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Abstract: Plants must effectively respond to various environmental stimuli to achieve
optimal growth. This is especially relevant in the context of climate change, where drought
emerges as a major factor globally impacting crops and limiting overall yield potential.
Throughout evolution, plants have developed adaptative strategies for environmental
stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in
their development. Hormonal signaling and the maintenance of ROS homeostasis are inter-
connected, playing indispensable roles in growth, development, and stress responses and
orchestrating diverse molecular responses during environmental adversities. Nine princi-
pal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins,
and gibberellins primarily oversee developmental growth regulation, while abscisic acid,
ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of
environmental stress responses. Coordination between phytohormones and transcriptional
regulation is crucial for effective plant responses, especially in drought stress. Under-
standing the interplay of ROS and phytohormones is pivotal for elucidating the molecular
mechanisms involved in plant stress responses. This review provides an overview of the
intricate relationship between ROS, redox metabolism, and the nine different phytohor-
mones signaling in plants, shedding light on potential strategies for enhancing drought
tolerance for sustainable crop production.

Keywords: auxins; brassinosteroids; cytokinins; gibberellins; abscisic acid; ethylene;
jasmonic acid; salicylic acid; strigolactones; reactive oxygen species

1. Introduction
Plants, as sessile organisms, must respond effectively to environmental stimuli to

achieve optimal development. Different environmental factors have the potential to inflict
stress on plants, limiting their growth. Abiotic stresses, manifested in different ways, are
frequently associated with changes in climatic conditions, such as rain, temperature, solar
irradiation, and soil quality. Changes in water availability and temperature, leading to
hydric and heat stresses, have been related to climate change’s impact [1]. The integration
of models on climate change and agricultural production considers that, soon, the abrupt
impact of changes in environmental conditions will intensify, representing a greater risk
to the productivity of crops. Given plants’ crucial role as a primary food source, this
situation could have serious implications for food security in a rapidly growing global
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population. Moreover, plants are important fuel and fiber sources, contributing significantly
to production diversity and ecological sustainability [2,3].

Through evolution, plants have developed adaptive strategies to respond to environ-
mental challenges to ensure their reproductive success. These strategies include a series of
morphological, anatomical, and metabolic adjustments to better cope with the environmen-
tal conditions. Among these strategies is the crucial importance of reactive oxygen species
(ROS) as secondary messengers as well as the signaling mediated by phytohormones,
which perform an essential function in plant development and reproduction [4,5]. The
integration between hormonal signaling and the management of ROS homeostasis controls
diverse types of signaling, especially those involved with stress responses [6].

Many of the signaling pathways in which ROS act as signaling molecules are orches-
trated by phytohormones [7], which play an indispensable role in metabolism, development,
coordination, stress response, and even in death [8]. Plants synthesize various phytohor-
mones, such as abscisic acid (ABA), ethylene (ET), salicylic acid (SA), jasmonic acid (JA),
gibberellins (GA), auxin (AUX), cytokinin (CK), brassinosteroids (BRs), and strigolactones
(SL), to orchestrate and regulate various aspects of growth and development. These phy-
tohormones play a fundamental role in a myriad of dynamic yet rigorously regulated
molecular responses throughout the plant life cycle. Responding to environmental adver-
sities, these phytohormones play a crucial regulatory role in gene expression machinery,
preparing the plant to withstand unforeseen circumstances [9–11].

Among the different types of abiotic stress, drought emerges as the main factor
that harms crops globally and directly impacts harvests, ultimately restricting total yield
potential [12]. The primary mechanisms controlling drought response involve stomatal
closure, modulation of root growth and architecture, and the upregulation of anti-stress
proteins [13]. As additional strategies that contribute to mitigating the adverse effects
of water stress, cells reduce their hydric potential (ψ), leading to the accumulation of
specialized solutes. All these multivariate responses are mainly orchestrated by various
hormonal regulations, which support cellular plasticity and help plants develop an effective
coping strategy against drought [14]. During water shortage, phytohormones regulate
plant growth and development, resulting in increased antioxidant enzyme production,
secondary metabolites, and heat-shock proteins [15]. Several studies have indicated that
communication between ROS and phytohormones signaling is essential to initiate and
modulates the response of tolerance of different stresses, including drought. Therefore,
precise coordination in the interaction with phytohormones is essential for the appropriate
response in plants [7].

To develop comprehensive concepts and strategies for safeguarding plants against the
deleterious effects of abiotic stress and meeting the future demands for plant products, an
in-depth exploration of molecular-level mechanisms governing plant stress responses is
imperative. This review focuses on elucidating the intricate roles played by ROS, redox
metabolism, and signaling mediated by the different phytohormones classes—abscisic acid,
ethylene, salicylic acid, jasmonic acid, gibberellins, auxin, cytokinin, brassinosteroids, and
strigolactones—in the context of drought stress. The objective is to provide a comprehen-
sive overview of the existing knowledge about how these signaling cascades and redox
metabolic processes synergize, leading to robust responses to water stress in plants.

2. Abscisic Acid
ABA is a phytohormone with a central role in the response to water and osmotic

stress. ABA orchestrates a diverse range of physiological processes, from seed germination
to stomatal regulation. Simultaneously, it controls plant growth and development by
regulating the synthesis of protective metabolites. These metabolites enable plants to
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combat the detrimental effects of stressful environments, which is why ABA is often
referred to as the “universal stress hormone”.

2.1. Abscisic Acid Metabolism

In the ABA biosynthesis pathway, the enzyme 9-cis-epoxycarotenoid dioxygenase
(NCED; EC 1.13.11.51) acts as a bottleneck in the conversion of 9-neoxanthins to xanthin.
This enzymatic process influences ABA levels during drought response. The subsequent
enzymatic cleavage of ABA into 80-OH-ABA, catalyzed by ABA 8-hydroxylase (CYP707A;
EC 1.14.14.137), represents an inactivation mechanism, resulting in dehydrophaseic acid
(DPA) and phaseic acid (PA) as the main degradation products [16]. ABA, primarily
produced in leaf vascular tissues in response to water deficit stress, is transported to guard
cells, where it triggers stomatal closure. It is believed that ABA is transported via passive
diffusion from a low- to a high-pH environment due to its nature as a weak acid, without
the need for ABA transporters [10]. However, ABA can also be transported by specific
ABA transporters, particularly members of the ABC subfamily G [17] and the NPF (Nitrate
transporter 1/peptide transporter family) [18].

2.2. Abscisic Acid Signaling

Under basal conditions, plants produce ABA at low concentrations [19], and the kinase
activity of SnRK2 (sucrose nonfermenting 1 (SNF1)-related protein kinase 2) is inhibited
by the phosphatase PP2C. In arabidopsis (Arabidopsis thaliana), PP2Cs from clade “A”,
such as HAI1 (HIGHLY ABA-INDUCED 1), HAI2, HAI3, AHG1 (ABA-HYPERSENSITIVE
GERMINATION 1), AHG1, RDO5 (REDUCED DORMANCY 5), ABI1 (ABA-INSENSITIVE
1), ABI2, HAB1 (HYPERSENSITIVE TO ABA1), and HAB2, have been identified as impor-
tant regulators of ABA signaling [20,21]. The increase in ABA concentration triggers ABA
signaling, which involves the recognition of ABA by PYR/PYL/RCARs receptors, leading
to the inactivation of PP2C phosphatase activity (Figure 1) [22,23].

The PYR/PYL/RCAR proteins are encoded by various genes, acting as essential recep-
tors for the ABA response. The autoactivation of SnRK2/OST1 is triggered when the protein
dissociates from the PP2C phosphatases. In arabidopsis, the isoforms SnRK2.2, SnRK2.3,
and SnRK2.6 are primarily involved in the ABA response and function by phosphorylating
different targets [21,24].

The ABA signaling cascade involves several transcription factor branches, and the cis-
acting element known as the ABA-responsive element (ABRE) is present in the promoters
of genes induced by drought [25]. These ABREs function as binding sites for leucine zipper
transcription factors, such as ABRE binding protein/ABRE binding factors (AREBs/ABFs)
and ABI3 (ABA-INSENSITIVE 3), ABI4, and ABI5 [25]. During ABA signaling, ABA-
dependent SnRK2 protein kinases phosphorylate and directly activate the AREB/ABF and
ABI transcription factors [24,26] (Figure 1).

ABA-responsive elements contribute significantly to the complexities of ABA signal-
ing [27]. SnRK2 activation triggers the induction of molecular and physiological responses
to ABA, such as the modulation of photosynthetic activity, root growth, and germina-
tion [21]. In addition to these direct effects, ABA exerts regulatory control over a series of
genes associated with drought responses, substantially contributing to drought tolerance
development in plants [15,28]. This finding, coupled with the identification of numerous
classic ABA-insensitive mutations located in transcriptional regulators, strongly suggests a
central role in gene regulation, conferring resistance to abiotic stress [29].
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Figure 1. ABA signaling. ABA signaling integrates multiple molecular components to regulate both
stomatal responses and gene expression under stress conditions. ABA is transported across cellular
membranes by ABCG and NPF transporters. ABA binding to its receptor, PYR/PYL/RCAR, leads to
the deactivation of the PP2C-A phosphatases such as HAI1, HAI2, HAI3, AHG3, RDO5, ABI1, ABI2,
HAB1, HAB2, and AHG1. This inhibition activates SnRK2 kinases, which phosphorylate transcription
factors including AREB, ABF, ABI3, ABI4, and ABI5, promoting the expression of ABA-responsive
genes. In guard cells, SnRK2 kinases also phosphorylate ion channels SLAC1, SLAH3, ALMT12, QUAC1,
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KAT1, KAT2, KUP6, KUP8, and GORK, regulating ion flux. This mechanism drives osmotic water
efflux, reducing turgor and resulting in stomatal closure. Additionally, SnRK2 kinases activate
NADPH oxidases RBOHD and RBOHF, which increase ROS production. ROS amplify stress signal-
ing by activating plasma membrane receptor kinase GHR1 and redox-sensitive calcium channels,
leading to calcium influx and the activation of calcium-dependent protein kinases (CPKs), including
CDPKs and CBLs. Both GHR1 and CPKs further phosphorylate SLAC1 and SLAH3, supporting
ion flux changes. Furthermore, nitrate reductases NIA1 and NIA2 influence stomatal response
through nitrogen metabolism, generating NO, which is known to inhibit the PYR/PYL receptor,
fine-tuning the ABA response under various stress conditions. The hormonal receptor is indicated
in yellow, while activators of the signaling are shown in blue and inhibitors in salmon. Membrane
channels/transporters are represented in green, transcription factors in purple, and enzymes involved
in ROS metabolism in dark blue. Black lines with arrows indicate activation, blue lines with arrows
indicate activation of phytohormone signaling, red lines with bars represent inhibition, and green
lines with arrows indicate transmembrane transport.

2.3. Abscisic Acid and ROS on Drought Response

During drought response, ABA also plays an important role in regulating ROS produc-
tion, as hydrogen peroxide is generated mainly by the interaction and phosphorylation of
NADPH oxidases (known as respiratory burst oxidase homologs, (RBOHD and RBOHF))
via SnRK2 [30,31] (Figure 1). Furthermore, SnRK2-dependent hydrogen peroxide produc-
tion can act as a signal for further release of active SnRK2 through PP2C inactivation [32].
Consequently, ABA and ROS act in a positive feedback cycle, resulting in elevated levels of
ROS/ABA that regulate gene expression and facilitate cellular responses to stress [33].

