Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters
Abstract
:1. Introduction
2. Results
2.1. Experiment 1–4
2.1.1. Experiment 1: Propagation System
2.1.2. Experiment 2: Propagation System—Transplant
2.1.3. Experiment 3: Aeroponics–Spray Interval
2.1.4. Experiment 4: Aeroponics–Fertigation Dilution
2.1.5. Results Summary
3. Discussion
3.1. Experiment 1: Propagation System
3.2. Experiment 2: Propagation System–Transplant
3.3. Experiment 3: Aeroponics–Spray Interval
3.4. Experiment 4: Aeroponics–Fertigation Dilutions
3.5. Variations and Future Directions
4. Materials and Methods
4.1. Greenhouse and Stock Plant Conditions
4.2. Plant Culture and Treatment
4.3. Experiments
4.3.1. Experiment 1: Propagation System
4.3.2. Experiment 2: Propagation System–Transplant
4.3.3. Experiment 3: Aeroponics–Spray Interval
4.3.4. Experiment 4: Aeroponics–Fertigation Dilutions
4.3.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Rehman, M.; Fahad, S.; Du, G.; Cheng, X.; Yang, Y.; Tang, K.; Deng, G. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: A review. Environ. Sci. Pollut. Res. 2021, 28, 52832–52843. [Google Scholar] [CrossRef] [PubMed]
- Sambucci, O.; Sumner, D.A.; Goldstein, R. Marketing Margins in Cannabis Products: Empirical Analysis. In Proceedings of the Agricultural & Applied Economics Association Annual Meeting, No. 335899, Washington, DC, USA, 23–25 July 2023. Agricultural and Applied Economics Association. [Google Scholar]
- Coffman, C.B.; Gentner, W.A. Greenhouse Propagation of Cannabis sativa L. by Vegetative Cuttings. Econ. Bot. 1979, 33, 124–127. [Google Scholar] [CrossRef]
- Monthony, A.S.; Page, S.R.; Hesami, M.; Jones, A.M.P. The Past, Present and Future of Cannabis sativaTissue Culture. Plants 2021, 10, 185. [Google Scholar] [CrossRef]
- Punja, Z.K.; Holmes, J.E. Hermaphroditism in Marijuana (Cannabis sativa L.) Inflorescences—Impact on Floral Morphology, Seed Formation, Progeny Sex Ratios, and Genetic Variation. Front. Plant Sci. 2020, 11, 718. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.G.; Naraine, S.G.U.; Dusfresne, J. Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa. PLoS ONE 2019, 14, e0213434. [Google Scholar] [CrossRef] [PubMed]
- Hinesley, L.E. Effect of transplanting time on growth and development of Fraser fir seedlings. HortScience 1986, 21, 65–66. [Google Scholar] [CrossRef]
- Miller, N.F.; Hinesley, L.E.; Blazich, F.A. Propagation of Fraser Fir by Stem Cuttings: Effects of Type of Cutting, Length of Cutting, and Genotype1. HortScience 1982, 17, 827–829. [Google Scholar] [CrossRef]
- Muñoz-Gutiérrez, L.; Vargas-Hernández, J.J.; López-Upton, J.; Soto-Hernández, M. Effect of cutting age and substrate temperature on rooting of Taxus globosa. New For. 2009, 38, 187–196. [Google Scholar] [CrossRef]
- Caplan, D.; Stemeroff, J.; Dixon, M.; Zheng, Y. Vegetative Propagation of Cannabis by Stem Cuttings: Effects of Leaf Number, Cutting Position, Rooting Hormone, and Leaf Tip Removal. Can. J. Plant Sci. 2018, 98, 1126–1132. [Google Scholar] [CrossRef]
- Dorrell, D.G. Vegetative propagation of flax by stem cuttings. Can. J. Plant Sci. 1974, 54, 197–201. [Google Scholar] [CrossRef]
- Haile, G.; Gebrehiwot, K.; Lemenih, M.; Bongers, F. Time of collection and cutting sizes affect vegetative propagation of Boswellia papyrifera (Del.) Hochst through leafless branch cuttings. J. Arid Environ. 2011, 75, 873–877. [Google Scholar] [CrossRef]
- De Andrés, E.F.; Sánchez, F.J.; Catalán, G.; Tenorio, J.L.; Ayerbe, L. Vegetative propagation of Colutea istria Mill. from leafy stem cuttings. Agrofor. Syst. 2004, 63, 7–14. [Google Scholar] [CrossRef]
