-Fertilization Interaction Effects on Red Pepper Stomatal Conductance
4.2. Salinity and P-Fertilization Interaction Effects Yield Parameter of Red Pepper
4.3. Salinity × (Organic Matter-P Supply) Interaction Effects on Red Pepper Biochemical Traits
4.4. Salinity × (Organic Matter-P Supply) Interaction Effects on Soil and Root Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, R.; Serralheiro, R. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- ORMVAT Regional Office for Agricultural Development of Tadla Morocco. “Monitoring of Environmental Parameters’’ End of Crop Season. 2019. Available online: https://ormvatadla.ma/category/developpement-agricole/filieres-agricoles-principales/ (accessed on 20 January 2021).
- Bellouti, A.; Cherkaoui, F.; Benhida, M.; Debbarh, A.; Soudi, B.; Badraoui, M. Implementation of a monitoring and surveillance system for groundwater and soil quality in the irrigated perimeter of Tadla. In Proceedings of the Actes de L’atelier du PCSI, Montpellier, France, 28–29 May 2002. [Google Scholar]
- Bouras, H.; Mamassi, A.; Devkota, K.P.; Choukr-Allah, R.; Bouazzama, B. Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (Triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming. Plant Stress 2023, 10, 100295. [Google Scholar] [CrossRef]
- Hakmaoui, A.; Ouatmane, A.; Fernández-Trujillo, J.P. The Cultivation of La Ñora and the Paprika Industry in the Tadla-Azilal Region (Morocco). Horticultura 2011, 295, 31–35. [Google Scholar]
- Akladious, S.A.; Mohamed, H.I. Ameliorative Effects of Calcium Nitrate and Humic Acid on the Growth, Yield Component and Biochemical Attribute of Pepper (Capsicum annuum) Plants Grown under Salt Stress. Sci. Hortic. 2018, 236, 244–250. [Google Scholar] [CrossRef]
- Tabur, S.; Demir, K. Role of Some Growth Regulators on Cytogenetic Activity of Barley under Salt Stress. Plant Growth Regul. 2010, 60, 99–104. [Google Scholar] [CrossRef]
- Kacjan Maršić, N.; Štolfa, P.; Vodnik, D.; Košmelj, K.; Mikulič-Petkovšek, M.; Kump, B.; Vidrih, R.; Kokalj, D.; Piskernik, S.; Ferjančič, B.; et al. Physiological and Biochemical Responses of Ungrafted and Grafted Bell Pepper Plants (Capsicum annuum L. Var. Grossum (L.) Sendtn.) Grown under Moderate Salt Stress. Plants 2021, 10, 314. [Google Scholar] [CrossRef]
- Navarro, J.M.; Garrido, C.; Flores, P.; Martínez, V. The Effect of Salinity on Yield and Fruit Quality of Pepper Grown in Perlite. Span. J. Agric. Res. 2010, 8, 142. [Google Scholar] [CrossRef]
- Lycoskoufis, I.H.; Savvas, D.; Mavrogianopoulos, G. Growth, Gas Exchange, and Nutrient Status in Pepper (Capsicum annuum L.) Grown in Recirculating Nutrient Solution as Affected by Salinity Imposed to Half of the Root System. Sci. Hortic. 2005, 106, 147–161. [Google Scholar] [CrossRef]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate Acquisition. Plant Soil 2005, 274, 37. [Google Scholar] [CrossRef]
- Sahin, U.; Ekinci, M.; Ors, S.; Turan, M.; Yildiz, S.; Yildirim, E. Effects of Individual and Combined Effects of Salinity and Drought on Physiological, Nutritional and Biochemical Properties of Cabbage (Brassica oleracea Var. Capitata). Sci. Hortic. 2018, 240, 196–204. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity–Mineral Nutrient Relations in Horticultural Crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, N. Salt Stress in Plants and Amelioration Strategies: A Critical Review; IntechOpen: London, UK, 2020; ISBN 978-1-83881-062-7. [Google Scholar]