The ABA-mediated ROS production controls stomatal opening by activating Ca2+

channels in guard cells, triggering an increase in the concentration of cytoplasmic Ca2+

([Ca2+]cyt) that then activates SLAC1 (slow anion channel 1) via CPK/CDPK (calcium-
dependent protein kinase) or CBL (calcinuerin B-like) [17]. The ABA-induced hydrogen
peroxide activates guard cells’ GHR1 membrane receptor protein kinase (GUARD CELL
HYDROGEN PEROXIDE-RESISTANT 1), which interacts and activates SLAC1 [34]. Both
CPK and GHR1 are also able to activate SLAH3 (SLAC1 homolog 3), promoting the Cl−

efflux [35]. This effect is accompanied by the regulation of other membrane ion transporters
by SnRK2, such as the activation of outward shaker K+ channels GORK, KUP6, and KUP8
and the inhibition of both inward K+ channels KAT1/KAT2 and the aluminum-activated
malate transporter ALMT12/QUAC1 channel (quick anion channel 1) [17] (Figure 1). An-
ion and K+ effluxes cause membrane depolarization and reduction in guard cell turgor,
ultimately leading to reduced stomatal aperture size and minimized water loss through
transpiration [33,36]. This mechanism is directly related to increased hydrogen perox-
ide levels: the double mutant atrbohd/atrbohf, which generates lower ABA-induced ROS,
showed impaired ABA-induced Ca2+ channels and stomatal closure [30]. This phenotype
is rescued by exogenous hydrogen peroxide, indicating that ROS serves as a secondary
messenger in ABA signaling of stomatal response [37]. ABA-induced hydrogen perox-
ide also activates NIA1 and NIA2 (nitrate reductase 1 and 2; EC 1.7.1.1), leading to NO
(nitric oxide) synthesis, which is also critical for ABA-induced stomatal closure [38]. NO
negatively regulates abscisic acid signaling in guard cells by inhibition of ABA receptor
PYR/PYL/RCAR [39] and SnRK2 [40] (Figure 1). NO also reduces ABA content by the
induction of the expression of ABA catabolic gene CYP707A and the inhibition of ABA
biosynthesis-related gene NCED1 [41]. Indeed, enhanced sensitivity to ABA during de-
velopment and in responses to stress is observed in the NO-deficient arabidopsis triple
mutant nia1 nia2 noa1-2 [42]. ROS signaling also plays a significant role in water stress toler-
ance through ABA-induced transcription factors. In arabidopsis, RRTF1 (redox-responsive
transcription factor 1), belonging to the ERF/AP2 (ethylene response factor 1; APETALA 2)



Plants 2025, 14, 208 6 of 66

family, is a key component of the central redox signaling network. This network is activated
by both ABA and ROS in response to various stresses, including drought. Elevated levels
of RRTF1 lead to additional ROS accumulation, playing an important role in initiating
subsequent acclimation responses [43,44].

During water stress, ABA also regulates root tissue patterning. In the endoderm, ABA
signaling promotes xylem differentiation by inducing the expression of microRNAs miR165
and miR166, both essential regulators of vascular development [45]. In addition, ABA
acts directly in xylem cells, activating the expression of VND (vascular-related NAC domain)
transcription factors that promote xylem differentiation [46].

3. Ethylene
Ethylene is a gaseous phytohormone, which governs various physiological processes

and responses to environmental stimuli, regulating leaf abscission, flowering, fruit ripening,
senescence, seed germination, cell division, tissue differentiation, sex determination, adven-
titious root growth, starch accumulation epinasty, stomatal closure, etc. [47–55]. Moreover,
it acts as a triple-response growth regulator, influencing shoot elongation, stem thickening,
and horizontal growth habit [47], and it serves as a stress hormone, mediating plant reac-
tions to biotic and abiotic stresses like pathogen attacks, salinity, drought, hypoxia, cold,
and heat [56–61].

3.1. Ethylene Metabolism

The ethylene biosynthesis pathway starts with the amino acid methionine, which is
converted to S-adenosyl-L-methionine (SAM) by S-adenosylmethionine synthetase (SAMS;
EC 2.5.1.6) in the Yang cycle [62,63]. SAM is then converted into 1-aminocyclopropane-
1-carboxylic acid (ACC) and 5-methylthioadenosine (MTA) by ACC synthase (ACS,
EC 4.4.1.14) [63]. While MTA is recycled through the Yang cycle reactions back to
methionine [64], ACC is oxygenated by ACC oxidase (ACO, EC 1.14.17.4; also named
ethylene forming enzyme—EFE) to produce ethylene [65]. Ethylene biosynthesis is regu-
lated mainly by the transcriptional and post-translational control of ACS and ACO steps
by different internal and external stimuli [66].

3.2. Ethylene Signaling

The classic ethylene signal transduction is triggered by gas interaction with endo-
plasmic reticulum (ER) membrane receptors, including ETHYLENE RESPONSE 1 (ETR1),
ETR2, ETHYLENE-INSENSITIVE 4 (EIN4), ETHYLENE RESPONSE SENSOR 1 (ERS1),
and ERS2 [67], and the modulation of CTR1 (CONSTITUTIVE TRIPLE RESPONSE 1; EC
2.7.11.1) activity to regulate the expression of several genes (Figure 2).

The ethylene receptors are active in the absence of ethylene and constitutively ac-
tivate the kinase activity of CTR1 [68], which is a Raf-like kinase able to phosphorylate
the C-terminal domain of EIN2 (ETHYLENE-INSENSITIVE 2), which is also present in
the ER membrane, leading its degradation by proteolysis. The EIN2 C-terminal domain
previously phosphorylated by CTR1 interacts with ETP1 and ETP2 (EIN2 targeting pro-
teins), which have F-box domains and are targeted for ubiquitination and degradation
by the 26S proteasome [69]. The receptors activity can be positively regulated by com-
plex formation with RTE1 (REVERSION TO ETHYLENE SENSITIVITY 1) and ARGOS
(auxin-regulated gene involved in organ size) proteins, considered as negative regulators
of ethylene sensitivity [70–74]. The active ethylene receptor biogenesis and the ethylene
sensibility are also regulated by the availability of the copper cofactor, which is provided by
the copper transporter RESPONSIVE-TO-ANTAGONIST 1 (RAN1), located in the ER mem-
brane [75,76]. Upon binding with ethylene, the ethylene receptors undergo conformational
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changes, impairing the activation of CTR1. Consequently, instead of being phosphorylated,
the EIN2 C-terminal domain is cleaved from the ER membrane by a protease enzyme and
transported to the nucleus, thereby initiating ethylene signaling (Figure 2).
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receptors, including ETR1, ETR2, EIN4, ERS1, and ERS2, located on the endoplasmic reticulum (RE)
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membrane. The membrane protein RTE1 modulates receptor sensitivity, while ARGOS fine-tunes the
strength of the signal. In the absence of ethylene, these receptors activate the negative regulator CTR1
that suppresses downstream signaling by inhibiting EIN2 by proteasome-mediated degradation.
Upon ethylene perception, CTR1 is inactivated, allowing EIN2 to be cleaved. The C-terminal fragment
of EIN2 translocate to the nucleus, where it stabilizes the transcription factors EIN3, EIL1, and EIL2
by preventing their degradation via the EBF proteins and proteasome. Stabilized EIN3 and EILs
activate the transcription of ethylene-regulated genes, including those of the AP2/ERF family, which
control several ethylene-mediated responses such as stress adaptation and developmental processes.
NO produced by NIA1 and hydrogen sulfide synthesized by DES1 further modulate the ethylene
signaling. The MAP kinases MPK3 and MPK6 also amplify ethylene responses. Additionally, AHP
and ARR, components of the cytokinin signaling, interact with the ethylene signaling network. These
proteins not only integrate ethylene signaling with other hormonal pathways but also regulate
the expression of ethylene-responsive genes, influencing physiological responses such as growth
regulation and stress adaptation. Ethylene signaling can also influence ROS production via the
NADPH oxidases RBOHD and RBOHF, further modulating cellular responses. The hormonal
receptor is indicated in yellow, while activators of the signaling are shown in blue and inhibitors
in salmon. Transcription factors are in purple, and enzymes involved in ROS metabolism are in
dark blue. Black lines with arrows indicate induction, blue lines with arrows indicate activation of
phytohormone signaling, whereas red lines with bars represent inhibition.

In the nucleus, EIN2 stimulates EIN3/EIL (ETHYLENE-INSENSITIVE 3; EIN3-like)
transcription factors activity by repressing EBF (EIN3 binding F-box protein), which con-
stitutively binds to EIN3/EIL, targeting it to ubiquitination and degradation [77]. Thus,
under ethylene response, EIN3/EIL regulates the expression of ethylene-response genes
by binding to the specific cis-acting AGCCGCC motifs (GCC box) and dehydration-
responsive element (DRE) [78]. This pathway includes the ERF/AP2 transcription factor
superfamily [79–82] that regulates the molecular response to different stresses, such as
drought, salt, heat, and pathogen attack [78]. Interestingly, the EBF mRNA levels can be
regulated by the exoribonuclease 5′-3′ EIN5 (ETHYLENE-INSENSITIVE 5, EC 3.1.1.3),
another positive regulator of ethylene response, which promotes EBF mRNA decrease,
thereby contributing to prevent EIN3/EIL proteolysis [83].

In addition to the canonical CTR1-dependent pathway, the ethylene signal also op-
erates through noncanonical pathways. The EIN3/EIL transcription factors, for example,
can be activated by alternative pathways, which involves a phosphorylation cascade of
kinase proteins: MKK4-5-9 → MPK3-6 [83–85]. Once activated, MPK3-6 phosphorylates
EIN3/EIL, preventing their interaction with the F-box protein EBF (EIN3 binding F-box
protein). As a result, these factors accumulate in the nucleus and interact with target gene
promoters, initiating various ethylene responses [85]. (Figure 2).

The noncanonical pathways also allow the ethylene receptors to interact with com-
ponents of the cytokinin signaling [72,86–89]. The ETR1, a canonical histidine kinase,
can directly interact with the histidine-containing phosphotransferase protein 1 (AHP1 in
arabidopsis) through its C-terminus domain [87,90]. AHP1 is also phosphorylated by the
cytokinin receptors by a phosphor-relay pathway and transfers the phosphate group to the
response regulator proteins (ARR family in arabidopsis) that function as transcription fac-
tors during the cytokinin response [91]. Previous work demonstrated that the arabidopsis
arr1 mutant showed reduced ethylene sensitivity in the regulation of root apical meristem
size [92]. Indeed, ETR1 histidine kinase activity integrates ethylene and cytokinin signaling,
inhibiting root growth [89]; nevertheless, this mechanism is not fully understood.

