Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress
Abstract
:1. Introduction
2. Results
2.1. Identification and Phylogenetic Analysis of the Gossypium hirsutum SDG Gene Family
2.2. Analysis of the Expression Patterns of the SDG Gene Family Members in Different Tissues
2.3. Expression Analysis of the GhSDG Gene Family under PEG and Drought Treatment Conditions
2.4. Silencing GhSDG59 by VIGS Reduced the Drought Tolerance of Cotton
2.5. Transcriptome Analysis of TRV2:00 and TRV2:GhSDG59 Cotton Plants under Drought Stress
3. Discussion
4. Materials and Methods
4.1. Identification and Physicochemical Property Analysis of SDG Gene Family Members in Cotton
4.2. Phylogenetic Analysis of SDG Genes
4.3. Expression Analysis of the GhSDG Gene Family
4.4. Analysis of Cis-Acting Elements in the GhSDG59 Gene Promoter
4.5. Plant Material Cultivation
4.6. RNA Extraction and Real-Time Fluorescence Quantitative PCR (qRT-PCR) Analysis
4.7. VIGS Experiment
4.8. Drought Treatment Experiment
4.9. Determination of Physiological Indicators
4.10. RNA-Seq Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jayani, R.S.; Ramanujam, P.L.; Galande, S. Studying Histone Modifications and Their Genomic Functions by Employing Chromatin Immunoprecipitation and Immunoblotting. Methods Cell Biol. 2010, 98, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, S. Degrees Make All the Difference: The Multifunctionality of Histone H4 Lysine 20 Methylation. Epigenetics 2009, 4, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Klose, R.J.; Zhang, Y. Regulation of Histone Methylation by Demethylimination and Demethylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Black, J.C.; Van Rechem, C.; Whetstine, J.R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol. Cell 2012, 48, 491–507. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Cao, X.; Deng, X. Histone Methylation in Epigenetic Regulation and Temperature Responses. Curr. Opin. Plant Biol. 2021, 61, 102001. [Google Scholar] [CrossRef] [PubMed]
- Berr, A.; Shafiq, S.; Shen, W.-H. Histone Modifications in Transcriptional Activation during Plant Development. Biochim. Biophys. Acta 2011, 1809, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Ma, C.-R.; Ji, Q.; Wang, Y.-F. Genome-wide identification, classification and expression analyses of SET domain gene family in Arabidopsis and rice. Yi Chuan Hered. 2009, 31, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xi, Y.; Cheng, B.; Zhu, S. Genome-Wide Identification and Expression Profiling of DNA Methyltransferase Gene Family in Maize. Plant Cell Rep. 2014, 33, 1661–1672. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, S.; Ikram, A.U.; Xu, Z.; Jiang, H.; Cheng, B.; Ding, Y. SDG721 and SDG705 Are Required for Rice Growth. J. Integr. Plant Biol. 2018, 60, 530–535. [Google Scholar] [CrossRef]
- Batra, R.; Gautam, T.; Pal, S.; Chaturvedi, D.; Rakhi; Jan, I.; Balyan, H.S.; Gupta, P.K. Identification and Characterization of SET Domain Family Genes in Bread Wheat (Triticum aestivum L.). Sci. Rep. 2020, 10, 14624. [Google Scholar] [CrossRef]
- Huang, Y.; Mo, Y.; Chen, P.; Yuan, X.; Meng, F.; Zhu, S.; Liu, Z. Identification of SET Domain-Containing Proteins in Gossypium Raimondii and Their Response to High Temperature Stress. Sci. Rep. 2016, 6, 32729. [Google Scholar] [CrossRef]
