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Abstract: Light serves as the unique driving force of photosynthesis in plants, yet its
intensity varies over time and space, leading to corresponding changes in the photosyn-
thetic rate. Here, the photosynthetic induction response under constant and fluctuating
light was examined in naturally occurring saplings of four sun-demanding woody species,
Eucalyptus. Ficus macrocarpa L., Hibiscus syriacus L. and Ficus carica L. We aimed to find out
the relations among gas exchange parameter adaptions among different species during
photosynthetic induction. The net photosynthetic rates (A) versus time course curves
were sigmoidal or hyperbolic after the dark-adapted leaves were irradiated by continuous
saturated light. Compared with other species, Ficus carica L. have the largest net photo-
synthesis rate, stomatal conductance to CO2 (gsc), and the maximum carboxylation rate
(Vcmax) at both the initial and steady photosynthetic state. The initial gsc (gsci) was as much
as sixfold higher compared to the other shrub, Hibiscus syriacus L. The time required to
reach 90% of A (tA90) was 7–30 min; tA90 of Ficus carica L. and Ficus macrocarpa L. were
lower than that of the other two species. The time required to reach 90% of gsc (tgsc90)
significantly lagged behind tA90 among species. Biochemical induction was fast in leaves of
Ficus carica L., as about 4 min were needed to reach 90% of Vcmax, while the other species
needed 7–18 min. Correlation analysis showed that the tgsc90 was the main factor in limiting
tA90, especially for Eucalyptus spp. and Hibiscus syriacus L.; gsci was negatively correlated
with tgsc90 among species. Moreover, time-integrated limitation analysis revealed that gsc

still accounted for the largest limitation in constraining A of Eucalyptus spp. and Hibiscus
syriacus L. and Ficus macrocarpa L. Overall, the findings suggest that to enhance the carbon
gain by woody species under naturally dynamic light environments, attention should be
focused on improving the rate of stomatal opening or initial stomatal conductance.

Keywords: photosynthetic induction; photosynthetic limitations; woody species; initial
stomatal conductance; Ficus macrocarpa L.

1. Introduction
In natural and agricultural ecosystems, plants are frequently exposed to dynamically

changing light environments due to intermittent cloud movement and cover, wind-induced
leaf movements, variations in solar angle, or other atmospheric factors [1,2]. Fluctuating
light irradiation in plant leaves induces dampened photosynthetic oscillations, resulting
in photosynthesis rarely achieving a stable state. However, the photosynthetic response
to light fluctuations (such as a sudden shift from low light to high light irradiation) is
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not instantaneous. According to the classic photosynthetic biochemical model by Far-
quhar et al. [3], photosynthetic rate (A) was limited by the three rates: (1) the maximum
rate of Rubisco catalyzed carboxylation (Rubisco-limited); (2) the regeneration of ribulose-
1,5-bisphosphate (RuBP), controlled by electron transport rate (RuBP-limited), and (3) the
regeneration of RuBP, controlled by the rate of triose-phosphate utilization (TPU-limited).
As a result, it typically exhibits an induction period characterized by a gradual increase
of A overtime to a stable state rate [4]. Furthermore, plants require time to adjust to the
transition from low light or darkness to high light irradiations. Recent studies showed
that, compared to the ideal situation where A could reach the stable state immediately
after the light fluctuation, the damped A oscillation in fluctuating light affects carbon
gain in plants [5,6]. Additionally, the photosynthetic organs could be damaged due to the
imbalance of light–dark reactions in the photosynthetic process [7,8]. Therefore, further
investigation into the physiological responses of plant photosynthesis under dynamic light
conditions is necessary.