3.3. Ethylene and ROS on Drought Response

Under stress conditions, ethylene can elicit various responses, including the upreg-
ulation of antioxidative enzymes to scavenge ROS and alleviate oxidative stress as well
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as adjustments in plant physiology. During drought and salt stress, ethylene is known
to decrease stomatal aperture, stimulate the growth of adventitious roots. and promote
leaf senescence. These adjustments have a direct impact on plant stress response: (i) the
stomatal closure stops water loss, (ii) the increased adventitious roots aid water absorption,
and (iii) senescence may lead to the redistribution of nutrients in the sink organs [93]. Fur-
thermore, under drought conditions, ethylene has been demonstrated to induce osmolyte
biosynthesis [94] and leaf abscission, thereby reducing water loss [48,95]. The drought
response mediated by ethylene can be highly regulated by hydrogen peroxide production
via RBOHF (respiratory burst oxidase homolog protein F), which is inhibited by CTR1 [96].
In the presence of ethylene, CTR1 is deactivated, thus triggering the RBOHF-dependent
hydrogen peroxide production in a mechanism mediated by Gα protein [97]. The increased
hydrogen peroxide in guard cells also contributes to the cleavage and nuclear localization
of EIN2 through the activation of MKK1/3–MPK3/6 signaling cascade [96]. This pathway
induces the expression of nitrate reductase NIA1, which is also activated by hydrogen perox-
ide, contributing to the increase in NO synthesis. The NO, in turn, activates SLAC1 through
both H2S-dependent and -independent pathways, leading to stomal closure [98]. Indeed,
ethylene-induced NO synthesis activates L-cysteine desulfhydrase (DES1; EC 4.4.1.28),
inducing H2S production and stomata closure [99]. Despite this evidence, ethylene is
also able to inhibit the ABA-induced stomatal closure or to reduce stomatal sensitivity to
stresses in different species [98,100]. These data suggest that while ABA is considered to
act as the key regulator of stomatal closure under abiotic stress, ethylene can act as either
a positive or negative regulator [101]. Thus, the mechanism by which ethylene regulates
stomatal behavior during drought stress as well as the ethylene–ABA interaction pathway
is complex and seem to be strongly dependent on their endogenous levels. This dual role
during drought stress has led to ethylene and ABA being labeled “Foes or Friends” [101].

The ability of ethylene to either induce or inhibit stomatal closure during drought
stress can be partially elucidated by the roles of its receptors. Among the five ethylene
receptors described, only ETR1, EIN4, and ERS1 are involved in ethylene-induced stomatal
closure, whereas ETR2 and ERS2 receptors may be involved in other ethylene-induced
processes [97,102].

4. Salicylic Acid
Salicylic acid is a key signal molecule in regulating the activation of local and sys-

temic defense responses against pathogens infections through the induction of defense
genes [103–105]. Despite this, salicylic acid was first reported as a signaling molecule in
plants, regulating the thermogenesis phenomenon in reproductive organs of gymnosperms
and angiosperms [106,107]. Additionally, salicylic acid plays a regulatory role in abi-
otic stresses, like heat, cold, salinity, and drought [108–110], and influences plant growth
and development by regulating various processes, including photosynthesis, respiration,
vegetative growth, seed germination, flowering, and senescence [111–113].

4.1. Salicylic Acid Metabolism

Salicylic acid is a phenolic compound synthetized in plants via the isochorismate
synthase (ICS, EC 5.4.4.2) or the phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) path-
ways. Pathogen-induced salicylic acid is mainly synthesized via the ICS pathway in
chloroplasts, which is mediated by three classes of enzymes: (i) ICS1, also known as SID2
(SALICYLIC ACID INDUCTION DEFICIENT 2) [114]; (ii) AtGH3.12 (also called AtPBS3 or
avrPphB SUSCEPTIBLE 3), a family of cytosolic acyl adenylase proteins responsible for
the conjugation of glutamate to isochorismate (IC) to form IC-glutamate; and (iii) EPS1
(ENHANCED PSEUDOMONAS SUSCEPTIBILITY 1), a BAHD acyltraferase-like protein
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responsible for the conversion of IC-glutamate to salicylic acid. This last step can also occur
spontaneously [115–117]. Although the ICS pathway is fully elucidated, all three biosyn-
thetic genes in this pathway, ICS1, GH3.12, and EPS1, are only found in the Brassicaceae
family [116,118,119], while the PAL pathway is part of the phenylpropanoid metabolism
and appears to be ubiquitous [117].

4.2. Salicylic Acid Signaling

Given the diverse roles of salicylic acid in environmental stress responses, it is likely
that plants possess multiple salicylic acid receptors, and the protein NPR1 (NONEXPRES-
SOR OF PATHOGENESIS-RELATED GENES 1) is a redox-sensitive master regulator of
salicylic acid signaling [120]. In the absence of salicylic acid, NPR1 is found oligomerized in
cytosol. During stress response, when salicylic acid synthesis is induced, there is a change
in the redox state at the cytoplasm, leading to the monomerization of NPR1 proteins. In its
monomeric form, NPR1 is translocated to the nucleus, where it activates the expression
of salicylic acid-responsive genes, including PR genes [121] and those involved in the
induction of the hypersensitive response (HR) [103,122] (Figure 3).

The redox modification of cysteine residues in the protein–protein interaction
and the cryptic trans-coactivation domains of NPR1 is essential for its monomeriza-
tion [120,123,124]. Indeed, in arabidopsis and rice (Oryza sativa), mutations in conserved
Cys82 and Cys216 of NPR1 resulted in this constitutive monomerization and nuclear lo-
calization of NPR1, resulting in the activation of defense genes expression [125]. Salicylic
acid-induced AtNPR1 monomerization and nuclear import is catalyzed by thioredoxins
AtTRXh3 and AtTRXh5, while in rice and tobacco, these processes are mediated by the
orthologs OsTRXh2 and NtTRX1 [126,127]. In the absence of salicylic acid, NPR1 is also
subject to degradation via the 26S proteasome [128], indicating that the regulation of NPR1
protein level is essential to salicylic acid response. NPR1 degradation is dependent on its
interaction with NPR3 and NPR4 proteins, which have low and high affinity to salicylic
acid, respectively [129]. While salicylic acid disrupts NPR1–NPR4 interaction, it facilitates
NPR1–NPR3 interaction, creating an optimal NPR1 concentration gradient to regulate the
salicylic acid response. In the absence or low concentration of salicylic acid, NPR4 mediates
NPR1 degradation, whereas excessive salicylic acid levels prevent NPR1 accumulation
by enhancing its interaction with NPR3 [130] (Figure 3). Thus, NPR1-mediated signaling
is active only at intermediate salicylic acid levels. This model aligns with observations
that NPR1 accumulates in regions adjacent to the pathogen infection sites, whereas at the
infection site itself, the salicylic acid levels are even higher.

The salicylic acid response is mainly mediated by the upregulation of pathogenesis-
related (PR) genes. The PR proteins have ~5–43 kDa and are thermostable, protease-resistant,
and ubiquitously expressed, representing up to 10% of the total protein in leaves [131,132].
The PR proteins form at least 17 families, with distinct structure and function triggered by
different pathogens [133,134]. The response to fungal attack, for example, involves PR1
(CAP-domain proteins), PR2 (β-1,3-glucanases), PR3 (chitinases), PR4 (Barwin-domain
proteins), PR5 (thaumatin-like), PR12 (antimicrobial defensins), and PR17 (NtPRp27-like
proteins) [132,134–136]. Additionally, salicylic acid positively regulates the biosynthesis
of different defense molecules, such as flavonoid and phytoalexins [137]. This regulation
is mainly mediated by NPR1 that regulates the transcription of salicylic acid-responsive
genes mainly through its interactions with TGA (TGACG-binding) transcription factors,
a subclass of the basic leucine zipper (bZIP) transcription factor family [138] (Figure 3).
Besides the functional activation of transcription factors through complex formation, NPR1
also controls the expression of transcription factors genes, essential for salicylic acid-
mediated transcriptional reprogramming, such as WRKY [139,140].
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Figure 3. Salicylic acid signaling. Salicylic acid (SA)-mediated signaling is regulated by a complex
mechanism involving the proteins NPR1, NPR3, and NPR4. In the absence of SA, NPR1 remains
oligomerized in the cytosol. The monomerization of NPR1 is mediated by reactive oxygen species
(ROS) produced by different mechanisms, which promote the reduction of disulfide bonds through
the thioredoxins TRX-H3 and TRX-H5. Once monomerized, NPR1 translocate to the nucleus, where
it regulates transcription factors involved in the salicylic acid response, such as TGA, activating the
expression of defense genes like PR1. Additionally, PRX33 and PRX34 are induced by salicylic acid,
increasing ROS production, which activates calcium channels and contributes to stomatal closure. It
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has been demonstrated that salicylic acid acts directly in the mitochondria, regulating ROS generation
by the succinate dehydrogenase complex (SDH), contributing to the redox changes necessary for
salicylic acid response. NPR3 and NPR4 act as SA receptors that regulate NPR1 activity; at high
concentrations of salicylic acid, NPR3 and NPR4 direct NPR1 for degradation via the proteasome, thus
controlling the plant’s defense response, particularly systemic acquired resistance, and modulates
processes such as stress signaling, growth, and development. The activators of the signaling are
shown in blue and inhibitors in salmon. Membrane channels/transporters are represented in green,
transcription factors in purple, and enzymes involved in ROS metabolism in dark blue. Black lines
with arrows indicate induction, blue lines with arrows indicate activation of phytohormone signaling,
red lines with bars represent inhibition, and green lines with arrows indicate transmembrane transport.
The step not yet confirmed is labeled with “?”.

Although the salicylic acid signaling has not been fully characterized, it is known that
salicylic acid regulates ROS production through mitochondrial respiration [141] and various
enzymes related to ROS metabolism, such as CAT [142] and peroxidases (POD) [143].
At high concentrations, salicylic acid inhibits mitochondrial succinate dehydrogenase
(SDH, EC: 1.3.5.1) and the respiration in tobacco (Nicotiana tabacum) cells [143] and in
arabidopsis isolated mitochondria [144–146] (Figure 3). Conversely, at lower concentrations,
salicylic acid induces SDH activity and mitochondrial oxygen consumption [141,145]. These
findings suggest that salicylic acid signaling regulates mitochondrial respiration, leading to
differential patterns of respiration and ROS production during the plant stress response.
Indeed, a point mutation in SDH1-1 subunit (disrupted stress response 1- dsr1), which lowers
SDH activity, results in decreased mitochondrial ROS production and impairs the stress
response mediated by salicylic acid [147].

4.3. Salicylic Acid and ROS on Drought Response

Salicylic acid is also involved in abiotic stress tolerance [109,148], as it is increased
under drought stress [149]. Salicylic acid induces stomatal closure [150,151] and decreases
CO2 assimilation [152], inhibiting water loss and photosynthesis. Indeed, drought-induced
ROS generation mediates salicylic acid-induced stomatal closure [130,153]. While plasma
membrane NAD(P)H oxidases are the leading producers of ROS in guard cells induced
by ABA signaling [30], salicyl-hydroxamic acid (SHAM)-sensitive peroxidases (PRX) are
major ROS sources in guard cells induced by salicylic acid signaling [154]. The apoplastic
PRX33 and PRX34, which are preferentially expressed in guard cells [155], are deeply
involved in hydrogen peroxide production in response to various stimuli (including fungi,
bacteria, and flg22), leading to stomatal closure [156–160]. Thus, the ROS generated by
salicylic acid integrate into the ABA-induced stomatal closure pathway, activating calcium
channels and inducing calcium influx [161] (Figure 3). Notably, salicylic acid-mediated
ROS production and stomatal closure are not affected by NADPH oxidase inhibitor DPI
(diphenyleneiodonium) or in the rbohd/rbohf double mutant [151].