- Aquea, F.; Vega, A.; Timmermann, T.; Poupin, M.J.; Arce-Johnson, P. Genome-Wide Analysis of the SET DOMAIN GROUP Family in Grapevine. Plant Cell Rep. 2011, 30, 1087–1097. [Google Scholar] [CrossRef]
- Aiese Cigliano, R.; Sanseverino, W.; Cremona, G.; Ercolano, M.R.; Conicella, C.; Consiglio, F.M. Genome-Wide Analysis of Histone Modifiers in Tomato: Gaining an Insight into Their Developmental Roles. BMC Genom. 2013, 14, 57. [Google Scholar] [CrossRef]
- Lei, L.; Zhou, S.-L.; Ma, H.; Zhang, L.-S. Expansion and Diversification of the SET Domain Gene Family Following Whole-Genome Duplications in Populus Trichocarpa. BMC Evol. Biol. 2012, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, H.; Liu, Y.; Wang, X.; Xu, Q.; Deng, X. Genome-Wide Identification of Sweet Orange (Citrus sinensis) Histone Modification Gene Families and Their Expression Analysis during the Fruit Development and Fruit-Blue Mold Infection Process. Front. Plant Sci. 2015, 6, 607. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-H.; Qiu, H.-L.; Huang, Y.; Zhang, L.; Si, J.-P. Genome-Wide Identification and Expression Profiling of SET DOMAIN GROUP Family in Dendrobium Catenatum. BMC Plant Biol. 2020, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Yadav, C.B.; Muthamilarasan, M.; Dangi, A.; Shweta, S.; Prasad, M. Comprehensive Analysis of SET Domain Gene Family in Foxtail Millet Identifies the Putative Role of SiSET14 in Abiotic Stress Tolerance. Sci. Rep. 2016, 6, 32621. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yan, J.; Wang, S.; Wang, Q.; Wang, C.; Li, Z.; Zhang, D.; Ma, F.; Guan, Q.; Xu, J. Genome-Wide Analysis of SET-Domain Group Histone Methyltransferases in Apple Reveals Their Role in Development and Stress Responses. BMC Genom. 2021, 22, 283. [Google Scholar] [CrossRef]
- Pien, S.; Fleury, D.; Mylne, J.S.; Crevillen, P.; Inzé, D.; Avramova, Z.; Dean, C.; Grossniklaus, U. ARABIDOPSIS TRITHORAX1 Dynamically Regulates FLOWERING LOCUS C Activation via Histone 3 Lysine 4 Trimethylation. Plant Cell 2008, 20, 580–588. [Google Scholar] [CrossRef]
- Berr, A.; Shafiq, S.; Pinon, V.; Dong, A.; Shen, W.-H. The trxG Family Histone Methyltransferase SET DOMAIN GROUP 26 Promotes Flowering via a Distinctive Genetic Pathway. Plant J. Cell Mol. Biol. 2015, 81, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hao, H.; Liu, X.; Li, Y.; Ma, X.; Liu, W.; Zheng, R.; Liang, S.; Luan, W. SDG712, a Putative H3K9-Specific Methyltransferase Encoding Gene, Delays Flowering through Repressing the Expression of Florigen Genes in Rice. Rice 2021, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wei, G.; Shi, J.; Jin, J.; Shen, T.; Ni, T.; Shen, W.-H.; Yu, Y.; Dong, A. SET DOMAIN GROUP 708, a Histone H3 Lysine 36-Specific Methyltransferase, Controls Flowering Time in Rice (Oryza sativa). New Phytol. 2016, 210, 577–588. [Google Scholar] [CrossRef]
- Ay, N.; Irmler, K.; Fischer, A.; Uhlemann, R.; Reuter, G.; Humbeck, K. Epigenetic Programming via Histone Methylation at WRKY53 Controls Leaf Senescence in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2009, 58, 333–346. [Google Scholar] [CrossRef]