When leaves previously in darkness are illuminated, the A cannot reach the highest
level instantly (since several processes underlying photosynthesis are activated or deacti-
vated slowly) but needs to increase to a steady-state rate gradually over a period of time.
This process is defined as photosynthetic induction [9]. Depending on plant species, light
conditions, and environmental conditions, the duration of photosynthetic induction can
range from a few minutes to tens of minutes [10]. Currently, the underlying mechanisms
of photosynthetic induction have been extensively studied. According to the current un-
derstanding, photosynthetic induction is affected by three main physiological processes,
i.e., the induction rate of photosynthetic electron transport in the thylakoid membrane,
activation of Calvin–Benson cycle enzymes, and stomatal opening [11]. Taken together,
photosynthesis is limited by diffusional and biochemical constraints [12]. Diffusional
constraints are primarily attributed to stomatal opening, while biochemical constraints
arise due to the light and carbon reactions driving A [13]. The proportion of these two
factors is closely related to plant species and is also affected by plant genotype and exter-
nal environmental conditions. Based on analyses of photosynthetic induction limitations
in rice, the primary limitation during induction was biochemical limitation rather than
stomatal limitation [14]. Since Rubisco enzymes are susceptible to being deactivated under
shade or dark conditions, the reactivation of Rubisco enzymes under high light conditions
might be crucial for inducing A during transitions from darkness to light [15]. Studies on
different genotypes of wheat showed that the reduction of the instantaneous response of
the maximum carboxylation rate (Vcmax) during photosynthetic induction resulted in a 15%
reduction in the net carbon gain [6]. In other crops (such as cassava), as well as tropical trees
or shrubs, photosynthetic induction is strongly constrained by stomatal conductance to
CO2 (gsc) [16–18]. Similarly, in a range of horticultural crops, changes induced by photosyn-
thesis are also primarily driven by stomatal traits, e.g., by initial gsc and the rate of stomatal
opening during the induction [19]. In addition, the interactions between stomatal opening
and biochemical processes may have a combined effect on photosynthetic induction. For
instance, slow opening of the stomata can delay induction by starving Rubisco of CO2 in
dark and low-light irradiation conditions [20].

Woody species occupy a specific ecological niche in plant community [21], as they are
exposed to rapid and alternating changes in solar radiation over their vegetation period,
except for some uppermost leaves of the canopy, which may experience prolonged periods
of sufficient light under steady-state conditions [22]. In such cases, a significant portion of
CO2 assimilation occurs under fluctuating light conditions. Early studies have highlighted
the significance of various photosynthetic limiting factors on wood photosynthesis under
stable light conditions [23–25]. Under fluctuating light conditions, species exhibit variation
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in the traits that dominate photosynthetic induction; however, there is limited information
on inter-specific differences in induction properties of woody species in China. In the
present study, we aimed to elucidate the acclimation of dynamic A in important common
trees (Eucalyptus spp. And Ficus macrocarpa L.) and shrubs (Hibiscus syriacus L. and Ficus
carica L.) in the coastal region of China. Our hypothesis proposed that these species obtained
a typical response to photosynthetic induction. The traits relevant to the photosynthetic
induction process were measured, and limitation analyses were conducted to determine
the main limiting factors of each species to enhance the photosynthetic performance of
woody species efficiently under naturally dynamic light environments.

2. Results
2.1. Photosynthetic Induction Responses

After illuminating, A of four woody species increased rapidly in the initial stage of
induction, followed by a more gradual increase until a steady state was reached (Figure 1).
Similarly, induction of gsc and Vcmax showed typical responses, except that the gsc curve
was observed a certain delay in the initial stage. During the induction, A, gsc, and Vcmax

varied significantly between accessions; the accession Ficus macrocarpa L. had the highest
photosynthetic performance all the time, while Hibiscus syriacus L. had the lowest. Interest-
ingly, Ficus carica L. could reach a steady state faster than the other accessions in less than
20 min (Figure 1).
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Figure 1. Dynamic photosynthetic traits of Eucalyptus spp. (Es), Hibiscus syriacus L. (Hs), Ficus
macrocarpa L. (Fc), and Ficus macrocarpa L. (Fm) during photosynthetic induction at 1000 µmol m−2 s−1

photosynthetic photon flux density (PPFD). (a) the net photosynthetic rate (A) response curves; (b) the
stomatal conductance to CO2 (gsc) response curves; (c) the maximum carboxylation rate (Vcmax)
response curves.