- Leogrande, R.; Vitti, C. Use of Organic Amendments to Reclaim Saline and Sodic Soils: A Review. Arid Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Li, S.; Zhang, T.; Zhang, W.; Zhai, P. Application of Organic Amendments to a Coastal Saline Soil in North China: Effects on Soil Physical and Chemical Properties and Tree Growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef]
- Bhatt, M.; Labanya, R.; Joshi, H. Influence of Long-Term Chemical Fertilizers and Organic Manures on Soil Fertility—A Review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Iaaich, H.; Oumaima, I.H.; Mamassi, A.; Ahmed, D.; Rachid, M.; Rachid, M. Digital soil mapping: Case study from the Khouribga-Kasbat Tadla zone in Central Morocco. Afr. Mediterr. Agric. J. 2021, 132, 91–104. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; University of California Division of Agricultural Sciences: Berkeley, CA, USA, 1961. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Estaji, A.; Kalaji, H.M.; Karimi, H.R.; Roosta, H.R.; Moosavi-Nezhad, S.M. How glycine betaine induces tolerance of cucumber plants to salinity stress? Photosynthetica 2019, 57, 753–761. [Google Scholar] [CrossRef]
- Behdad, A.; Mohsenzadeh, S.; Azizi, M. Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere 2021, 17, 100319. [Google Scholar] [CrossRef]
- Loudari, A.; Mayane, A.; Zeroual, Y.; Colinet, G.; Oukarroum, A. Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates. Front. Plant Sci. 2022, 13, 1038672. [Google Scholar] [CrossRef]
- Muhammad, I.; Shalmani, A.; Ali, M.; Yang, Q.-H.; Ahmad, H.; Li, F.B. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front. Plant Sci. 2021, 11, 615942. [Google Scholar] [CrossRef]
- Din, M.R.; Ullah, F.; Akmal, M.; Shah, S.; Ullah, N.; Shafi, M. Effects of cadmium and salinity on growth and photosynthesis parameters. Pak. J. Bot. 2011, 43, 333–340. [Google Scholar]
- Bethke, P.C.; Drew, M.C. Stomatal and Nonstomatal Components to Inhibition of Photosynthesis in Leaves of Capsicum annuum during Progressive Exposure to NaCI Salinity. Plant Physiol. 2020, 99, 8. [Google Scholar]
- Piñero, M.C.; Houdusse, F.; Garcia-Mina, J.M.; Garnica, M.; Del Amor, F.M. Regulation of Hormonal Responses of Sweet Pepper as Affected by Salinity and Elevated CO2 Concentration. Physiol. Plant. 2014, 151, 375–389. [Google Scholar] [CrossRef]
- Huez-Lopez, M.; Ulery, A.; Samani, Z. Response of Chile Pepper (Capsicum annuum L.) To Salt Stress and Organic and Inorganic Nitrogen Sources: Ii. Nitrogen and Water Use Efficiencies, and Salt Tolerance. Trop. Subtrop. Agroecosystems 2011, 14, 137–147. [Google Scholar]
- Khan, M.A.; Abdullah, Z. Salinity–Sodicity Induced Changes in Reproductive Physiology of Rice (Oryza sativa) under Dense Soil Conditions. Environ. Exp. Bot. 2003, 49, 145–157. [Google Scholar] [CrossRef]
- Erel, R.; Le, T.T.; Eshel, A.; Cohen, S.; Offenbach, R.; Strijker, T.; Shtein, I. Root Development of Bell Pepper (Capsicum annuum L.) as Affected by Water Salinity and Sink Strength. Plants 2020, 9, 35. [Google Scholar] [CrossRef]
- Cramer, M.D.; Schierholt, A.; Wang, Y.Z.; Lips, S.H. The Influence of Salinity on the Utilization of Root Anaplerotic Carbon and Nitrogen Metabolism in Tomato Seedlings. J. Exp. Bot. 1995, 46, 1569–1577. [Google Scholar] [CrossRef]
- Yahya, A. Salinity Effects on Growth and on Uptake and Distribution of Sodium and Some Essential Mineral Nutrients in Sesame. J. Plant Nutr. 1998, 21, 1439–1451. [Google Scholar] [CrossRef]
