Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Molecular Structures and Software
4.2. In Silico Molecular Docking Procedure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, Y.; Sun, C.; Wang, C.; Huo, X.; Zhao, W.; Ma, X. Biogenetic and biomimetic synthesis of natural bisditerpenoids: Hypothesis and practices. Nat. Prod. Rep. 2022, 39, 2030–2056. [Google Scholar] [CrossRef]
- Fan, Y.; Shen, J.; Liu, Z.; Xia, K.; Zhu, W.; Fu, P. Methylene-bridged dimeric natural products involving one-carbon unit in biosynthesis. Nat. Prod. Rep. 2022, 39, 1305–1324. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Fu, J.; Yao, X.J.; Wang, J.R.; Liu, L.; Jiang, Z.H.; Zhu, G.Y. Aggreganoids A-F, Carbon-Bridged Sesquiterpenoid Dimers and Trimers from Lindera aggregata. Org. Lett. 2019, 21, 5753–5756. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, X.; Liu, Y.; Dong, G.; Hao, C.; Zhang, J.; Jiang, J.; Cheng, J.; Liu, A.; Chen, S. Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in lotus seeds: A potentially rich source of bioactive compounds. Food Chem. 2022, 379, 132124. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Yan, J.J.; Liu, T.T.; Gao, J.; Huang, H.L.; Sun, C.P.; Huo, X.K.; Deng, S.; Zhang, B.J.; Ma, X.C. Natural sesquiterpenoid oligomers: A chemical perspective. Eur. J. Med. Chem. 2020, 203, 112622. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, T.; Chen, K.; Wang, H.; Jia, Q.; Li, Y. Enhancement of Berberine Hypoglycemic Activity by Oligomeric Proanthocyanidins. Molecules 2018, 23, 3318. [Google Scholar] [CrossRef]
- Luo, E.E.; Liu, S.N.; Wang, Z.J.; Chen, L.Y.; Liang, C.Q.; Yu, M.Y.; Qin, X.J. Oligomeric phloroglucinols with hAChE inhibitory and antibacterial activities from tropic Rhodomyrtus tomentosa. Bioorg. Chem. 2023, 141, 106836. [Google Scholar] [CrossRef]
- Nitta, Y.; Ito, H.; Komori, H.; Ueno, H.; Takeshima, D.; Ito, M.; Sakaue, M.; Kikuzaki, H. The ellagitannin trimer rugosin G inhibits recombinant human histidine decarboxylase. Biosci. Biotechnol. Biochem. 2019, 83, 1315–1318. [Google Scholar] [CrossRef]
- Toro-Uribe, S.; Montero, L.; López-Giraldo, L.; Ibáñez, E.; Herrero, M. Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta. 2018, 1036, 204–213. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Fernández-López, S.; Cuñas-Figueroa, I.D.; Pérez-Rial, S.; Alakomi, H.L.; Nohynek, L.; Oksman-Caldentey, K.M.; Salminen, J.P.; Esteban, J.; Cuadros, J.; et al. Sanguiin H-6 Fractionated from Cloudberry (Rubus chamaemorus) Seeds Can Prevent the Methicillin-Resistant Staphylococcus aureus Biofilm Development during Wound Infection. Antibiotics 2021, 10, 1481. [Google Scholar] [CrossRef]
- Abudureheman, B.; Yu, X.; Fang, D.; Zhang, H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 2022, 27, 942. [Google Scholar] [CrossRef]
- Hashiguchi, K.; Teramoto, S.; Katayama, K.; Matsuo, Y.; Saito, Y.; Tanaka, T. Oligomerization Mechanisms of Tea Catechins Involved in the Production of Black Tea Thearubigins. J. Agric. Food Chem. 2023, 71, 15319–15330. [Google Scholar] [CrossRef]
- Ito, T. Resveratrol oligomer structure in Dipterocarpaceaeous plants. J. Nat. Med. 2020, 74, 619–637. [Google Scholar] [CrossRef]