2.2. Dynamic and Steady Changes of Photosynthetic Traits During Photosynthetic Induction

Rates of photosynthetic induction increased during the episode of light induction
(Figure 1), affecting the time to reach 90% of full induction. Further analysis of the time
required for induction states of species showed that Hibiscus syriacus L. had the longest
time (29.9 min) to achieve 90% of photosynthetic induction (tA90), which was significantly
higher than that of Eucalyptus spp. (15.0 min), Ficus macrocarpa L. (11.0 min), and Ficus carica
L. (7.2 min) (Figure 2). A similar trend was observed in time to reach 90% of biochemical
activation (tVcmax90), whereas the time was generally lower than that of tA90 (Figure 2).
Compared with tA90, the tVcmax90 of Hibiscus syriacus L., Eucalyptus spp., Ficus macrocarpa L.
and Ficus carica L. decreased by 37.3%, 32.1%, 28.6% and 36.3%. By contrast, stomata opened
slower during the induction, and the time to reach 90% of stomatal opening (tgsc90) was
higher than that of tA90 and tVcmax90. In particular, the tgsc90 of Hibiscus syriacus L. reached
39.5 min, which was almost 3.2-fold longer than that of Ficus macrocarpa L (Figure 2).
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Figure 2. Dynamic photosynthetic parameters of different plants during photosynthetic induction.
tA90, tgsc90, and tvcmax90 were the time (min) to reach 90% of photosynthetic induction, full stomatal
opening, and biochemical activation. (a), value of tA90 among the species; (b), value of tgsc90 among
the species; (c), value of tvcmax90 among the species. Different letters indicate significant differences
among the species. Data are means ± SE (n = 3–6). Eucalyptus spp. (Es), Hibiscus syriacus L. (Hs),
Ficus macrocarpa L. (Fc), and Ficus macrocarpa L. (Fm).

Moreover, a multiple regression model was employed to compare the effect of tgsc90

and tVcmax90 on tA90 (Table 1). For Eucalyptus spp. and Hibiscus syriacus L., the regression
coefficient of tgsc90 was much higher than that of tVcmax90, suggesting a stronger influence
in determining tA90; On the contrary, tVcmax90 exerted a greater impact on tA90 in species
Ficus macrocarpa L., and especially on Ficus carica Linn., of which the regression coefficient
of tvcmax90 was almost 10-fold higher than tgsc90 (Table 1).

Table 1. Multiple regression analysis of photosynthesis (tA90) as a function of tgsc90 and tvcmax90

(tA90 = a + b1 × tgsc90 + b2 × tvcmax90) based on the data of different species.

Species
Intercept Regression Coefficient

a b1 b2 R2

Eucalyptus spp. −0.81 0.74 0.32 0.96
Hibiscus syriacus L. −31.74 1.27 0.63 0.57

Ficus carica Linn. −9.38 0.22 2.29 0.78
Ficus macrocarpa L. 6.85 0.10 0.57 0.67

Steady-state gas exchange parameters at the end of photosynthetic induction were
further analyzed. We found that the highest tA90 of Hibiscus syriacus L. was accompanied by
the lowest steady-state A at both 100 (Ai) and 1000 PPFD (Af) inducing periods (Figure 3).
On the contrary, Ficus carica L. and Eucalyptus spp. achieved the highest Af with shorter
induction time, which was 19.3 and 18.6 µmol m−2 s−1, respectively. Moreover, the steady-
state stomatal conductance (gscf) and biochemical activity (Vcmaxf) of Ficus carica L. and
Eucalyptus spp. were higher than that of Hibiscus syriacus L. and Ficus macrocarpa L. in
response to the light fluctuating course (Figure 3).
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(a), Ai and Af were the steady-state A of the last 1 min of low light induction period (100 µmol m−2 s−1

PPFD) and high light induction period (1000 µmol m−2 s−1 PPFD), respectively. (b), gsci and gscf

were the steady-state gsc of the last 1 min of low light induction period (100 µmol m−2 s−1 PPFD) and
high light induction period (1000 µmol m−2 s−1 PPFD), respectively. (c), Vcmaxi and Vcmaxf were the
steady-state Vcmax of the last 1 min of low light induction period (100 µmol m−2 s−1 PPFD) and high
light induction period (1000 µmol m−2 s−1 PPFD), respectively. Different letters indicate significant
differences among the species. Data are means ± SE (n = 3–6). Eucalyptus spp. (Es), Hibiscus syriacus
L. (Hs), Ficus macrocarpa L. (Fc), and Ficus macrocarpa L. (Fm).