- Nemati, R.; Fortin, J.-P.; Craig, J.; Donald, S. Growing Mediums for Medical Cannabis Production in North America. Agronomy 2021, 11, 1366. [Google Scholar] [CrossRef]
- Campbell, S.M.; Anderson, S.L.; Brym, Z.; Pearson, B.J. Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L.). bioRxiv 2021. [Google Scholar] [CrossRef]
- Yafuso, E.J.; Fisher, P.R.; Bohórquez, A.C.; Altland, J.E. Water and Air Relations in Propagation Substrates. HortScience Horts 2019, 54, 2024–2030. [Google Scholar] [CrossRef]
- Zheng, Y. (Ed.) Handbook of Cannabis Production in Controlled Environments; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Robertson, K.J.; Brar, R.; Randhawa, P.; Stark, C.; Baroutian, S. Opportunities and challenges in waste management within the medicinal Cannabis sector. Ind. Crops Prod. 2023, 197, 116639. [Google Scholar] [CrossRef]
- Milks, R.R.; Fonteno, W.C.; Larson, R.A. Hydrology of horticultural substrates: III. Predicting air and water content of limited-volume plug cells. J. Am. Soc. Hortic. Sci. 1989, 114, 57–61. [Google Scholar] [CrossRef]
- Soffer, H.; Burger, D.W. Effects of dissolved oxygen concentrations in aero-hydroponics on the formation and growth of adventitious roots. J. Am. Soc. Hortic. Sci. 1988, 113, 218–221. [Google Scholar] [CrossRef]
- AlShrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Int. Sch. Res. Netw. Agron. (ISRN) 2017, 27, 247–255. [Google Scholar]
- Ferrini, F.; Donati Zeppa, S.; Fraternale, D.; Carrabs, V.; Annibalini, G.; Verardo, G.; Gorassini, A.; Albertini, M.C.; Ismail, T.; Fimognari, C.; et al. Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. Antioxidants 2022, 11, 860. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kumar, R. Aeroponics: A review on modern agriculture technology. Indian Farmer 2019, 6, 286–292. [Google Scholar]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Bartos, L.; Spacilova, M. A Comparative LCA of Aeroponic, Hydroponic, and Soil Cultivations of Bioactive Substance Producing Plants. Sustainability 2022, 14, 2421. [Google Scholar] [CrossRef]
- Ferrini, F.; Fraternale, D.; Donati Zeppa, S.; Verardo, G.; Gorassini, A.; Carrabs, V.; Albertini, M.C.; Sestili, P. Yield, Characterization, and Possible Exploitation of Cannabis Sativa L. Roots Grown under Aeroponics Cultivation. Molecules 2021, 26, 4889. [Google Scholar] [CrossRef] [PubMed]
- Weathers, P.J.; Zobel, R.W. Aeroponics for the culture of organisms, tissues and cells. Biotechnol. Adv. 1992, 10, 93–115. [Google Scholar] [CrossRef] [PubMed]
- Tunio, M.H.; Gao, J.; Lakhiar, I.A.; Solangi, K.A.; Qureshi, W.A.; Shaikh, S.A.; Chen, J. Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System. Agronomy 2021, 11, 97. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.; Qureshi, W.A.; Sheikh, S.A.; Chen, J.; Chandio, F.A.; Lakhiar, I.A.; Solangi, K.A. Effects of droplet size and spray interval on root-to-shoot ratio, photosynthesis efficiency, and nutritional quality of aeroponically grown butterhead lettuce. Int. J. Agric. Biol. Eng. 2022, 15, 79–88. [Google Scholar] [CrossRef]
- Tengli, S.; Raju, B.M. Optimizing Nutrients Formulation and Spray Schedule for Aeroponically Grown Potato. Mysore J. Agric. Sci. 2022, 56, 361–371. [Google Scholar]
- Raviv, M.; Lieth, J.H. Soilless Culture: Theory and Practice, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; ISBN 9780080556420/0080556426. [Google Scholar]
- Caplan, D.; Dixon, M.; Zheng, Y. Optimal Rate of Organic Fertilizer During the Vegetative-Stage for Cannabis Grown in Two Coir-Based Substrates. HortScience 2017, 52, 1307–1312. [Google Scholar] [CrossRef]