- Ito, T.; Ito, H.; Nehira, T.; Sawa, R.; Iinuma, M. Structure elucidation of highly condensed stilbenoids: Chiroptical properties and absolute configuration. Tetrahedron 2014, 70, 5640–5649. [Google Scholar] [CrossRef]
- Shen, J.; Zhou, Q.; Li, P.; Wang, Z.; Liu, S.; He, C.; Zhang, C.; Xiao, P. Update on Phytochemistry and Pharmacology of Naturally Occurring Resveratrol Oligomers. Molecules 2017, 22, 2050. [Google Scholar] [CrossRef]
- Wati, F.A.; Santoso, M.; Moussa, Z.; Fatmawati, S.; Fadlan, A.; Judeh, Z.M.A. Chemistry of trisindolines: Natural occurrence, synthesis and bioactivity. RSC Adv. 2021, 11, 25381–25421. [Google Scholar] [CrossRef]
- Wei, J.; Chen, X.; Ge, Y.; Yin, Q.; Wu, X.; Tang, J.; Zhang, Z.; Wu, B. Citrinin Monomer, Trimer, and Tetracyclic Alkaloid Derivatives from the Hydrothermal Vent-Associated Fungus Penicillium citrinum TW132-59. J. Org. Chem. 2022, 87, 13270–13279. [Google Scholar] [CrossRef]
- He, Z.H.; Xie, C.L.; Wu, T.; Zhang, Y.; Zou, Z.B.; Xie, M.M.; Xu, L.; Capon, R.J.; Xu, R.; Yang, X.W. Neotricitrinols A-C, unprecedented citrinin trimers with anti-osteoporosis activity from the deep-sea-derived Penicillium citrinum W23. Bioorg. Chem. 2023, 139, 106756. [Google Scholar] [CrossRef]
- Funayama, S.; Cordell, G.A. Chemistry of acronycine, XII. Further oligomers of noracronycine. J. Nat. Prod. 1986, 49, 210–217. [Google Scholar] [CrossRef]
- Kren, V.; Fiserová, A.; Weignerová, L.; Stibor, I.; Halada, P.; Prikrylová, V.; Sedmera, P.; Pospísil, M. Clustered ergot alkaloids modulate cell-mediated cytotoxicity. Bioorg. Med. Chem. 2002, 10, 415–424. [Google Scholar] [CrossRef]
- Kren, V.; Eich, E.; Pertz, H.H. 5-HT2A receptors of rat tail artery. Physiol. Res. 2004, 53, 35–43. [Google Scholar]
- Hou, W.; Huang, H.; Wu, X.Q.; Lan, J.X. Bioactivities and mechanism of action of securinega alkaloids derivatives reported prior to 2022. Biomed. Pharmacother. 2023, 158, 114190. [Google Scholar] [CrossRef]
- Bailly, C. Traditional uses, pharmacology, and phytochemistry of the medicinal plant Flueggea virosa (Roxb. ex Willd.) Royle. Future Pharmacol. 2024, 4, 77–102. [Google Scholar] [CrossRef]
- Chirkin, E.; Atkatlian, W.; Porée, F.H. The Securinega alkaloids. Alkaloids Chem. Biol. 2015, 74, 1–120. [Google Scholar]
- Kang, G.; Park, S.; Han, S. Synthesis of High-Order and High-Oxidation State Securinega Alkaloids. Acc. Chem. Res. 2023, 56, 140–156. [Google Scholar] [CrossRef]
- Liu, C.J.; Fan, X.D.; Jiang, J.G.; Chen, Q.X.; Zhu, W. Potential anticancer activities of securinine and its molecular targets. Phytomedicine 2022, 106, 154417. [Google Scholar] [CrossRef]
- Ashraf, S.M.; Mahanty, S.; Rathinasamy, K. Securinine induces mitotic block in cancer cells by binding to tubulin and inhibiting microtubule assembly: A possible mechanistic basis for its anticancer activity. Life Sci. 2021, 287, 120105. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Sparzak-Stefanowska, B.; Krauze-Baranowska, M.; Ochocka, J.R. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells. PLoS ONE 2016, 11, e0165372. [Google Scholar] [CrossRef]
- Vergoten, G.; Bailly, C. Interaction of norsecurinine-type monomeric and dimeric alkaloids with α-tubulin: A molecular docking study. Explor. Drug Sci. 2024, in press.