- Hung, F.-Y.; Feng, Y.-R.; Hsin, K.-T.; Shih, Y.-H.; Chang, C.-H.; Zhong, W.; Lai, Y.-C.; Xu, Y.; Yang, S.; Sugimoto, K.; et al. Arabidopsis Histone H3 Lysine 9 Methyltransferases KYP/SUVH5/6 Are Involved in Leaf Development by Interacting with AS1-AS2 to Repress KNAT1 and KNAT2. Commun. Biol. 2023, 6, 219. [Google Scholar] [CrossRef]
- Kumpf, R.; Thorstensen, T.; Rahman, M.A.; Heyman, J.; Nenseth, H.Z.; Lammens, T.; Herrmann, U.; Swarup, R.; Veiseth, S.V.; Emberland, G.; et al. The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root. Plant Physiol. 2014, 166, 632–643. [Google Scholar] [CrossRef]
- Yao, X.; Feng, H.; Yu, Y.; Dong, A.; Shen, W.-H. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development. PLoS ONE 2013, 8, e56537. [Google Scholar] [CrossRef]
- Napsucialy-Mendivil, S.; Alvarez-Venegas, R.; Shishkova, S.; Dubrovsky, J.G. Arabidopsis Homolog of Trithorax1 (ATX1) Is Required for Cell Production, Patterning, and Morphogenesis in Root Development. J. Exp. Bot. 2014, 65, 6373–6384. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, O.-S.; Choi, C.Y.; Seo, P.J. ARABIDOPSIS TRITHORAX 4 Facilitates Shoot Identity Establishment during the Plant Regeneration Process. Plant Cell Physiol. 2019, 60, 826–834. [Google Scholar] [CrossRef]
- Liu, X.; Luo, J.; Li, T.; Yang, H.; Wang, P.; Su, L.; Zheng, Y.; Bao, C.; Zhou, C. SDG711 Is Involved in Rice Seed Development through Regulation of Starch Metabolism Gene Expression in Coordination with Other Histone Modifications. Rice 2021, 14, 25. [Google Scholar] [CrossRef]
- Yu, Y.; Dong, A.; Shen, W.-H. Molecular Characterization of the Tobacco SET Domain Protein NtSET1 Unravels Its Role in Histone Methylation, Chromatin Binding, and Segregation. Plant J. Cell Mol. Biol. 2004, 40, 699–711. [Google Scholar] [CrossRef]
- Ding, Y.; Avramova, Z.; Fromm, M. The Arabidopsis Trithorax-like Factor ATX1 Functions in Dehydration Stress Responses via ABA-Dependent and ABA-Independent Pathways. Plant J. Cell Mol. Biol. 2011, 66, 735–744. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, L.; Yuan, Y.; Hu, S.; Guo, F.; Zhao, H.; Yun, Z.; Wang, Y.; Wang, M.; Ni, D.; et al. Ectopic Overexpression of Histone H3K4 Methyltransferase CsSDG36 from Tea Plant Decreases Hyperosmotic Stress Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 5064. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Xue, S.; Quan, T.; Cui, D.; Han, L.; Cong, W.; Li, M.; Yun, D.-J.; Liu, B.; et al. SET DOMAIN GROUP 721 Protein Functions in Saline–Alkaline Stress Tolerance in the Model Rice Variety Kitaake. Plant Biotechnol. J. 2021, 19, 2576–2588. [Google Scholar] [CrossRef]
- Chen, K.; Du, K.; Shi, Y.; Yin, L.; Shen, W.-H.; Yu, Y.; Liu, B.; Dong, A. H3K36 Methyltransferase SDG708 Enhances Drought Tolerance by Promoting Abscisic Acid Biosynthesis in Rice. New Phytol. 2021, 230, 1967–1984. [Google Scholar] [CrossRef]
- Yang, L.; Xu, L.; Guo, J.; Li, A.; Qi, H.; Wang, J.; Song, S. SNAC1-OsERF103-OsSDG705 Module Mediates Drought Response in Rice. New Phytol. 2024, 241, 2480–2494. [Google Scholar] [CrossRef] [PubMed]