- Del Amor, F.M.; Martinez, V.; Cerdá, A. Salinity Duration and Concentration Affect Fruit Yield and Quality, and Growth and Mineral Composition of Melon Plants Grown in Perlite. HortScience 1999, 34, 1234–1237. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Dikilitas, M.; Tuna, A. Alleviation of Salt Stress-Induced Adverse Effects on Maize Plants by Exogenous Application of Indoleacetic Acid (IAA) and Inorganic Nutrients—A Field Trial. Aust. J. Crop Sci. 2013, 7, 249–254. [Google Scholar]
- Jahan, M.N.; Barua, S.; Ali, H.; Ali, N.; Chowdhury, S.H.; Hasan, M.; Ferdous, T.; Eti, F.S.; Khayer, A.; Hossen, K. Effects of Phosphorus Fertilization on Hybrid Varieties of Mungbean [Vigna radiata (L.) Wilczek] in a Salinity Prone Area of the Subtropics. Acta Agrobot. 2020, 73, 7338. [Google Scholar] [CrossRef]
- Sadji-Ait Kaci, H. Interactive Effects of Salinity and Two Phosphorus Fertilizers on Growth and Grain Yield of Cicer arietinum L. Section B Soil and Plant Science. Acta Agric. Scand. 2017, 67, 208–216. [Google Scholar] [CrossRef]
- Mamassi, A.; Balaghi, R.; Devkota, K.P.; Bouras, H.; El-Gharous, M.; Tychon, B. Modeling genotype × environment × management interactions for a sustainable intensification under rainfed wheat cropping system in Morocco. Agric. Food Secur. 2023, 12, 22. [Google Scholar] [CrossRef]
- Mamassi, A.; Lang, M.; Tychon, B.; Lahlou, M.; Wellens, J.; El Gharous, M.; Marrou, H. A comparison of empirical and mechanistic models for wheat yield prediction at field level in Moroccan rainfed areas. Silico Plants 2024, 6, diad020. [Google Scholar] [CrossRef]
- Misra, N.; Saxena, P. Effect of Salicylic Acid on Proline Metabolism in Lentil Grown under Salinity Stress. Plant Sci. 2009, 177, 181–189. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. Effects of Salt Stress on Growth, Mineral Nutrition and Proline Accumulation in Relation to Osmotic Adjustment in Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Plant Growth Regul. 1996, 19, 207–218. [Google Scholar] [CrossRef]
- Sakr, M.T.; El-Sarkassy, N.M.; Fuller, M.P. Osmoregulators Proline and Glycine Betaine Counteract Salinity Stress in Canola. Agron. Sustain. Dev. 2012, 32, 747–754. [Google Scholar] [CrossRef]
- Vendruscolo, E.C.G.; Schuster, I.; Pileggi, M.; Scapim, C.A.; Molinari, H.B.C.; Marur, C.J.; Vieira, L.G.E. Stress-Induced Synthesis of Proline Confers Tolerance to Water Deficit in Transgenic Wheat. J. Plant Physiol. 2007, 164, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Proline and Salinity Tolerance in Plants. Biochem. Pharmacol. 2014, 3, 1000e170. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Sofy, M.R.; Elhawat, N.; Alshaal, T. Glycine Betaine Counters Salinity Stress by Maintaining High K+/Na+ Ratio and Antioxidant Defense via Limiting Na+ Uptake in Common Bean (Phaseolus vulgaris L.). Ecotoxicol. Environ. Saf. 2020, 200, 110732. [Google Scholar] [CrossRef]
- Sakamoto, A.; Murata, N. Genetic Engineering of Glycinebetaine Synthesis in Plants: Current Status and Implications for Enhancement of Stress Tolerance. J. Exp. Bot. 2000, 51, 81–88. [Google Scholar] [CrossRef]
- Saneoka, H.; Nagasaka, C.; Hahn, D.T.; Yang, W.-J.; Premachandra, G.S.; Joly, R.J.; Rhodes, D. Salt Tolerance of Glycinebetaine-Deficient and -Containing Maize Lines. Plant Physiol. 1995, 107, 631–638. [Google Scholar] [CrossRef]
- Gadallah, M.A.A. Effects of Proline and Glycinebetaine on Vicia Faba Responses to Salt Stress. Biol. Plant. 1999, 42, 249–257. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Helyes, L. Physiological responses of selected vegetable crop species to water stress. Agronomy 2019, 9, 447. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015, 75, 391–404. [Google Scholar] [CrossRef]