- Zhang, H.; Wei, W.; Yue, J.-M. From monomer to tetramer and beyond: The intriguing chemistry of Securinega alkaloids from Flueggea virosa. Tetrahedron 2013, 69, 3942–3946. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.R.; Zhu, K.K.; Gao, A.H.; Luo, C.; Li, J.; Yue, J.M. Fluevirosines A-C: A biogenesis inspired example in the discovery of new bioactive scaffolds from Flueggea virosa. Org. Lett. 2013, 15, 120–123. [Google Scholar] [CrossRef]
- Zhang, H.; Han, Y.-S.; Wainberg, M.A.; Yue, J.-M. Anti-HIV Securinega alkaloid oligomers from Flueggea virosa. Tetrahedron 2015, 71, 3671–3679. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Wang, T.; Jiang, J.; Botting, C.H.; Liu, H.; Chen, Q.; Yang, J.; Naismith, J.H.; Zhu, X.; et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat. Commun. 2016, 7, 12103. [Google Scholar] [CrossRef]
- Lee, B.; Richards, F.M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 1971, 55, 379–400. [Google Scholar] [CrossRef]
- Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 1983, 221, 709–713. [Google Scholar] [CrossRef]
- Fischer, A.; Smieško, M.; Sellner, M.; Lill, M.A. Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results. J. Med. Chem. 2021, 64, 2489–2500. [Google Scholar] [CrossRef]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef]
- Mohanty, M.; Mohanty, P.S. Molecular docking in organic, inorganic, and hybrid systems: A tutorial review. Monatsh Chem. 2023, 154, 683–707. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Li, W.; Huang, N. A Comprehensive Survey of Prospective Structure-Based Virtual Screening for Early Drug Discovery in the Past Fifteen Years. Int. J. Mol. Sci. 2022, 23, 15961. [Google Scholar] [CrossRef]
- Agarwal, M.; Afzal, O.; Salahuddin Altamimi, A.S.A.; Alamri, M.A.; Alossaimi, M.A.; Sharma, V.; Ahsan, M.J. Design, Synthesis, ADME, and Anticancer Studies of Newer N-Aryl-5-(3,4,5-Trifluorophenyl)-1,3,4-Oxadiazol-2-Amines: An Insight into Experimental and Theoretical Investigations. ACS Omega 2023, 8, 26837–26849. [Google Scholar] [CrossRef]
- Reddy, C.R.; Subbarao, M.; Vijaykumar, J.; Jadav, S.S.; Sasane, N.; Valleti, R.R.; Supriya, B.; Ummanni, R. One-Pot Synthesis of Triazolo-Heterolignans: Biological Evaluation and Molecular Docking Studies as Tubulin Inhibitors. Anticancer Agents Med. Chem. 2018, 18, 1702–1710. [Google Scholar] [CrossRef]
- Perin, N.; Hok, L.; Beč, A.; Persoons, L.; Vanstreels, E.; Daelemans, D.; Vianello, R.; Hranjec, M. N-substituted benzimidazole acrylonitriles as in vitro tubulin polymerization inhibitors: Synthesis, biological activity and computational analysis. Eur. J. Med. Chem. 2021, 211, 113003. [Google Scholar] [CrossRef]
- Chen, K.C.; Wu, C.R.; Lien, J.C. Molecular interaction of cytotoxic anticancer analogues as inhibitors of β-tubulin protein against UACC-62 melanoma cell. J. Biochem. 2021, 169, 621–627. [Google Scholar] [CrossRef]
- Chi, S.; Xie, W.; Zhang, J.; Xu, S. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. J. Biomol. Struct. Dyn. 2015, 33, 2234–2254. [Google Scholar] [CrossRef]