Salicylic acid also regulates stomatal closure by increasing ethylene synthesis via
induction of ACS2, ACS6, and ACS11 [162,163]. Indeed, ethylene biosynthetic inhibitors
and mutations in ethylene-signaling genes (ETR1, EIN2, and EIN3) can inhibit stomatal
closure induced by salicylic acid, which further suggests ethylene function downstream
of salicylic acid to induce stomatal closure during drought [163]. Considering all these
data together, ethylene and salicylic acid signaling may complement each other to induce
stomatal closure during drought when ABA signaling is not sufficient [98].

5. Jasmonic Acid
Jasmonic acid acts both as a growth regulator and as a crucial signaling molecule

in plant defense mechanisms [164]. Jasmonic acid orchestrates plant development and
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responds to a spectrum of biotic stresses, including physical injury, pathogen attacks, and
insect predation, as well as numerous abiotic stresses, like low temperature, drought, exces-
sive salinity, and UV radiation [165,166]. However, the intricate jasmonic acid-mediated
signaling network, vital for safeguarding against external threats, can sometimes inhibit
plant growth and development due to its over-activation by various regulatory factors [167].

5.1. Jasmonic Acid Metabolism

In response to developmental and environmental cues, plants rapidly produce a
substantial increase in jasmonic acid, with is synthesized from α-linolenic acid through
a series of reactions that occur sequentially in plastids and peroxisomes. Jasmonic acid–
isoleucine conjugate (JA-Ile), the most biologically active component in jasmonate cascade,
is synthesized by an ATP-dependent jasmonate–amino acid amidase encoded by JAR1
(JASMONATE RESISTANT 1) [168–171]. On the other hand, the ω-oxidation pathway,
involving members of CYP94B3, mediates the turnover and inactivation of JA-Ile, which is
converted to 12-hydroxy-JA-Ile (12-OH-JA-Ile) [172].

5.2. Jasmonic Acid Signaling

Jasmonic acid and JA-Ile subcellular distribution is controlled by JAT (JASMONATE
TRANSPORTER), which is an ABC transporter (ABCG16 in arabidopsis) with an unex-
pected dual location at both the plasma membrane and nuclear envelope [173]. Jasmonic
acid signaling is initiated by the hormone being perceived by the COI1 (CORONATINE-
INSENSITIVE 1) nuclear receptor, which, upon jasmonate binding, interacts with the re-
pressor JAZ (jasmonate-ZIM-domain) protein. In this context, COI1 binds to other proteins
to form the Skp1/Cullin/F-box (SCFCOI1) ubiquitin ligase complex, which ubiquitinates the
JAZ protein, targeting it for degradation (Figure 4) [174,175]. In the absence of jasmonic acid,
JAZ proteins recruit the protein TPL (TOPLESS) and the adaptor protein NINJA (Novel
INteractor of JAZ) to form an effective transcriptional repressor complex [176] that inhibits
various transcription factors, including MYC2 (MYELOCYTOMATOSIS 2). The MYC2
proteins are the main transcription factors in jasmonic acid signaling, exerting significant
influence on the transcriptional reprogramming of several stress-responsive genes [167].
MED25 (Mediator 25), also known as PFT1 (PHYTOCHROME AND FLOWERING TIME 1),
connects MYC2 with RNA polymerase II, thereby modulating gene transcription [177–179].
The JAZ–NINJA–TPL complex also recruits histone deacetylases HDA6 and HDA19, pre-
venting the activation of jasmonate-responsive genes [177,180–182] (Figure 4).

Jasmonic acid plays an important role in plant biotic stress responses, triggered mainly
by insects or pathogens. Jasmonic acid enhances the production of toxic proteins such as the
defensive enzyme PPO (polyphenol oxidase), which affects the digestive physiology of her-
bivories, thereby protecting plants from herbivory [183,184]. Additionally, many secondary
metabolites, such as tannins, phenols, flavonoids, and lignin, are induced by jasmonic
acid and contribute to the resistance to biotic stress [185,186]. Through MYC2 activation,
jasmonic acid regulates the accumulation of ROS through RBOHD and RBOHF [187], which
act as a downstream signal following JAZ resulting in systemin-induced defense genes
in response to wounding [188]. Like wounding, jasmonic acid also leads to a strong NO
burst [189], which is involved in some jasmonic acid-mediated defense responses, inhibiting
hydrogen peroxide accumulation [190,191].

Although salicylic acid regulates plant defense responses against some pathogens,
salicylic acid and jasmonic acid signaling are antagonists [192]. While jasmonic acid-
mediated defense is related to necrotrophy, the salicylic acid-mediated defense is related
to hemibiotrophs [117]. The COI1 receptor regulates jasmonic acid-mediated inhibition
of the salicylic acid pathway [193]. In a similar way, NPR1 not only controls salicylic
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acid signaling but antagonizes jasmonic acid signaling [194]. Jasmonic acid modulates the
interaction between MYC2 and three NAC transcription factor genes (ANAC019, ANAC055,
and ANAC072) to block the accumulation of salicylic acid by inhibiting the expression of
genes involved in salicylic acid biosynthesis [195]. Additionally, MPK4 serves as a positive
regulator of GRX480 in the salicylic acid signaling but negatively regulates MYC2 in the
jasmonic acid signaling [196].
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Figure 4. Jasmonate signaling. Jasmonates orchestrate plant defense against herbivores and pathogens
while influencing processes such as reproductive development, secondary metabolite production,
and adaptation to environmental challenges. Active jasmonate, in the form of jasmonoyl–isoleucine
(JA-Ile), is transported to the cytoplasm by the ABCG and JAT transporters, where it binds to the COI1
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receptor. This binding activates JA signaling by promoting the degradation of JAZ proteins via the
proteasome. Under basal conditions, JAZ proteins suppress defense gene expression by interacting
with the corepressor NINJA and TPL and recruiting deacetylases HDA6 and HDA19 to maintain
chromatin in an inactive state. With the degradation of JAZ proteins, MYC transcription factors,
particularly MYC2, are released, promoting the transcription of genes involved in stress response. This
includes the activation of plasma membrane enzymes RBOHD and RBOHF, which contributes to ROS
production. The hormonal receptor is indicated in yellow, while inhibitors in purple. Transporters
are represented in green, transcription factors in purple, histone deacetylase in light purple, and
enzymes involved in ROS metabolism in dark blue. Black lines with an arrow indicate induction,
blue lines with arrow indicate activation of phytohormone signaling, red lines with bar represent
inhibition, and green lines with arrow indicate transmembrane transport.

5.3. Jasmonic Acid and ROS on Drought Response

The activation of jasmonic acid-mediated signaling also contributes to plant tolerance
to water stress [27]. Arabidopsis mutants of jasmonic acid signaling coi1-2, jaz1, and myc2-2
exhibit drought sensitivity, indicating the importance of signal transduction mediated by
jasmonic acid in drought response [197]. Additionally, during the response to drought
in rice, OsJAZ proteins interact with the transcription factor OsbHLH148 and induce the
expression of the DREB (DEHYDRATION-RESPONSIVE ELEMENT-BINDING) protein,
contributing to drought tolerance [198]. During drought stress, jasmonic acid contributes
to reducing stomata apertures [199]. Indeed, external application of jasmonic acid in-
duces stomatal closure, triggering a robust response of plants to water stress [200]. This
mechanism occurs with or without ABA contribution and is related to ROS production
via RBOHD and RBOHF enzymes [199]. 12-OPDA (12-oxo-phytodienoic acid), one of
the precursors of jasmonic acid, is also able to induce stomatal closure. Dry conditions
prevent the conversion of 12-OPDAs into jasmonic acid, leading to 12-OPDA accumulation,
which stimulates stomatal closure, either in conjunction with or independently of ABA,
preventing water loss [15,201,202].

Jasmonic acid also boosts the activity of antioxidant enzymes such as superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione peroxidase (GPX),
glutathione reductase (GR), glutathione S transferase (GST), and G-POD (guaiacol per-
oxidase) [203,204], providing protection against oxidative damage and increasing stress
tolerance [205]. During drought stress, jasmonic acid-induced NO regulates the AsA-
GSH cycle activity, contributing to the maintenance of AsA/DHA and GSH/GSSG ratios,
protecting plant cells against oxidative damage [206].

6. Gibberellins
Gibberellins are tetracyclic diterpenoid carboxylic acids and play a crucial role in

plant growth, regulating crucial aspects throughout both the vegetative and reproductive
phases of a plant’s life cycle, such as seed germination, immature and mature stages of
plant development, and flowering time. Additionally, gibberellins regulate the response to
different abiotic stresses, including drought [15].

6.1. Gibberellins Metabolism

Gibberellins are synthesized from geranylgeranyl diphosphate (GGDP) through the
terpenes pathway. Among the 136 gibberellins structurally characterized, a few have
been shown to be biologically active, such as GA1, GA3, GA4, and GA7 [207]. The non-
biologically active GA12 is the first gibberellin in this biosynthesis route, and through
the activities of different GA-oxidases, such as GA-20ox and GA-3ox (EC 1.14.11 and
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EC 1.14.11.15), it is converted into active gibberellins as well as other inactive intermedi-
aries [208]. Gibberellin catabolism and deactivation occur mainly by oxidation reactions
carried out by GA-13ox (EC 1.14.-.-) [209] and GA-2ox (EC 1.14.11.13) [210]. Alternatively,
the formation of methyl esters by GAMT1 (gibberellin methyl transferase-1) is also able
to inactivate gibberellins [211]. Gibberellins can be transported across the plasmatic mem-
brane through transporters from SWEET (SUGAR WILL EVENTUALLY BE EXPORTED
TRANSPORTER) [212] and NPF [213] (Figure 5).
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Figure 5. Gibberellin signaling. Gibberellin (GA) is transported across membranes by NPF and
SWEET transporters. Once in the cytoplasm, GA binds to its receptor, GID1, forming a GA–GID1
complex. This complex interacts with DELLA proteins, key repressors of GA signaling. Upon binding,
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the GA–GID1 complex recruits the E3 ubiquitin ligase SLY1, which targets DELLA proteins for 26S
proteasome degradation. DELLA degradation releases transcription factors such as PIF3, PIF4, SPT,
ALC, and GAMyb, enabling them to activate genes involved in gibberellin response. Through this
pathway, GA orchestrates key growth responses in plants, modulating developmental processes in
response to internal and environmental signals. The hormonal receptor is indicated in yellow, while
activators of the signaling are shown in blue and inhibitors in salmon. Transporters are represented
in green, transcription factors in purple, and enzymes involved in ROS metabolism in dark blue.
Black lines with arrows indicate induction, black line with bar indicates repression, red lines with
bars represent inhibition, and green line with arrow indicates transmembrane transport.