2.3. Stomatal and Biochemical Limitations During Photosynthetic Induction

The limitation model quantified the degree of stomatal opening and biochemical
process that constrained A during the episode of photosynthetic induction. This is a
complex parameter that the sum of these limitations is 100%, as they are calculated in
relation to the total limitation for A, referenced by gaseous diffusion and biochemical state.
Analyses of the limiting factors for the induction of photosynthesis have shown that a high
proportion of stomatal conductance limitation (σstom) was the key factor for A of Hibiscus
syriacus L. in the induction process (Figure 4). In particular, the σstom accounting for approx.
78% of the total limitation, significantly higher than that of Ficus macrocarpa L. (66%) and
Eucalyptus spp. (57%) (Figure 4). On the contrary, biochemical capacity limitation (σbiochem)
has the pivotal constrain on A of Ficus carica L. for more than 60%, which was significantly
increased by twofold and onefold compared to Hibiscus syriacus L. and Ficus macrocarpa L
(Figure 4).
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2.4. Relationship Between Parameters in Relation to Photosynthetic Induction

Considering the different gas exchange parameters that determine the time to reach
90% steady-state photosynthesis, correlations in varying degrees between tA90 and Ai

(R2 = 0.85), Af (R2 = 0.36), and gsci (R2 = 0.41) were observed in the present study, while no
statistical correlation was found between tA90 and Vcmaxi (Figure 5). Specifically, the value
of tA90 dropped rapidly with the elevation of Ai and Af compared with the slow response
of tA90 to the varying of gsci.
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Figure 5. tA90 in relation to gsci (a) and Vcmaxi (b). Filled squares display values (n = 3–6) for the four
species considered in the present study. Data were fitted in by a regression analysis in considering all
species.

3. Discussion
Eco-physiological studies require knowing the photosynthetic characteristics of dif-

ferent species across different environmental settings. Among these, enhancing dynamic
photosynthesis generally has the maximum carbon gains for plants, especially for sun-
demanding plants [13,20,26,27]. In the present study, four sun-demanding woody species,
including two trees and two shrubs commonly found in coastal areas of China, were se-
lected, and the photosynthetic induction characteristics were compared using the same
experimental setup. Findings suggested that increasing the initial stomatal conductance
would be more beneficial for dynamic photosynthesis than the rate of stomatal opening or
biochemical capacities for these species.

Typically, time courses of photosynthetic induction curves are either sigmoidal or
hyperbolic [26]. Here, the induction curves were similar among species, rising rapidly
within 5–10 min, followed by a rise to the steady-state value, except for Hibiscus syriacus
L., which showed a gradual increase throughout the induction (Figure 1a). As Allen &
Pearcy, the shape of the photosynthetic induction curve was mainly determined by gsci

since the dark-adapted treatment before induction basically eliminated the variation of
Rubisco enzyme traits [16]. Along with this, we found that the gsci of Hibiscus syriacus L.
significantly reduced in comparison to Ficus carica L., presenting a sigmoidal induction
type (Figure 1b). The result was in line with Kirschbaum & Pearcy, who suggested that a
sigmoidal induction type is observed when gsci is initially low, causing a relatively slow
increase in A during induction [28]. Similarly, Ficus macrocarpa L., which have a lower gsci,
showed a weak sigmoidal type of induction (Figure 3). However, the rate of biochemical
induction seemed to be faster in Ficus macrocarpa L. leaves, which significantly contributed
to a further increase in A compared to Hibiscus syriacus L (Figure 3). The average time
for trees, such as Eucalyptus spp. and Ficus macrocarpa L., to reach 90% of A was short,
around 10–15 min. In contrast, the difference of tA90 between the two shrubs was more than
fourfold, in which tA90 in Hibiscus syriacus L. was approx. 30 min (Figure 2), indicating a
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plasticity in the rate of photosynthetic induction of shrubs. In the ecological community, the
induction time was affected by many factors and showed an irregular change. Generally,
plants grown in low light induced faster than those grown in high light, manifested by a
rapid induction [21,22,29,30]. However, slow induction can also be found across species,
lasting up to 1 h or longer, independent of the light requirements of plant growth [31,32].
Zipperlen & Press [33] compared two climax trees grown in different forest light conditions
and suggested that species showed a higher induction rate when exposed to medium light
or high light, contrary to expectations for shade-tolerance species.