- Wang, Y.T. Impact of a high phosphorus fertilizer and timing of termination of fertilization on flowering of a hybrid moth orchid. HortScience 2000, 35, 60–62. [Google Scholar] [CrossRef]
- Abdou, M.A.H.; Ahmed, E.E.T.; Ahmed, A.A.; Abdel-Mola, M.A.M. Response of Populus nigra, L. seedlings to compost, biofertilizers and mineral NPK fertilization. Minia J. Agric. Res. Dev. 2014, 34, 31–47. [Google Scholar]
- Wei, X.; Zhou, W.; Long, S.; Guo, Y.; Qiu, C.; Zhao, X.; Wang, Y. Effects of Different N, P, and K Rates on the Growth and Cannabinoid Content of Industrial Hemp. J. Nat. Fibers 2023, 20, 2159605. [Google Scholar] [CrossRef]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the roots of aeroponic indoor farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- González-García, M.P.; Conesa, C.M.; Lozano-Enguita, A.; Baca-González, V.; Simancas, B.; Navarro-Neila, S.; Del Pozo, J.C. Temperature changes in the root ecosystem affect plant functionality. Plant Commun. 2023, 4, 100514. [Google Scholar] [CrossRef]
- Lynch, J.; Marschner, P.; Rengel, Z. Effect of internal and external factors on root growth and development. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 331–346. [Google Scholar] [CrossRef]
- Moher, M.; Llewellyn, D.; Jones, M.; Zheng, Y. Light intensity can be used to modify the growth and morphological characteristics of Cannabis during the vegetative stage of indoor production. Ind. Crops Prod. 2022, 183, 114909. [Google Scholar] [CrossRef]
- Hinesley, L.E.; Blazich, F.A. Influence of postseverance treatments on the rooting capacity of Fraser fir stem cuttings. Can. J. For. Res. 1981, 11, 317–324. [Google Scholar] [CrossRef]
- Edmonds, J.W.; Sackett, J.D.; Lomprey, H.; Hudson, H.L.; Moser, D.P. The aeroponic rhizosphere microbiome: Community dynamics in early succession suggest strong selectional forces. Antonie Van Leeuwenhoek 2020, 113, 83–99. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 1 May 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv 2014, arXiv:1406.582. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. R Companion 3E; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion (accessed on 1 May 2023).
- Lenth, R.V. Estimated Marginal Means, Aka Least-Squares Means [R Package Emmeans Version 1.6.3]. 2021. Available online: https://cran.r-project.org/package=emmeans (accessed on 1 May 2023).
Experiment | Objective | Variables | Data Points | |
---|---|---|---|---|
1 | Propagation System | Comparing the efficacy of various propagation systems | Propagation System: Aeroponics, Rockwool, Horticultural Foam Cultivars: ‘TJ’s CBD’ and ‘Janet’s G’ CBG | Root Quality Score, Height (cm), Above-Ground Biomass, Below-Ground Biomass |
2 | Propagation System– Transplant | Assessing the impact of transplant timing and effects across various propagation systems | Transplant Days: 8, 10, 12, 14 Propagation System: Aeroponics, Rockwool, Horticultural Foam Cultivars: ‘TJ’s CBD’ and ‘Janet’s G’ CBG | Root Quality Score, Height (cm) |
3 | Aeroponics– Spray Intervals | Examining the effect of aeroponic spray intervals | Spray Intervals (min): Continuous, 1:1, 1:3, 1:9 Cultivars: ‘TJ’s CBD’ and ‘Janet’s G’ CBG | Root Quality Score, Height (cm), Above-Ground Biomass, Below-Ground Biomass |
4 | Aeroponics– Fertigation Dilutions | Analyzing the influence of fertigation dilutions in aeroponics | Fertigation Dilutions: 1:2, 1:3, 1:4 Cultivars: ‘TJ’s CBD’ and ‘Janet’s G’ CBG | Root Quality Score, Height (cm), Above-Ground Biomass, Below-Ground Biomass |