- Kurth, E.; Cramer, G.R.; Läuchli, A.; Epstein, E. Effects of NaCl and CaCl2 on Cell Enlargement and Cell Production in Cotton Roots. Plant Physiol. 1986, 82, 1102–1106. [Google Scholar] [CrossRef]
- Qadar, A. Alleviation of Sodicity Stress on Rice Genotypes by Phosphorus Fertilization. Plant Soil 1998, 2, 269–277. [Google Scholar] [CrossRef]
- Bouras, H.; Bouaziz, A.; Choukr-Allah, R.; Hirich, A.; Devkota, K.P.; Bouazzama, B. Phosphorus fertilization enhances productivity of forage corn (Zea mays L.) irrigated with saline water. Plants 2021, 10, 2608. [Google Scholar] [CrossRef] [PubMed]
Soil Depth (cm) | Clay (%) | Silt (%) | Sand (%) | Soil pH | pH | EC (dS·m−1) | Organic Matter (%) | Total N (Kjeldahl) (g.kg−1) | P2O5 (Olsen) (mg.kg−1) | K2O (Acetate of Na) (mg.kg−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Water | KCl | ||||||||||
0–20 | 28.1 | 52.8 | 19.1 | 7.92 | 8.24 | 7.36 | 0.1 | 1.45 | 2.34 | 43 | 459 |
20–40 | 43.1 | 18.7 | 38.2 | 8.09 | 8.38 | 7.24 | 0.22 | 0.59 | 3.44 | 22 | 405 |
EC (dS.m−1) | pH | Cations (meq/L) | Anions (meq/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | Cl− | SO42− | CO32− | HCO3− | NO3− | ||
0.7 | 7.4 | 2.4 | 3.9 | 2.29 | 0.001 | 2.25 | 0.54 | 1.2 | 4.3 | 0.124 |
Salinity (dS.m−1) | Phosphorus Rate (kg P2O5.ha−1) | Fruit Weight (g) | Longitudinal Diameter (mm) | Equatorial Diameter (mm) |
---|---|---|---|---|
0.7 | 120 | 13 ± 2 a | 30 ± 5 a | 40 ± 3 a |
140 | 13 ± 2 a | 27 ± 2 a | 42 ± 3 a | |
170 | 11 ± 2 a | 28 ± 4 a | 40 ± 3 a | |
Average | 12 ± 2 A | 28 ± 4 A | 41 ± 3 A | |
1.5 | 120 | 10 ± 3 a | 26 ± 3 a | 40 ± 5 ab |
140 | 7 ± 3 b | 24 ± 3 a | 38 ± 3 b | |
170 | 7 ± 2 ab | 25 ± 3 a | 43 ± 3 a | |
Average | 8 ± 2 B | 25 ± 3 B | 40 ± 4 A | |
3 | 120 | 9 ± 2 a | 25 ± 3 a | 38 ± 2 a |
140 | 7 ± 1 a | 23 ± 2 a | 38 ± 2 a | |
170 | 8 ± 2 a | 23 ± 1 a | 34 ± 4 b | |
Average | 8 ± 2 B | 24 ± 2 B | 37 ± 3 B | |
5 | 120 | 9 ± 2 a | 24 ± 2 ab | 37 ± 2 a |
140 | 10 ± 2 a | 27 ± 2 a | 38 ± 4 a | |
170 | 9 ± 2 a | 24 ± 2 b | 32 ± 3 b | |
Average | 9 ± 2 B | 25 ± 2 B | 36 ± 3 B |
Depth in cm | Water Salinity (dS.m−1) | |||||||
---|---|---|---|---|---|---|---|---|
Field Trial (2019) | Pot Trial (2021) | |||||||
0.7 | 1.5 | 3 | 5 | 0.7 | 2 | 5 | 9 | |
0–10 | 0.8 ± 0 b | 1.2 ± 0.1 b | 1.9 ± 0 a | 2.1 ± 0 a | 0.6 ± 0.1 C | 1.1 ± 0 C | 1.9 ± 0.1 B | 3.2 ± 0.1 A |
10–20 | 0.9 ± 0.1 c | 1.4 ± 0 b | 3.1 ± 0.6 a | 2.4 ± 0.1 ab | 0.7 ± 0 C | 1.1 ± 0 C | 1.7 ± 0 B | 2.5 ± 0.1 A |
20–30 | 1 ± 0.1 c | 2.6 ± 0.2 b | 3.7 ± 0.3 a | 3.5 ± 0.1 a | - | - | - | - |
30–40 | 0.8 ± 0.1 d | 1.7 ± 0.2 c | 3.1 ± 0.2 b | 4 ± 0.1 a | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouras, H.; Devkota, K.P.; Mamassi, A.; Loudari, A.; Choukr-Allah, R.; El-Jarroudi, M. Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses. Plants 2024, 13, 1209. https://doi.org/10.3390/plants13091209
Bouras H, Devkota KP, Mamassi A, Loudari A, Choukr-Allah R, El-Jarroudi M. Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses. Plants. 2024; 13(9):1209. https://doi.org/10.3390/plants13091209
Chicago/Turabian StyleBouras, Hamza, Krishna Prasad Devkota, Achraf Mamassi, Aicha Loudari, Redouane Choukr-Allah, and Moussa El-Jarroudi. 2024. "Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses" Plants 13, no. 9: 1209. https://doi.org/10.3390/plants13091209
APA StyleBouras, H., Devkota, K. P., Mamassi, A., Loudari, A., Choukr-Allah, R., & El-Jarroudi, M. (2024). Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses. Plants, 13(9), 1209. https://doi.org/10.3390/plants13091209