6.2. Gibberellins Signaling

In the absence of gibberellin, the DELLA repressors proteins, such as SLR1 (SLENDER
RICE 1) in rice and GAI (GIBBERELLIC ACID-INSENSITIVE), RGA (REPRESSOR-OF-
ga1-3), RGL1 (RGA-LIKE 1), RGL2, and RGL3 in arabidopsis, act as primary suppressors
of gibberellin hormonal responses based on the specific protein interaction partner [214].
DELLA proteins are recruited to target promoters by binding to transcription factors via the
LHR1 subdomain [215]. Additionally, the DELLA–histone 2A interaction, via the PFYRE
subdomain, is crucial for stabilizing the TF–DELLA–histone 2A complex at the target
chromatin, mediating global transcriptional regulation [216].

Gibberellin signaling is initiated by its perception by the nuclear GID1b/c recep-
tor (GIBBERELLIN-INSENSITIVE DWARF 1), leading to the ubiquitination of DELLA
repressor protein through SCF (S-PHASE KINASE-ASSOCIATED PROTEIN 1/CULLIN
1/F-BOX)-type E3-ubiquitin ligase) complexes, resulting in its degradation via 26S protea-
some and culminating in phytohormone response activation (Figure 5). In rice, DELLA
ubiquitination is provided by SCFGID2 (SCF complex associated with the F-box protein sub-
unit GID2) [217,218], while in arabidopsis, DELLA is ubiquitinated by SCFSLY1 or SCFSNE
(SCF complexes associated with the F-box protein subunit SLEEPY1 or SNEEZY) [219–223].
Although DELLA proteins are typically inactivated by protein degradation, the gibberellin-
induced interaction with the GID1 receptors is sufficient to inhibit DELLA activity when
DELLA ubiquitylation and proteasomal degradation are blocked [214]. This mechanism
is confirmed in rice gid2 and arabidopsis sly1 mutants, which show a comparatively mild
phenotype and accumulate very high levels of DELLA proteins [224,225].

DELLAs interact and inhibit different transcription factors related to different aspects
of plant development, such as the phytochrome-interacting factors PIF3 and PIF4, involved
in photomorphogenesis [226,227]; ALC (ALCATRAZ) and SPT (SPATULA), repressors of
cotyledon expansion [228,229]; and GAMyb (gibberellin-induced myb-like transcription
factor) that regulates the expression of α-amylase, mobilizing the starch during seed
germination [214,230] (Figure 5).

The role of ROS in gibberellin signaling appears to be more related to seed germination,
as it was demonstrated that hydrogen peroxide accelerates the germination and stimulates
the early growth of seedlings [231]. In aleurone cells of cereal seeds, gibberellin decreases
the activities of antioxidant enzymes SOD, CAT, and APX, contributing to the increase
in hydrogen peroxide levels [232], which are involved in programmed cell death (PCD)
during seed germination [233]. The ROS accumulation and PCD induced by GA in aleurone
cells are suppressed by ABA [234].

6.3. Gibberellins and ROS on Drought Response

In stress conditions, the bioactive form of gibberellin is inactivated due to the positive
regulation of GA2ox6 and GA2ox7, resulting in 2β-hydroxylation, leading to the activation
of the DELLA repressor [235]. The reduction in gibberellin levels and accumulation of
DELLA has been associated with increased drought tolerance. Reduced gibberellin levels
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were shown to trigger the activation of various stress-related genes [236] as well as the accu-
mulation of osmolytes [237] and enzymes that scavenge ROS [238], all of which are linked
to drought tolerance. Drought tolerance in tomatoes (Solanum lycopersicum), for example,
can be achieved by decreasing the expression of gibberellin biosynthesis genes through
the action of DREB protein [239], by the loss of the GID1 receptor gene [240], or by stable
gain-of-function mutations in the RGA gene [241,242]. Similarly, transgenic tomatoes that
overexpress arabidopsis GAMT1, responsible for methylating and inactivating gibberellin,
exhibit reduced levels of gibberellin and increased drought tolerance [211]. Gibberellin
signaling is an important regulator of cellular redox status, inhibiting the activity of various
antioxidant enzymes [232]. Thus, the disruption of gibberellin during drought stress may
play a key role in enhancing protection against oxidative stress, while ROS levels increase
to fulfill their signaling functions.

7. Auxin
Auxin regulates cell division, elongation, tissue differentiation, embryogenesis, root

formation, apical dominance, phyllotaxis, and tropic responses [243].

7.1. Auxin Metabolism

The indole-3-acetic acid (IAA) is the predominant naturally occurring auxin and
is synthesized from the tryptophan precursor. Two steps compose the most important
and well-characterized auxin biosynthesis pathway in plants, the TAA/YUC (tryptophan
amino transferase/YUCCA) pathway. The amino acid tryptophan is first converted to
indole-3-pyruvate (IPA) by the TAA (EC 2.6.1.99). Subsequently, the YUC-type flavin-
containing monooxygenases (FMOs; EC 1.14.13.8) catalyze the production of IAA using
IPA as a substrate [244], and this reaction seems to be the rate-limiting step in auxin
biosynthesis [245]. IAA levels can be controlled mainly through IAA–amino acid conju-
gation by GH3 (Gretchen Hagen 3) or irreversible oxidation and degradation by DAO
(dioxygenase for auxin oxidation) [246]. Auxin is synthesized at the shoot apex and trans-
ported by the mature phloem through a cell-to-cell transport mechanism named polar
auxin transport [247]. Auxin flux in and out of the cell is mediated by AUX1/LAX (AUXIN
RESISTANT1/LIKE AUX 1) permeases and PIN carrier proteins [248,249].

7.2. Auxin Signaling

Auxin-mediated signaling is dependent on the AUX/IAA (AUXIN/IAA) inhibitory
proteins such as SLR1 (SOLITARY-ROOT 1) [250], AXR2 (AUXIN-RESISTANT 2) [251],
and AXR3 (AUXIN-RESISTANT 3) [252]. AUX/IAA proteins contain an N-terminal EAR
(ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC
REPRESSION) motif and a C-terminal PB1 (PHOX AND BEM 1) domain. In the absence
of auxin, AUX/IAA binds to ARF (AUXIN RESPONSE FACTOR) transcription factors
through its PB1 domain and to TPL/TPR (TOPLESS/TOPLESS-RELATED) corepressor
proteins by its EAR motif, resulting in the repression of ARF [253] (Figure 6).

The nuclear receptor TIR1/AFB (TRANSPORT INHIBITOR RESPONSE 1/AUXIN
SIGNALING F-BOX), which is associated with SCF-type E3-ubiquitin ligases, recognizes
auxin, so in the presence of the phytohormone TIR1/AFB, it binds to the AUX/IAA repres-
sor protein, leading to its ubiquitination and proteolysis. This results in the release of the
transcriptional activity of ARF transcription factors, leading to expression of downstream
auxin-responsive genes [253,254]. ARFs bind directly to the auxin-responsive promoters
by the AuxRE (auxin-responsive element), regulating their transcriptional activation or
repression (Figure 6).
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Figure 6. Auxin signaling. Auxins are central to plant development, controlling cell elongation, apical
dominance, root initiation, and tropic responses to light and gravity. The indole-3-acetic acid (IAA) is
the predominant naturally occurring auxin, and its transport is mediated by AUX1/LAX influx carriers
and PIN efflux transporters. In the nucleus, the TIR1/AFB receptor complex, upon auxin binding,
promotes the proteasome-mediated degradation of AUX/IAA repressor proteins. This releases ARF
transcription factors from the AUX/IAA–TPL/TPR corepressor complex, allowing them to regulate
auxin-responsive genes, including SAUR proteins and the NADH oxidases RBOHD and RBOHF.
SAUR proteins inhibit PP2C-D phosphatases, leading to the activation of AHA2 proton pumps, which
drive cell elongation. Reactive oxygen species (ROS), such as superoxide (O2

·−), produced by RBOHD
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and RBOHF, are converted into hydrogen peroxide by superoxide dismutase (SOD), further influenc-
ing cellular processes. Although the pathway mediated by the ABP1 membrane receptor remains
incompletely understood, it positively regulates AHA2 proton pumps and potassium channels,
supporting auxin-driven responses. The hormonal receptor is indicated in yellow, while activators
of the signaling are shown in blue and inhibitors in salmon. Membrane channels/transporters are
represented in green, transcription factors in purple, and enzymes involved in ROS metabolism in
dark blue. Black lines with arrow indicate induction, blue lines with arrows indicate activation of
phytohormone signaling, red lines with bars represent inhibition, and green line with arrow indicates
transmembrane transport. Steps not yet confirmed are labeled with “?”.

In addition to the Aux/IAA/SCFTIR1/AFB pathway, AUX response is also mediated
by ABP1 (auxin binding protein 1). The quest for auxin receptors has spanned decades,
with the identification of ABP1 long before TIR1/AFB. Initial research identified an abp1
mutant as the auxin receptor. Later works have led to uncertainty about ABP1’s role [255].
Recent re-analysis of abp1 mutants has demonstrated a division between proponents of
ABP1 and TIR1 as primary auxin receptors [256–259]. Recent studies have confirmed ABP1
as a crucial auxin receptor, particularly for vascular formation and regeneration, confirmed
by the observation that abp1 mutants show defects in auxin-induced vasculature [260].
ABP1 predominantly resides in the ER but is also secreted to the apoplast, where it binds
auxin at the acidic pH. In the presence of auxin, the secreted ABP1 interacts with TMKs
(TRANSMEMBRANE KINASES), forming the ABP1–TMK1 module that mediates rapid
auxin-induced phosphorylation events [260,261], activating ion fluxes at the plasma mem-
brane in response to auxin stimuli [262–264] and the MAPK cascade [265,266] (Figure 6).
ABP1 also modulates the expression of AUX/IAA genes, indicating its broader role in
influencing the Aux/IAA/SCFTIR1/AFB pathway [267].

The two auxin receptors, ABP1 and TIR1, regulate multiple targets, with their actions
tailored to the specific developmental context. ABP1 is critical for auxin regulation of the cell
cycle, regulating the G1/S transition [268]. In fact, abnormal cell divisions occur within the
suspensor and during the initial phases of embryo development in the arabidopsis mutant
lacking ABP1 [269]. Auxin also stimulates cell elongation by initiating an acidification
process within the cell wall, mediated by the activation of plasma membrane AHA2
(autoinhibited H+-ATPase 2), which exports protons to the apoplast (Figure 6). The low pH
in the apoplast triggers a cascade of reactions that facilitate the “loosening” of the cell wall
structure. This loosening will allow the irreversible expansion of the cell wall, driven by
turgor pressure, ultimately leading to cell elongation [270]. The activation of AHA2 also
induces hyperpolarization of the membrane potential, resulting in the opening of voltage-
dependent inward K+ channels [271,272]. The influx of K+ contributes to water uptake and
turgor, allowing cell expansion. Moreover, besides directly stimulating their activity, auxin
also prompts the expression of both AHA2 channel and K+ channel genes [272,273].

AHA2 activity is inhibited by its dephosphorylation via PP2C-D family of protein
phosphatases, which are inhibited by SAUR (small auxin upregulated RNA) [274]. SAUR19
is induced by auxin and promotes cell expansion through binding to PP2C-D and releasing
AHA2 activity [275]. AHA2, as well as K+ inward channels, are also triggered by ABP1
during the initial perception of auxin, but the mechanism remains elusive [270] (Figure 6).