Experiment | Variables | Data Point | Day | Treatment | Cultivar 1 | Cultivar 2 | Score (Cultivars Combined) | Score Total (By Experiment) | |
---|---|---|---|---|---|---|---|---|---|
1 | Propagation System | Propagation System, Cultivar, Sampling Day | Root Quality | 14 | Aeroponics | 3 | 3 | 6 | |
Foam | 1 | 1 | 2 | ||||||
Rockwool | 2 | 1 | 3 | ||||||
21 | Aeroponics | 3 | 3 | 6 | |||||
Foam | 2 | 1 | 3 | ||||||
Rockwool | 1 | 1 | 2 | ||||||
Height | 21 | Aeroponics | NA | 3 | 3 | ||||
Foam, Rockwool | 1 | 1 | |||||||
Above- Ground Biomass | 14 | Aeroponics | 3 | 3 | 6 | ||||
Foam | 2 | 1 | 3 | ||||||
Rockwool | 1 | 1 | 2 | ||||||
21 | Aeroponics | 3 | 3 | 6 | |||||
Foam | 2 | 1 | 3 | ||||||
Rockwool | 1 | 1 | 2 | ||||||
Below- Ground Biomass | 14 | Aeroponics | NA | 3 | 3 | ||||
Foam | 1 | 1 | |||||||
Rockwool | 2 | 2 | |||||||
21 | Aeroponics | 3 | 3 | 6 | 36 | ||||
Foam | 1 | 2 | 3 | 16 | |||||
Rockwool | 1 | 1 | 2 | 14 | |||||
2 | Propagation System: Transplant | Propagation System, Cultivar, Transplant Day | Root Quality | 10 | Aeroponics | 1 | 3 | 4 | |
Foam | 3 | 2 | 5 | ||||||
Rockwool | 2 | 1 | 3 | ||||||
12 | Aeroponics, Foam | NA | 3 | 3 | |||||
Rockwool | 1 | 1 | |||||||
14 | Aeroponics | 3 | 3 | 6 | |||||
Foam | 3 | 2 | 5 | ||||||
Rockwool | 1 | 1 | 2 | ||||||
Height | 8 | Aeroponics | NA | 3 | 3 | 25 | |||
Foam | 2 | 2 | 18 | ||||||
Rockwool | 1 | 1 | 10 | ||||||
10 | Aeroponics | 3 | 3 | ||||||
Foam, Rockwool | 1 | 1 | |||||||
12 | Aeroponics | 3 | 3 | ||||||
Foam, Rockwool | 1 | 1 | |||||||
14 | Aeroponics | 3 | 3 | ||||||
Foam, Rockwool | 1 | 1 | |||||||
3 | Aeroponics—Spray Interval (minutes on:off) | Spray Time Interval, Cultivar, Sampling Day | Root Quality | 14 | Continuous | 3 | 3 | 6 | |
1:1, 1:3 | 2 | 3 | 5 | ||||||
1:9 | 1 | 1 | 2 | ||||||
21 | Continuous | NA | 3 | 3 | |||||
1:1, 1:3 | 2 | 2 | |||||||
1:9 | 1 | 1 | |||||||
Height | 21 | Continuous | 3 | 3 | 6 | ||||
1:1, 1:3 | 2 | 3 | 5 | ||||||
1:9 | 1 | 1 | 2 | ||||||
Above- Ground Biomass | 14 | Continuous, 1:1 | 3 | NA | 3 | ||||
1:3 | 1 | 1 | |||||||
1:9 | 2 | 2 | |||||||
21 | Continuous | NA | 3 | 3 | |||||
1:1,1:3,1:9 | 1 | 1 | |||||||
Below- Ground Biomass | 14 | Continuous | 2 | 3 | 5 | 29 | |||
1:1 | 3 | 2 | 5 | 22 | |||||
1:3 | 1 | 1 | 2 | 17 | |||||
1:9 | 2 | 1 | 3 | 12 | |||||
21 | Continuous | NA | 3 | 3 | |||||
1:1,1:3,1:9 | 1 | 1 | |||||||
4 | Aeroponics—Fertigation Dilution (EC) | Fertigation Dilution, Cultivar, Sampling Day | Root Quality | 14 | 0.7 | NA | 1 | 1 | |
1 | 2 | 2 | |||||||
1.4 | 3 | 3 | |||||||
21 | 0.7, 1 | 1 | 1 | ||||||
1.4 | 3 | 3 | |||||||
Height | 14 | 0.7, 1 | 1 | 1 | |||||
1.4 | 3 | 3 | |||||||
21 | 0.7 | 1 | 1 | 2 | |||||
1 | 3 | 2 | 5 | ||||||
1.4 | 3 | 3 | 6 | ||||||
Above- Ground Biomass | 21 | 0.7 | NA | 1 | 1 | ||||
1, 1.4 | 3 | 3 | |||||||
Below- Ground Biomass | 21 | 0.7 | 1 | 1 | 7 | ||||
1 | 2 | 2 | 14 | ||||||
1.4 | 3 | 3 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weingarten, M.; Mattson, N.; Grab, H. Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters. Plants 2024, 13, 1256. https://doi.org/10.3390/plants13091256
Weingarten M, Mattson N, Grab H. Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters. Plants. 2024; 13(9):1256. https://doi.org/10.3390/plants13091256
Chicago/Turabian StyleWeingarten, Matthew, Neil Mattson, and Heather Grab. 2024. "Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters" Plants 13, no. 9: 1256. https://doi.org/10.3390/plants13091256
APA StyleWeingarten, M., Mattson, N., & Grab, H. (2024). Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters. Plants, 13(9), 1256. https://doi.org/10.3390/plants13091256