- Usui, T.; Watanabe, H.; Nakayama, H.; Tada, Y.; Kanoh, N.; Kondoh, M.; Asao, T.; Takio, K.; Watanabe, H.; Nishikawa, K.; et al. The anticancer natural product pironetin selectively targets Lys352 of alpha-tubulin. Chem. Biol. 2004, 11, 799–806. [Google Scholar] [CrossRef]
- Montecinos, F.; Sackett, D.L. Structural Changes, Biological Consequences, and Repurposing of Colchicine Site Ligands. Biomolecules 2023, 13, 834. [Google Scholar] [CrossRef]
- Sebastian, J.; Rathinasamy, K. Microtubules and Cell Division: Potential Pharmacological Targets in Cancer Therapy. Curr. Drug Target. 2023, 24, 889–918. [Google Scholar] [CrossRef]
- Weng, H.; Li, J.; Zhu, H.; Carver Wong, K.F.; Zhu, Z.; Xu, J. An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med. Chem. 2023, 15, 73–95. [Google Scholar] [CrossRef]
- Ratnikova, T.A.; Govindan, P.N.; Salonen, E.; Ke, P.C. In vitro polymerization of microtubules with a fullerene derivative. ACS Nano 2011, 5, 6306–6314. [Google Scholar] [CrossRef]
- Nettles, J.H.; Li, H.; Cornett, B.; Krahn, J.M.; Snyder, J.P.; Downing, K.H. The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science 2004, 305, 866–869. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 2005, 26, 1689–1700. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Meziane-Tani, M.; Lagant, P.; Semmoud, A.; Vergoten, G. The SPASIBA force field for chondroitin sulfate: Vibrational analysis of D-glucuronic and N-acetyl-D-galactosamine 4-sulfate sodium salts. J. Phys. Chem. A 2006, 110, 11359–11370. [Google Scholar] [CrossRef] [PubMed]
- Vergoten, G.; Mazur, I.; Lagant, P.; Michalski, J.C.; Zanetta, J.P. The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie 2003, 85, 65–73. [Google Scholar] [CrossRef]
- Lagant, P.; Nolde, D.; Stote, R.; Vergoten, G.; Karplus, M. Increasing normal modes analysis accuracy: The SPASIBA spectroscopic force field introduced into the CHARMM program. J. Phys. Chem. A 2004, 108, 4019–4029. [Google Scholar] [CrossRef]
- Homans, S.W. A molecular mechanical force field for the conformational analysis of oligosaccharides: Comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry 1990, 29, 9110–9118. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Tirado-Rives, J. Monte Carlo versus Molecular Dynamics for conformational sampling. J. Phys. Chem. 1996, 100, 14508–14513. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Ulmschneider, J.P.; Tirado-Rives, J. Free energies of hydration from a generalized Born model and an ALL-atom force field. J. Phys. Chem. B 2004, 108, 16264–16270. [Google Scholar] [CrossRef]
- Xie, Q.J.; Zhang, W.Y.; Wu, Z.L.; Xu, M.T.; He, Q.F.; Huang, X.J.; Che, C.T.; Wang, Y.; Ye, W.C. Alkaloid constituents from the fruits of Flueggea virosa. Chin. J. Nat. Med. 2020, 18, 385–392. [Google Scholar] [CrossRef]