Because auxin regulates growth by cell elongation or division, auxin tends to act down-
stream in the regulation of many growth processes, such as cotyledon growth, hypocotyl
elongation, root elongation, and lateral root formation [270,276]. Additionally, auxin
biosynthesis, transport, and signaling are required by the ABA inhibitory effect in seed ger-
mination. This was demonstrated in the mutants yuc1 yuc6 [277], pin2 [278], and tir1 [279],
which display resistance to the inhibitory effects of ABA on seed germination.
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7.3. Auxin and ROS on Drought Response

Many works have highlighted the versatile involvement of auxins in enhancing plant
tolerance to abiotic stresses [280]. Indeed, the overexpression of the auxin biosynthesis
gene YUC6 is associated with enhanced drought tolerance and distinct phenotypic changes
in arabidopsis [281], while the overexpression of OsGH3.2, involved in salicylic acid biosyn-
thesis in rice, results in reduced levels of auxin and more sensitivity to drought [282,283].
In arabidopsis submitted to drought stress, auxin accumulation can also be triggered by
downregulation of miRNA167. This miRNA targets IAR3 (IAA–ALANINE-RESISTANT
3) mRNA, which encodes an IAA–alanine hydrolase responsible for releasing active IAA
from the IAA–alanine conjugate [284].

Auxin displays a crucial role in regulating genes involved in the response to water
stress via ARF induction [285]. In arabidopsis, auxin positively regulates the expression of
various stress-related genes, such as RAB18 (RESPONSIVE TO ABA 18), RD22 (RESPON-
SIVE TO DEHYDRATION 22), RD29A (RESPONSIVE TO DESICCATION 29A), RD29B
(RESPONSIVE TO DESICCATION 29B), DREB2A, and DREB2B [286]. While ABA signal-
ing induces stomatal closure, auxin regulates both stomatal movement and development,
reducing stomatal density [287]. Arabidopsis mutants defective in auxin biosynthesis,
transport, or signaling exhibit increased stomatal index, thereby establishing a negative role
of auxin in stomatal development [288–290]. In mesophyll, auxin-induced ARF inhibits
the expression of STOMAGEN peptide, which promotes stomata development [290,291].
During drought, plants utilize hydrotropism, an adaptive mechanism involving directed
root growth towards water sources, to cope with this challenge. In this condition, the
drought-induced auxin accumulation regulates the root system architecture, optimizing
water uptake efficiency [292].

Auxin also contributes to the regulation of ROS levels, which are notably increased
during drought. The RBOHs NADH oxidases’ expression and ROS levels are induced by
RSL4 (ROOT HAIR DEFECTIVE SIX-LIKE 4), which is activated by ARF transcription
factor and binds to at least one root hair cis-acting element (RHE) region in the RBOHC
and RBOHJ promoters [293]. Indeed, ROS triggered by auxin are directly implicated in
the loosening of the cell wall and contribute to the process of cell elongation [294]. The
drought-induced ROS production significantly disrupts auxin homeostasis in plants [6],
influencing polar auxin transport by modulating the expression PIN proteins and affecting
auxin conjugation [295]. Similarly, ROS contributes to the oxidative degradation of auxin
through peroxidase activity, resulting in changes in auxin gradients and disruption in
hormone-mediated signaling [296]. Additionally, under water stress conditions, auxin
has a positive regulatory effect on antioxidant enzymes SOD CAT, POD, and GR. This
regulatory action intensifies ROS detoxification, thereby contributing to an effective defense
mechanism against oxidative stress [286].

8. Cytokinin
Cytokinins are a group of phytohormones that regulate shoot and root growth, cell

division and proliferation, chloroplast and vascular development, bud differentiation,
anti-aging, biomass distribution [297–299], photosynthesis and nutrient metabolism [300],
leaf senescence [301], and maintenance of meristem function [302,303]. In plants, the most
abundant cytokinins are adenine-type species, including common derivatives such as
isopentenyl adenine (iP), trans-zeatin (tZ), and cis-zeatin (cZ) [304]. In higher plants, zeatin
is the most abundant cytokinin existing in both tZ and cZ forms. The tZ form is active in
all plant species, whereas cZ is active only in specific plants, such as rice [305].
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8.1. Cytokinin Metabolism

Cytokinins are synthesized via two primary biosynthetic pathways. The first one is
de novo synthesis, where 5-phosphate adenosine (AMP, ATP, and ADP) is converted into
iP/tZ-type cytokinins by adenosine phosphate isopentenyltransferase (IPT, EC 2.5.1.27)
and CYP735A1/CYP735A2. The second biosynthetic pathway involves tRNA-specific
adenylate isopentenyltransferase (tRNA-IPT), which indirectly leads to the formation of
cZ-type cytokinins [304,306]. Cytokinins are synthesized in various cell types in both roots
and shoots, and they undergo both local and long-distance transport [307–310]. Although
the mechanisms of cytokinins transport are not fully understood, potential efflux and influx
transporters have been identified, such as ABCG14, involved in cytokinin efflux across the
plasma membrane [91,311].

Cytokinins degradation is primarily catalyzed by cytokinin oxidase/dehydrogenase
(CKX, EC 1.5.99.12), resulting in the release of free adenine or adenine nucleosides, leading
to the complete inactivation of the cytokinin [307]. Additionally, cytokinin inactivation
can occur through conjugation to sugars via glucosyltransferases [304]. CKX and glucosyl-
transferases are both induced by cytokinins to deactivate the cytokinin signal itself. These
negative-feedback pathways illustrate the tight regulation of cytokinin pathway output,
reflecting its profound effects on plant development and the frequent targeting of cytokinin
signaling by pathogens [91].

8.2. Cytokinin Signaling

Cytokinins signal transduction is analogous to the bacterial two-component reg-
ulatory system, which consists of histidine kinases (HKs; sensing proteins) and reac-
tive regulatory proteins (receiving proteins) [312]. Cytokinins bind to the histidine ki-
nases receptors AHK2 (ARABIDOPSIS HISTIDINE KINASE 2), AHK3, AHK4/CRE1
(CYTOKININ RESPONSE 1), CKI1 (CYTOKININ-INDEPENDENT 1), and AHK5/CKI2 to
form a dimer [313]. The conserved His residues in the N-terminal sensor-kinase domain
are autophosphorylated, and the phosphate group is then transferred to a conserved Asp in
the C-terminal receiver domain [314–318]. In general loss-of-function mutations of single
receptors displayed only subtle effects on most of the phenotypes studied. However, in
some cases, individual receptors were shown to mediate specific cytokinin activities [319].
The histidine kinase receptors are primarily localized at the ER membrane, suggesting
that the site of cytokinin binding is within the ER lumen [320–322]. A small portion of HK
receptors are also found at the plasma membrane [323] although there is ongoing debate
regarding the extent to which these receptors are involved in mediating the cytokinin
response [311] (Figure 7).

During cytokinins signaling, the phosphate group on the conserved Asp residue of
the receptor is subsequently transferred to HPt (histidine phosphate transfer) proteins in
the cytoplasm. Cytokinin receptors interact in vivo with all studied HPt proteins and vice
versa [324] (Figure 7). The arabidopsis genome contains five AUTHENTIC HISTIDINE-
CONTAINING PHOSPHOTRANSMITTER genes: AHP1, AHP2, AHP3, AHP4, and AHP5.
The AHP proteins feature a conserved cysteine residue susceptible to S-nitrosylation by
nitric oxide, both in vitro and in vivo, that inhibits their ability to receive phosphate from
histidine kinases and transfer phosphate to response regulators [325]. Additionally, plants
possess pseudo-histidine phosphotransferase proteins (PHPs), which are lacking in the histi-
dine phosphorylation site [326–329]. PHPs act as negative regulators of cytokinin signaling
in arabidopsis, influencing protoxylem differentiation [330,331], leaf phyllotaxy [332], and
cell patterning during lateral root initiation [333].
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PRX71, which produce superoxide. Superoxide is then converted into peroxide by superoxide 
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Figure 7. Cytokinin signaling. Cytokinin signaling is initiated when cytokinins (CK) bind to the AHK
receptors, located in the plasma membrane or, alternatively, in the membrane of the endoplasmic
reticulum (RE). When AHK is in the endoplasmic reticulum, cytokinins enter the cell via ABCG
channels. Upon binding to AHK, the receptor activates a two-component signaling system, where
AHK phosphorylates the response regulator AHP. The phosphorylated AHP then translocated to
the nucleus, where it activates the transcription factors ARR-B. ARR-B induces the expression of
several cytokinin-regulated genes, among them peroxiredoxins PRX33, PRX54, and PRX71, which
produce superoxide. Superoxide is then converted into peroxide by superoxide dismutase (SOD).
Additionally, ARR-B represses the expression of PRX2, a protein responsible for peroxide elimination,
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contributing to peroxide accumulation in the apoplast. In the apoplast, peroxide regulates and
activates calcium channels, allowing calcium influx into the cytosol. This calcium influx activates
calcium-dependent kinases (CPK/CDPK/CBL), which phosphorylate and activate chloride channels
such as SLAC1 and SLAH3. ARR-B also induces the expression of ARR-A, which, through a negative-
feedback mechanism, downregulates the activity of ARR-B. Furthermore, ARR-B is regulated by the
protein KMD, which induces its degradation via the proteasome. Through these complex interactions,
cytokinins regulate key developmental processes such as shoot and root development, lateral bud
outgrowth, and leaf senescence. The hormonal receptor is indicated in yellow, while activators of
the signaling are shown in blue and inhibitors in salmon. Membrane channels/transporters are
represented in green, transcription factors in purple, and enzymes involved in ROS metabolism
in dark blue. Black lines with arrow indicate induction, black lines with bar indicates repression,
blue lines with arrow indicate activation of phytohormone signaling, red lines with bars represent
inhibition, and green lines with arrow indicate transmembrane transport.

In the nucleus, phosphorylated HPT transfers phosphate groups to ARR (Arabidopsis
response regulator), thereby regulating the expression of cytokinin-responsive genes [334].
In cytokinins signaling, two types of ARR play distinct roles. Type-B ARRs are phos-
phorylated on an Asp residue in their receiver domain by AHPs, crucial for initiating
the transcriptional response to cytokinin [335,336]. Turnover rates within the type-B RR
family vary and are regulated in part by the KISS ME DEADLY (KMD) E3–ubiquitin ligase
complex [337,338]. Conversely, type-A ARRs function as negative-feedback regulators
of cytokinin signaling. They are transcriptionally induced by cytokinin through direct
activation by type-B ARRs [339–342]. Among the targets of the transcriptional control
mediated by type-B RRs is the transcription factor WUSCHEL, which regulates shoot
meristem activity, thereby establishing a direct link between cytokinin signaling and the
control of shoot growth and development [343–346].

The CRF (CYTOKININ RESPONSE FACTOR) group also acts as a side-branch of the
two-component signaling system, being activated by HPt proteins [347]. The CRF is a
non-monolithic group of AP2/ERF transcription factors found in most angiosperms and
appears to be a target of ARR-Bs [348]. CRFs are recognized as key transcription factors
in responding to abiotic stresses across various plant species, contributing to the trade-off
between growth and stress response [349,350]. Moreover, several members of the CRF
family from different plant species are induced by oxidative stress, which is considered one
of the most critical consequences of abiotic stress [351,352].