- Bvindi, C.; Lee, S.; Tang, L.; Mickelbart, M.V.; Li, Y.; Mengiste, T. Improved Pathogen and Stress Tolerance in Tomato Mutants of SET Domain Histone 3 Lysine Methyltransferases. New Phytol. 2022, 235, 1957–1976. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.-T.; Zhang, L.-L.; Han, J.-J.; Zhou, M.; Liu, J.-X. Histone H3K4 Methyltransferases SDG25 and ATX1 Maintain Heat-Stress Gene Expression during Recovery in Arabidopsis. Plant J. Cell Mol. Biol. 2021, 105, 1326–1338. [Google Scholar] [CrossRef]
- Chen, Z.J.; Scheffler, B.E.; Dennis, E.; Triplett, B.A.; Zhang, T.; Guo, W.; Chen, X.; Stelly, D.M.; Rabinowicz, P.D.; Town, C.D.; et al. Toward Sequencing Cotton (Gossypium) Genomes. Plant Physiol. 2007, 145, 1303–1310. [Google Scholar] [CrossRef]
- Jian, H.; Wei, F.; Chen, P.; Hu, T.; Lv, X.; Wang, B.; Wang, H.; Guo, X.; Ma, L.; Lu, J.; et al. Genome-Wide Analysis of SET Domain Genes and the Function of GhSDG51 during Salt Stress in Upland Cotton (Gossypium hirsutum L.). BMC Plant Biol. 2023, 23, 653. [Google Scholar] [CrossRef]
- Dai, M.; Zhou, N.; Zhang, Y.; Zhang, Y.; Ni, K.; Wu, Z.; Liu, L.; Wang, X.; Chen, Q. Genome-Wide Analysis of the SBT Gene Family Involved in Drought Tolerance in Cotton. Front. Plant Sci. 2022, 13, 1097732. [Google Scholar] [CrossRef]
- Hussain, R.M.; Ali, M.; Feng, X.; Li, X. The Essence of Nac Gene Family to the Cultivation of Drought-Resistant Soybean (Glycine max L. Merr.) Cultivars. BMC Plant Biol. 2017, 17, 55. [Google Scholar] [CrossRef]
- Blanco, E.; Curci, P.L.; Manconi, A.; Sarli, A.; Zuluaga, D.L.; Sonnante, G. R2R3-MYBs in Durum Wheat: Genome-Wide Identification, Poaceae-Specific Clusters, Expression, and Regulatory Dynamics Under Abiotic Stresses. Front. Plant Sci. 2022, 13, 896945. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, C.; Li, L.; Reynolds, M.; Mao, X.; Jing, R. Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int. J. Mol. Sci. 2021, 22, 10265. [Google Scholar] [CrossRef]
- Thorstensen, T.; Grini, P.E.; Mercy, I.S.; Alm, V.; Erdal, S.; Aasland, R.; Aalen, R.B. The Arabidopsis SET-Domain Protein ASHR3 Is Involved in Stamen Development and Interacts with the bHLH Transcription Factor ABORTED MICROSPORES (AMS). Plant Mol. Biol. 2008, 66, 47–59. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, L.; Tian, M.; Xie, X.; Liu, C.; Ruan, Y. SDG26 Is Involved in Trichome Control in Arabidopsis Thaliana: Affecting Phytohormones and Adjusting Accumulation of H3K27me3 on Genes Related to Trichome Growth and Development. Plants 2023, 12, 1651. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jiang, Z.; Chen, J.; Xie, M.; Huang, W.; Li, J.; Zhuang, C.; Liu, Z.; Zheng, S. SET DOMAIN GROUP 711-Mediated H3K27me3 Methylation of Cytokinin Metabolism Genes Regulates Organ Size in Rice. Plant Physiol. 2023, 194, 2069–2085. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Liang, Y.; Zhou, D.; Li, S.; Lin, S.; Dong, H.; Huang, L. The Function of Histone Lysine Methylation Related SET Domain Group Proteins in Plants. Protein Sci. 2020, 29, 1120–1137. [Google Scholar] [CrossRef]
- Bvindi, C.; Tang, L.; Lee, S.; Patrick, R.M.; Yee, Z.R.; Mengiste, T.; Li, Y. Histone Methyltransferases SDG33 and SDG34 Regulate Organ-Specific Nitrogen Responses in Tomato. Front. Plant Sci. 2022, 13, 1005077. [Google Scholar] [CrossRef]