To date, numerous studies have reported on the mechanisms influencing photosyn-
thetic induction, identifying Calvin-cycle enzyme activity, the regeneration of Calvin-
cycle intermediates, and stomatal opening rates as the key factors [30,34,35]. Moreover,
Kromdijk et al. [36] found a faster relaxation of NPQ was beneficial to CO2 assimilation
during light transition from high to low intensity. In our study, we found that there was a
general increase of tgsc90 compared to tA90 (Figure 2), suggesting that the stomatal opening
rate lags the photosynthetic rate during the induction. Particularly, tgsc90 of Ficus carica L.
increased by approx. 20 min than the tA90 (Figure 2). Suwannarut et al. [37] examined gsc

in ten tropical species and suggested that the stomata of Ficus carica L. opened and closed
slower when compared with other species, and their opening became progressively slower
under a series of light flecks. It can also be drawn from the stomatal induction curve in
Figure 1b. Recent studies have often linked stomatal opening rates to stomatal size, noting
that smaller l stomates tend to respond more rapidly to an increase in irradiance than
the larger stomates [38–40], although stomatal opening was co-determined by stomatal
density. Further investigation into the factors for the greatly increased tgsc of Ficus carica L
is warranted. Multiple regression analysis revealed that the inter-specific differences in in-
duction times are likely due to differences in the dynamic responses of these slow-inducing
components (Table 1). In comparison with Ficus carica L. and Ficus macrocarpa L., tgsc90 of
Eucalyptus spp. and Hibiscus syriacus L. had a greater influence on the tA90. Interestingly,
even though the tgsc of Ficus carica L. was higher than that of Eucalyptus spp., tgsc90 was not
the key factor limiting the tA90, which may be ascribed to its higher gsci. Studies on varieties
of species have confirmed that there is a certain negative correlation between the gcsi and
tA90 [39,41,42]. Consistent with these findings, our study demonstrated that as the increase
of gsci, tA90 showed a slow decline, while the effect of Vcmaxi on tA90 was slight (Figure 5).

Overall, photosynthetic increased rapidly upon exposure to light (Figures 1 and 2).
Within species, photosynthetic induction of Ficus carica L. was mainly constrained by
biochemical limitation, whereas stomatal limitation accounting for a large proportion
of photosynthesis limitation of Hibiscus syriacus L. and Ficus macrocarpa L, stomatal and
biochemical limitations contributed equally to photosynthetic induction of Eucalyptus spp.
(Figure 4). It is important to note that leaf age could impact these results. Research by
Urban et al. [43] compared the limitations during the induction phase in young and mature
leaves of poplar and revealed that the rubisco activation limitation was significantly higher
in mature leaves than in young leaves. Future research should consider evaluating s
photosynthetic induction traits in plant canopies with different leaf ages.

4. Materials and Methods
4.1. Plant Material and Growth Condition

Two one-year-old common shrubs (Hibiscus syriacus L. and Ficus macrocarpa L.) and
two one-year-old trees (Eucalyptus spp. and Ficus macrocarpa L.) were grown individually
in the outdoor places. Plants were planted in 5 L pots filled with a standard soil matrix,
which contains slow-release nitrogen, potassium and phosphorus fertilizer. Before the
experiment started, plants were moved to a greenhouse for one week for acclimation.
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The air temperature was set to 25 ◦C for 16 h photoperiod and 18 ◦C for 8 h at night,
the relative humidity was 65%, and the light was maintained at above 800 µmol m−2 s−1

photosynthetic photon flux density (PPFD).

4.2. Gas Exchange Measurement

For the measurement, the youngest fully expanded leaf of each plant was placed in
a 2 × 6 cm cuvette of Li-6400XT gas-exchange system (Li-Cor, Lincoln, NE, USA); plants
were selected and measured randomly from 9:00–11:30. Within the cuvette, the flow rate
of air was 500 µmol s−1, air temperature was 25 ◦C, PPFD was 1000 µmol m−2 s−1, CO2

concentration was maintained at 400 µmol mol−1 and the relative humidity was controlled
to 60%. Once the steady state was achieved, net photosynthetic rate (A), CO2 concentration
in the intercellular spaces (Ci), and leaf stomatal conductance (gs) were recorded. Since gs is
the stomatal conductance to water vapor, it is expressed in terms of stomatal conductance
to CO2 (gsc) in subsequent calculations, which is calculated as gsc = gs/1.6.

4.3. Photosynthetic Induction Measurement

To assess the response of gas exchange to a dynamic irradiance, leaves were first
allowed to adapt in the low light of 100 µmol m−2 s−1 PPFD for steady and followed by
1000 µmol m−2 s−1 PPFD until photosynthetic parameters achieved a steady state. In these
conditions, gas exchange measurements were logged every second for the first 1 min and
every 5 s thereafter. The steady-state A and gsc of the last 1 min of the low light induction
period were expressed as Ai and gsci, while Af and gscf were equal to the final A and gsc at
the last 1 min of high light induction. For each plant, 3–6 biological replicates were used,
and all calculations were performed on single replicates.