Cytokinins frequently synergize with other hormones, particularly auxin, to coordinate
cell division and differentiation. CRFs are capable of binding to elements found in the
promoters of some PIN genes, controlling the expression of auxin transporters [353] and
IAA distribution during root development [354–357]. Additionally, CRF2 was identified as
being a downstream target of ARF5/MONOPTEROS, a key auxin-regulated transcriptional
factor [358], suggesting that CRF acts as an important bridge between cytokinin and
auxin signaling. In the shoot, cytokinins promote cell proliferation in apical and axillary
meristems. Increased cytokinins levels, resulting from reduced expression of CKX genes,
have been linked to enhanced grain yield in indica rice varieties [359], and disruption of
CKX genes in arabidopsis leads to increased seed yield [360]. Additionally, cytokinins
regulate leaf phyllotaxy [332], gynoecium development [361–364], female gametophyte
development [365,366], and vascular cambial development [367,368]. In contrast, cytokinins
inhibit root growth by promoting cell differentiation in the root apical meristem and by
suppressing both lateral root initiation and primary root elongation [369–374]. Indeed,
cytokinins determine the size of arabidopsis root meristems by regulating the rate of cell
differentiation in meristems [375]. Overexpression of type-B ARRs can promote arabidopsis
root growth, indicating that cytokinins participate in root development [376]. In rice, the
overexpression of OsIPT disrupts root development [377]. Similarly, overexpression of
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OsRR3 or OsRR5 improves root growth and induces lateral root initiation [378]. Conversely,
overexpressing the Zea mays CKX gene in Nicotiana tabacum reduces cytokinin levels, inhibits
stem development, and enhances root growth [371].

Cytokinins also collaborate with salicylic acid-regulated plant immunity by the in-
teraction between ARR2 and the SA response factor TGA3, which binds to the PR1 pro-
moter in arabidopsis during pathogen response [379]. Indeed, elevated cytokinin levels
boost SA-mediated defense responses, providing greater resistance to infection by viru-
lent oomycete pathogens [380] and arabidopsis transgenic plants overexpressing AtCRF5
enhance resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) [381]. Ad-
ditionally, DELLA proteins, acting as central nodes in transmitting environmental cues,
directly engage with type-B ARRs to co-activate gene targets crucial for root growth and
photomorphogenesis [382].

8.3. Cytokinin and ROS on Drought Response

Cytokinins can also enhance resistance to adverse environmental factors [300]. Differ-
ent studies suggest that cytokinins signaling is directly involved in drought stress responses.
Exogenous cytokinin application was shown to improve the drought resistance of Cucumis
sativus [383]. Similarly, the expression of the cytokinin biosynthetic enzyme IPT in tobacco
enhances drought tolerance by delaying leaf senescence [384]. The balance between trigger-
ing leaf senescence and sustaining photosynthesis is crucial for drought tolerance and for
maintaining crop yields under stress [385–387].

In arabidopsis, the CRF family may affect cytokinins signaling in the equilibrium
between active photosynthesis and senescence. AtCRF6 acts as a negative regulator of
leaf senescence. Its overexpression preserves chlorophyll (Chl) and delays leaf yellow-
ing [388]. Similarly, AtCRF9 promotes chlorophyll retention in dark-induced senescence
assays, maintaining photosynthesis during senescence [389]. In the opposite direction,
the overexpression of AtCRF1, AtCRF3, and AtCRF5 genes leads to early leaf senescence,
and crf1,3,5,6 multiple knockout delays this process [390], indicating that these genes act
as positive regulators of leaf senescence. The overexpression of AtCRF2 also accelerates
senescence in rosette leaves [391], but it has also been shown to accelerate chloroplast
division, a feature linked to enhanced photosynthetic activity [392,393].

Cytokinin is also demonstrated to play negative regulatory roles in drought stress
response. In arabidopsis, cytokinin-deficient CKX-overexpressing plants show improved
survival under drought stress [394]. Additionally, the receptors AHK2 and AHK3 [395]; the
HPt proteins AHP2, AHP3, and AHP5 [396]; and the transcription factors ARR1, ARR10,
and ARR12 [397] act as negative regulators of plant responses to drought. In tomato,
cytokinins affect transpiration by regulating stomatal density and leaf size. Under drought
stress, reduced levels of CKs lead to a decrease in the cell division rate, suppressing growth
and reducing stomatal density. This, in turn, leads to lower transpiration rates, which
enhances plant survival in drought conditions [398]. The cytokinin-mediated stomatal
responses involve the apoplastic peroxidases PRX4, PRX33, PRX34, and PRX71 but not
the NADPH oxidases RBOHD and RBOHF. While PRX2 acts as an ROS scavenger, PRX33,
PRX34, and PRX71 contribute to ROS production and stomata closure. In guard cells, PRX2
expression is repressed by ARR2, while PRX33 is induced [160].

Stomata closure and ROS production induced by tZ are compromised in the histidine
kinase ahk3 and response regulators arr2 mutants, which are also defective in FLG22 (flag-
ellin 22)-mediated ROS production. On the other hand, IPT3 and ARR2 overexpression lines
show higher levels of ROS in guard cells and constitutive closed stomata phenotypes [160].
Importantly, ost1-3 and aba1-3 mutants, which are defective in FLG22-triggered stomatal
closure [399,400], show wild-type stomatal closure in response to tZ treatment.
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9. Brassinosteroids
Steroid hormones have been implicated in several aspects of animal growth and de-

velopment. In plants, the steroid-like hormone brassinosteroid (BR) plays important roles
in plant growth and development, being involved in the control of several developmental
and physiological processes, such as cell elongation, cell division, vascular differentiation,
senescence, flowering time control, male fertility, pollen development, seed size, photo-
morphogenesis, and resistance to biotic and abiotic stresses [401]. Despite having been
named due to its original identification in Brassica napus pollen [402], the most active
brassinosteroid, brassinolide (BL), has been found widely distributed in virtually all plant
species [403].

9.1. Brassinosteroids Metabolism

Many of the important advances in the study of brassinosteroids come from a series
of different genetic screenings. An important step was the identification of brassinos-
teroids biosynthesis mutants such as de-etiolated 2 (det2) and constitutive photomorphogen-
esis (cpd). They were the first mutants identified in this biosynthesis pathway, and the
genes encode, respectively, a 5α-reductase (EC 1.3.1.22) and a C23-steroid hydroxylase
(EC 1.14.13.112) [404,405]. Both mutants have been identified in screening for mutants
defective in hypocotyl elongation, and their phenotype can be reduced upon BL application.
Brassinosteroids are produced in the cell, but several lines of evidence have shown that
their perception occurs at the plasma membrane by a receptor complex that initiates the
signaling [406]. Due to their polar nature, the bioactive brassinosteroids might be exported
out the cells, but the mechanism by which this transportation occurs was previously un-
known. Very recently, an arabidopsis ABC transporter protein (ABCB19) was identified as
a functional brassinosteroid exporter [407].

9.2. Brassinosteroids Signaling

A deeper comprehension of the hormone’s perception and function comes from
the identification of arabidopsis brassinosteroid signaling mutants. These mutants usu-
ally display dwarf phenotypes unable to respond to exogenous BL treatment. Brassi-
nosteroids signaling is mediated by BR1 (BRASSINOSTEROID-INSENSITIVE 1) receptor,
a membrane-bound receptor serine/threonine kinase protein with extracellular leucine-
rich repeats [408–410]. Later, similar receptors were isolated and characterized in sev-
eral other species, such as rice [411], tomato [412], pea (Pisum sativum) [413], barley
(Hordeum vulgare) [414], currant tomato (Solanum pimpinellifolium) [415], petunia (Petunia
hybrida) [416], wild tobacco (Nicotiana attenuate) [417], Brachypodium distachyon [418], maize
(Zea mays) [419], and alfalfa (Medicago truncatula) [420]. The arabidopsis genome encodes
three other BRI1-related genes. BRL1 and BRL3 but not BRL2 encode functional brassinos-
teroid receptors that bind BL with high affinity. These genes display different tissue-specific
expressions. BRI1 is expressed ubiquitously in growing cells, while BRL1 and BRL3 expres-
sion are restricted to non-overlapping regions of the vascular tissue [421]. Similar to ara-
bidopsis, BRI1-related genes have been also described in other plant species [411,414,419].

In the absence of brassinosteroid, the BRI1 receptor remains inactivated by several
mechanisms (Figure 8). The cytoplasmatic C-terminal tail of BRI1 auto-inhibits its kinase
activity [422], and the kinase domain is dephosphorylated by protein phosphatase 2A
(PP2A), targeting the BRI1 pool for degradation through a negative-feedback loop [423].
PP2A is composed of a subset of cytoplasmatic β’ regulatory subunits (β′η, β′γ, β′ζ, and
β′θ) [424] and is activated by methylation via SBI (SUPRESSOR OF BRI1), a leucine carboxyl-
methyltransferase (LCMT), reducing receptor abundance and BR signaling strength [423].
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Another important negative regulation is performed by the inhibitory protein BKI1 (BRI1
kinase inhibitor 1), which binds to BRI1 and inhibits its activity [425].
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Figure 8. Brassinosteroids signaling. In the absence of brassinosteroids (BRs), the BRI1 receptor in the
plasma membrane associates with BKI1, keeping the receptor inactive. This association is disrupted
when BKI1 is phosphorylated, causing it to bind to 14-3-3 proteins, leading to its degradation via
the proteasome. Additionally, BRI1 can be dephosphorylated by a type of PP2A phosphatase, which
induces receptor proteasome degradation. PP2A are activated by the SBI1 methylase. Upon BR
binding, BRI1 forms a complex with the co-receptor BAK1, triggering a kinase cascade that starts
with the phosphorylation of CDG1/BSKs. These kinases phosphorylate the phosphatase BSU/BSL,



Plants 2025, 14, 208 28 of 66

which dephosphorylates the BIN2/BIL kinases. Once BIN2/BIL is dephosphorylated, it is ubiq-
uitinated by KIB1 and degraded. BIN2/BIL is responsible for phosphorylating key transcription
factors BES1/BZR1/BEH, which regulate the BR response. In their phosphorylated form, these
transcription factors bind to 14-3-3 proteins, leading to their degradation and inhibiting BR signaling.
When BIN2/BIL are inhibited or degraded, BES1/BZR1/BEH are no longer phosphorylated or can
be dephosphorylated by PP2A. Unphosphorylated forms of BES1/BZR1/BEH are active and translo-
cated to the nucleus to regulate gene expression. As homodimers, these transcription factors bind to
BRRE elements, and as heterodimers with bHLH transcription factors like BIM and BEE, they bind to
E-box elements, further controlling BR-responsive gene regulation. This pathway orchestrates key
developmental processes, including cell elongation, growth, stress responses, and gene expression
modulation in plants. The hormonal receptor is indicated in yellow, while activators of the signaling
are shown in blue, inhibitors in salmon, and transcription factors in purple. Black lines with arrows
indicate induction and blue lines with arrow indicate activation of phytohormone signaling.