- Kang, G.; Han, S. Synthesis of Dimeric Securinega Alkaloid Flueggeacosine B: From Pd-Catalyzed Cross-Coupling to Cu-Catalyzed Cross-Dehydrogenative Coupling. J. Am. Chem. Soc. 2022, 144, 8932–8937. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, J.; Park, S.; Han, S. Total synthesis of dimeric Securinega alkaloids (-)-flueggenines D and I. Chem. Sci. 2020, 11, 10934–10938. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jeon, S.; Kang, G.; Lee, J.; Baik, M.H.; Han, S. Dimerization Strategies for the Synthesis of High-Order Securinega Alkaloids. J. Org. Chem. 2019, 84, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
Molecule: | Norsecurinine | Flueggenine-I | Fluevirine-A | Fluevirosine-D | Fluevirosine-G | Fluevirosinine-A | Fluevirosinine-D | Fluevirosinine-F | Fluevirosinine-G | Fluevirosinine-H |
---|---|---|---|---|---|---|---|---|---|---|
Type | Monomer | Dimer | Dimer | Trimer | Trimer | Tetramer | Tetramer | Tetramer | Pentamer | Pentamer |
Molecular Weight (g/mol) | 203.2 | 438.5 | 424.5 | 609.7 | 609.7 | 813.0 | 811.0 | 813.0 | 1016.2 | 1016.2 |
Dipole moment (D) | 6.0 | 12.5 | 4.3 | 5.4 | 4.0 | 7.4 | 11.2 | 14.1 | 7.8 | 14.5 |
Total SASA (Å2) a | 400.7 | 656.8 | 615.5 | 797.7 | 843.8 | 970.3 | 965.0 | 948.8 | 1158.7 | 1188.2 |
Hydrophobic SASA | 210.1 | 543.1 | 401.7 | 588.1 | 610.7 | 715.9 | 680.5 | 718.9 | 832.1 | 893.3 |
Hydrophilic SASA | 74.6 | 91.2 | 177.7 | 153.9 | 171.9 | 194.0 | 225.1 | 159.6 | 239.9 | 242.4 |
Molecular Volume (Å3) | 668.4 | 1250.9 | 1193.7 | 1638.6 | 1679.7 | 2107.2 | 2074.8 | 2052.7 | 2546.4 | 2596.6 |
Donor H-bonds | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Acceptor H-bonds | 2 | 5 | 6 | 6 | 6 | 8 | 8 | 8 | 10 | 10 |
log P (octanol/water) | 0.3 | 0.1 | −0.9 | 0.1 | 0.2 | −0.1 | −0.5 | −0.2 | −0.5 | −0.2 |
log S (aqueous solubility) | 0.03 | 0.07 | −2.0 | 0.2 | −0.7 | 0.7 | 0.8 | 1.2 | 1.0 | 0.5 |
Compounds | ΔE (kcal/mol) | ΔG (kcal/mol) |
---|---|---|
Securinine | −44.60 | −17.10 |
Norsecurinine | −44.20 | −17.10 |
Fluevirosine A | −83.00 | −23.95 |
Fluevirosine B | −75.00 | −27.10 |
Fluevirosine C | −69.6.0 | −23.90 |
Fluevirosine D | −94.55 | −38.80 |
Fluevirosine G | −89.2.0 | −35.85 |
Fluevirosine H | −86.40 | −26.35 |
Fluevirosinine A | −103.05 | −37.80 |
Fluevirosinine B | −97.35 | −34.40 |
Fluevirosinine C | −97.30 | −37.45 |
Fluevirosinine D | −104.50 | −35.40 |
Fluevirosinine E | −89.45 | −35.20 |
Fluevirosinine F | −102.90 | −36.40 |
Fluevirosinine G | −117.00 | −32.90 |
Fluevirosinine H | −113.90 | −45.10 |
Fluevirosinine I | −102.75 | −39.15 |
Fluevirosinine J | −103.35 | −41.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergoten, G.; Bailly, C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. Plants 2024, 13, 1269. https://doi.org/10.3390/plants13091269
Vergoten G, Bailly C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. Plants. 2024; 13(9):1269. https://doi.org/10.3390/plants13091269
Chicago/Turabian StyleVergoten, Gérard, and Christian Bailly. 2024. "Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study" Plants 13, no. 9: 1269. https://doi.org/10.3390/plants13091269
APA StyleVergoten, G., & Bailly, C. (2024). Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. Plants, 13(9), 1269. https://doi.org/10.3390/plants13091269