Photosynthetic induction was calculated according to the following:

IS =
A − Ai

Af − Ai
(1)

The induction of gsc over the same duration was also calculated by replacing A, Ai,
and Af with gsc, gsci, gscf, respectively. tA90 and tgsc90 were defined as the time to reach 90%
of the difference between initial and maximum values of photosynthetic induction and
stomatal opening time, respectively.

According to Farquhar et al. [3], at low light or the initial stage of high light induction,
A was limited mainly by RuBP regeneration. Since the activation of RuBP regeneration
occurs rapidly, Rubisco activation began to limit A (or co-limit with RuBP regeneration)
in quite a short time, along with the duration of irradiance. Therefore, it is assumed
that A is primarily limited by Rubisco throughout the induction, and the mesophyll CO2

conductance was infinite [6,44,45]. The maximum carboxylation rate of Rubisco (Vcmax)
could be calculated as follows:

Vcmax =
(A + Rd) (C i + Km)

(Ci − Γ∗)
(2)

where Rd is the rate of respiration in the light, Γ* is the CO2 compensation point in the ab-
sence of mitochondrial respiration, and Km is the effective CO2 Michaelis–Menten constant
for Rubisco.

Using the above equation, Vcmax and biochemical activation time could be calculated
at each time point. Accordingly, steady-state Vcmax at the last 1 min of induction under
low light (Vcmaxi) and high light (Vcmaxf), as well as the time to reach 90% of the difference
between initial and maximum values of Vcmax (tVcmax90), were obtained.
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4.4. Limitation Analysis

According to Sakoda et al. [20], altering the induction kinetics of mesophyll conduc-
tance would have little impact on A following a dynamic light. Hence, only the relative
limitation of stomatal and biochemical capacity on A during photosynthetic induction was
considered here [46], and the A variation between final state and steady-state A (dA) can be
modeled by:

dA = dAstom + dAbiochem (3)

where dAstom and dAbiochem are the stomatal and biochemical components that limited A,
which can be calculated as:

dAstom =
∂A
∂gsc

dgsc (4)

dAbiochem =
∂A

∂Vcmax
dVcmax (5)

where dgsc and dVcmax are the variations between final state and steady-state gsc and Vcmax,
respectively.

As A = gsc(Ca − Ci), combined with Equation (2), gives the partial derivatives as fol-
lows:

∂A
∂gsc

=

A
g2

sc
((Vcmax − Rd )− A)

(V cmax − Rd)(
1

gsc
) + (Ca + Km)− 2( 1

gsc
)A

(6)

∂A
∂Vcmax

=
(Ca − Γ∗)− A

(
1

gsc

)
(V cmax − Rd)(

1
gsc

) + (Ca + Km)− 2( 1
gsc

)A
(7)

The relative limitation of stomatal (σstom, dimensionless) weighted by A could be
calculated as:

σstom =

∫
dAstomdt∫

dAstomdt +
∫

dAbiochemdt
(8)

σstom was the estimate of the proportion of stomatal limitation on A during the time
scale of photosynthetic induction. While the proportion of biochemical limitation (σbiochem,
dimensionless) was quantified as: σbiochem = 1 − σstom.

4.5. Statistical Analysis

The data are mean ± standard error (SE). Significant differences in parameters were
tested using SPSS 25.1 by one-way ANOVA. Significant relationships between parame-
ters were tested by linear regressions. Graphical depiction and regression analyses were
conducted with Origin Pro 2020.

5. Conclusions
In the present study, we found significant differences in the induction status and

time of gas exchange parameters among the discussed sun-demanding species, especially
between the two shrubs. Regarding the time course of photosynthesis induction, the
induction time of Ficus carica L. was shorter, of which the photosynthetic parameters were
also maintained at a higher level. This rapid response to high light and high maintenance
state of Ficus carica L. are important for photosynthetic carbon fixation under fluctuating
light environments. For other species, such as Hibiscus syriacus L., the increased induction
times occurred because of stomatal behavior; the stomatal characteristics, especially gsci,
are the key factors in limiting photosynthetic induction. Further efforts should be paid to
the responses of individual stomata to fluctuating light inductions of woody species, such
as the diurnal or seasonal changes, which may contribute to a positive plant carbon balance
and total carbon gain.
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