- Mouthuy, P.-A.; Snelling, S.J.B.; Dakin, S.G.; Milković, L.; Gašparović, A.Č.; Carr, A.J.; Žarković, N. Biocompatibility of Implantable Materials: An Oxidative Stress Viewpoint. Biomaterials 2016, 109, 55–68. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Ding, G. Response Mechanism of Carbon Metabolism of Pinus Massoniana to Gradient High Temperature and Drought Stress. BMC Genom. 2024, 25, 166. [Google Scholar] [CrossRef]
- Xiao, N.; Ma, H.; Wang, W.; Sun, Z.; Li, P.; Xia, T. Overexpression of ZmSUS1 Increased Drought Resistance of Maize (Zea mays L.) by Regulating Sucrose Metabolism and Soluble Sugar Content. Planta 2024, 259, 43. [Google Scholar] [CrossRef]
- Liang, Y.; Li, X.; Lei, F.; Yang, R.; Bai, W.; Yang, Q.; Zhang, D. Transcriptome Profiles Reveals ScDREB10 from Syntrichia Caninervis Regulated Phenylpropanoid Biosynthesis and Starch/Sucrose Metabolism to Enhance Plant Stress Tolerance. Plants 2024, 13, 205. [Google Scholar] [CrossRef]
- Fang, S.; Wan, Z.; Shen, T.; Liang, G. Potassium Attenuates Drought Damage by Regulating Sucrose Metabolism and Gene Expression in Sesame Leaf. Plant Physiol. Biochem. PPB 2024, 209, 108547. [Google Scholar] [CrossRef]
- Guan, C.; Li, W.; Wang, G.; Yang, R.; Zhang, J.; Zhang, J.; Wu, B.; Gao, R.; Jia, C. Transcriptomic Analysis of ncRNAs and mRNAs Interactions during Drought Stress in Switchgrass. Plant Sci. Int. J. Exp. Plant Biol. 2024, 339, 111930. [Google Scholar] [CrossRef]
- Li, H.; Gui, Y.; Zhu, K.; Wei, J.; Zhang, R.; Yang, R.; Tang, L.; Zhou, H.; Liu, X. Comparative Transcriptomic Analyses of Two Sugarcane saccharum L. Cultivars Differing in Drought Tolerance. Front. Plant Sci. 2023, 14, 1243664. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Huang, Y.; Wang, S.; Wei, L.; Liu, D.; Weng, Y.; Xiang, J.; Zhu, Q.; Yang, Z.; et al. CottonMD: A Multi-Omics Database for Cotton Biological Study. Nucleic Acids Res. 2023, 51, D1446–D1456. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bekele, D.; Tesfaye, K.; Fikre, A. Applications of Virus Induced Gene Silencing (VIGS) in Plant Functional Genomics Studies. J. Plant Biochem. Physiol. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent Prioritization and Exploratory Visualization of Biological Functions for Gene Enrichment Analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Fu, W.; Zhang, X.; Liusui, Y.; Saimi, G.; Zhao, H.; Zhang, J.; Guo, Y. Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress. Plants 2024, 13, 1257. https://doi.org/10.3390/plants13091257
Wang Z, Fu W, Zhang X, Liusui Y, Saimi G, Zhao H, Zhang J, Guo Y. Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress. Plants. 2024; 13(9):1257. https://doi.org/10.3390/plants13091257
Chicago/Turabian StyleWang, Ziyu, Wanwan Fu, Xin Zhang, Yunhao Liusui, Gulisitan Saimi, Huixin Zhao, Jingbo Zhang, and Yanjun Guo. 2024. "Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress" Plants 13, no. 9: 1257. https://doi.org/10.3390/plants13091257
APA StyleWang, Z., Fu, W., Zhang, X., Liusui, Y., Saimi, G., Zhao, H., Zhang, J., & Guo, Y. (2024). Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress. Plants, 13(9), 1257. https://doi.org/10.3390/plants13091257