BRI1 can bind brassinosteroids at the extracellular island domain [426], inducing its
homodimerization and kinase activity [421,427–429], releasing the effect of the C-terminal
tail [430], and leading to the trans-phosphorylation of the BKI1 inhibitor [425]. BKI1 dissociates
from the membrane and interacts with members from the 14-3-3 phosphopeptide-binding
proteins (Figure 8), allowing brassinosteroid signaling to be activated [425,431,432]. BRI1
then associates with another LRR receptor kinase, BAK1 (BRI1-associated kinase 1) [433,434]
(Figure 8), also known as SERK3 (somatic embryogenesis receptor kinase 3). BAK1/SERK3
works as a brassinosteroid co-receptor, forming heterodimers with BRI1 [435,436] in
the presence of the hormone [437]. Brassinosteroid-induced BRI1-BAK1 dimeriza-
tion results in the positioning of their intracellular kinase domains in the right struc-
ture for competing with BKI1 and allows receptors’ transphosphorylation at multiple
sites [427,438], forming a fully activated receptor complex that activates downstream
events [427,438] (Figure 8). Two other members of the BAK1/SERK family, SERK1 [439]
and SERK4/BAK7/BKK1 [440], have also been reported to be involved in BR signal-
ing. Once fully activated, BRI1 phosphorylates CDG1 (CONSTITUTIVE DIFFERENTIAL
GROWTH 1) and BSKs (BR SIGNALING KINASEs) proteins [438–442], both belonging to
the receptor-like cytoplasmic kinase (RLCK) superfamily. These proteins are located at the
plasma membrane by amino-terminal myristoylation [406]. Once phosphorylated by BRI1,
CDG and BSK1 kinases phosphorylate the phosphatase BSU1 (BRI1 suppressor 1) [443,444].
BSU1 was identified in a bri1 suppressor screening [445]. BSU1 and its homologues, the
BSU-likes (BSLs), belong to a small family of protein phosphatases known as PPKL (protein
phosphatase with kelch-like domains) [445]. Once activated, they can dephosphorylate
and inactivate GSK3-like kinase BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a negative
regulator of the brassinosteroid signaling [444,446] (Figure 8). Although BSU1 was the
first gene to be functionally characterized and named in the family, it is specific to the
Brassicaceae family and shows remarkable sequence variation, even among closely related
species [447]. BSL genes, on the other hand, are highly conserved in all land plants [447].

BIN2 is a constitutively active kinase that acts as a central regulator of the brassi-
nosteroid signaling cascade [443,448] (Figure 8). In arabidopsis, BIN2 and two close
homologues, BIL1 (BRZ-INSENSITIVE-LONG 1) and BIL2, act redundantly in BR sig-
naling since the triple loss-of-function mutant bin2-3 bil1 bil2 showed constitutive BR
responses [448]. Once dephosphorylated by BSU and BSL, BIN2 becomes unstable, is de-
graded by a proteasome-mediated degradation [449], and releases the signal transduction
cascade to its activated state (Figure 8). BIN2 activity is also regulated by interaction with
the F-box E3 ligase KIB1 (KINK SUPPRESSED IN BZR1-1D), which, in the presence of
brassinosteroids, will promote BIN2 ubiquitination and proteasomal degradation (Figure 8).
KIB1 also blocks BIN2 access to its substrate, the BES1 (BRI1 EMS SUPPRESSOR 1)/BZR1
(BRASSINAZOLE-RESISTANT 1) transcriptional factors [450]. When the brassinosteroid
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levels are low or absent, the active BIN2 will hyperphosphorylate the two key transcrip-
tional factors involved in the brassinosteroid response BES1 and BZR1 (Figure 8). Both
genes have been isolated as gain-of-function dominant mutants and suppress weak bri1 mu-
tant [451,452]. These mutants accumulate dephosphorylated BES1 and BZR1 proteins in the
nucleus independently of brassinosteroids and display constitutive BR responses [451–453].
In their phosphorylated forms, BES1 and BZR1 cannot bind to DNA [454] and are retained
at the cytoplasm by interaction with at least five of the twelve arabidopsis 14-3-3 proteins
(14-3-3λ, 14-3-3κ.14-3-3ε, 14-3-3ϕ, and 14-4-3ω) [455] and the eight rice 14-3-3 proteins
(GF14a-h; growth factor 14a–h) [456] (Figure 8).

In the opposite scenario, when the brassinosteroid levels are high, and BIN2 is inhib-
ited, the BES1/BZR1 proteins are accumulated in their dephosphorylated forms (Figure 8).
The dephosphorylation of BES1/BZR1 proteins is dependent on PP2A phosphatases’ activ-
ity [457]. Interestingly, the PP2A regulatory subunits involved in BES1/BZR1 dephosphory-
lation (PP2A β′α and PP2A β′β) are different from the ones involved in BRI1 dephosphory-
lation and are located at the nucleus [457]. The dephosphorylated forms of BES1/BZR1 will
move to the nucleus, where they can bind to cis-acting elements in their target promoters,
regulating gene expression [458–461] (Figure 8). In the arabidopsis genome, there are four
other genes related to BES1 and BZR1, named BEH1–4 (BES1/BZR1 homologs 1–4), which
have also been shown to operate in brassinosteroid signaling [458]. The promoters of the
brassinosteroid biosynthesis genes display an enrichment in BRRE elements, where BES1
and BZR1 can bind as homodimers and repress its transcription, regulating both brassinos-
teroid biosynthesis and growth responses [459]. This operates as a negative-feedback loop
to stop brassinosteroid signaling by the inhibition of the hormone production. Working
as heterodimers with other transcriptional factors from the basic helix-loop-helix (bHLH)
family, BES1 and BZR1 can bind to the E-box elements to activate brassinosteroid-induced
gene expression [458]. The analysis of BL-induced gene promoters indicated that the E-box
elements are enriched in many brassinosteroid-induced gene promoters [462].

BIM1 (BES1-interacting Myc-like 1) and its two homologues, BIM2 and BIM3, are
members of the bHLH sub-family that are involved in brassinosteroid signaling. Although
bim1, bim2, and bim3 single mutants do not display any visible phenotype, the bim1 bim2
bim3 triple mutants show a brassinosteroid mutant phenotype: shorter hypocotyls in light
and dark growth conditions and higher sensitivity to brassinazole (a brassinosteroid biosyn-
thesis inhibitor) in hypocotyl elongation assays in the dark [458]. On the other hand, BIM1
overexpression can partially rescue the bri1 mutant and can directly bind to the promoter
of BR-induced genes [458]. Another transcription factor involved in the brassinosteroid
response is known as BEE (brassinosteroid enhanced expression). In arabidopsis, the BEE
genes are members of a subfamily of the bHLH, with 16 genes [463]. However, among the
tested genes, only BEE1, BEE2, and BEE3 are responsive to brassinosteroid [464]. Similar
to several other components of the brassinosteroid signaling that do not result in steroid-
deficient mutant phenotypes (probably for gene duplication and functional redundancy),
bee1, bee2, and bee3 single or double mutants do not display any visible phenotype. Only
bee1 bee2 bee3 triple mutant has a reduced response to brassinosteroid and was shown to be
shorter and display a light-grown phenotype similar to the weak brassinosteroid-response
mutant but not the dwarf phenotype. This suggests that although BEE1, BEE2, and BEE2
are positive regulators, they are not absolutely required for brassinosteroid signaling [464].

Brassinosteroid signaling involves the critical step of signal attenuation. Excessive
levels of BRI1 result in overly amplified brassinosteroid responses. To regulate this, plant U-
box proteins PUB12 and PUB13 mediate BRI1 ubiquitination, triggering its internalization
and subsequent degradation via the proteasome [465,466]. Signaling attenuation has
been demonstrated to be an important step after brassinosteroid signaling. Since great
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amounts of BRI1 produce over-enhanced brassinosteroid responses, BRI1 internalization
and degradation mediated by BRI1 ubiquitination by plant U-box proteins PUB12 and
PUB13 have been shown to be an important step [465,466].

9.3. Brassinosteroids and ROS on Drought Response

Recent studies highlighted the importance of brassinosteroid signaling in drought
adaptation [467]. In chickpea (Cicer arietinum), brassinosteroid treatment under water
stress increased fresh and dry weight, the number of tillers, stem thickness, and root de-
velopment [468]. In radish (Raphanus sativus) seedlings, it activated antioxidant enzymes,
reducing drought stress effects [467]. In other species, such as sorghum (Sorghum bicolor),
maize, and tomato, brassinosteroids enhanced chlorophyll accumulation, stomatal con-
ductance, photosynthesis, and membrane stability, contributing to improved growth and
yield [467].

In B. distachyon, BRI1-RNAi transgenic lines showed increased drought tolerance and
increased expression of drought-induced genes [418]. The bri1 loss-of-function mutation
led to drought resistance in arabidopsis [469,470]. Similar results have been observed
in tomato, where a mutant in the SlBRI1 gene with weak brassinosteroid signaling (abs)
exhibited drought tolerance. In comparison with control plants, abs mutants show a weak
degree of wilting, higher water content in soil, and lower electrolyte leakage and MDA
content. On the other hand, the overexpression of tomato SlBRI1 reduces stomatal aperture,
antioxidant enzyme activities, and the expression of stress-related genes, negatively modu-
lating drought tolerance [471]. In maize, under drought conditions, BRI1 RNAi-silenced
transgenic lines display less wilting, higher survival rates, higher water content and water
loss rate, higher stomatal closure, lower electrolyte leakage and MDA content, and a re-
duced photosynthetic decline rate in comparison with control plants. Opposite phenotypes
have been observed in transgenic lines over-expressing ZmBRI1, indicating that ZmBR1
negatively modulates drought tolerance in maize [472]. These observations indicate that
water stress regulates brassinosteroid signaling through BRI1 and that higher levels of the
BRI1 receptor result in reduction in drought tolerance [470–472].

Overexpression of the BRL3 gene, another member of the brassinosteroid receptor
family, enriched in the vascular system, confers tolerance to drought stress. Although
loss-of-function mutations in the BRI1 receptor also lead to drought resistance, this occurs
at the expense of plant growth. However, overexpression of the BRL3 receptor confers
drought tolerance without penalizing overall growth. Systematic analyses have revealed
that, under drought stress, increased BRL3 expression triggers the accumulation of osmo-
protective metabolites, including proline and sugars [470]. Under control conditions, plants
overexpressing the BRL3 receptor already exhibit a metabolic signature enriched in the
accumulation of proline and sugars, which are classically correlated with stress tolerance.
Under stress conditions, plants overexpressing BRL3 also accumulate high levels of proline,
GABA, tyrosine, trehalose, myo-inositol, and raffinose in a manner correlated with stress
exposure. All these metabolites have previously been associated with drought stress toler-
ance. High levels of the raffinose family oligosaccharides (RFOs) and myo-inositol, known
to be involved in the protection of biological membranes and free radical scavenging, were
also observed in the roots of plants overexpressing the BRL3 receptor. The results strongly
suggest that BRL3 overexpression promotes the “priming” phenomenon, protecting plants
from damage associated with the drought stress process [470].

OsGSK1, the rice orthologue of BIN2, was also shown to be involved in drought
response. OsGSK1-knockout plants demonstrated more tolerance to several stresses, in-
cluding drought [473]. In wheat (Triticum aestivum), a gain-of-function mutation in the
TaGSK3 gene (TaGSK3-3D) confers drought tolerance. TaGSK3 encodes a SHAGGY-like
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kinase protein homologous to the arabidopsis BIN2. The gene was mapped and iden-
tified by the analysis of an Indian dwarf wheat cultivar (Sphaerococcum 1, S1) that is
insensitive to brassinosteroid, displays upregulation of brassinosteroid biosynthetic genes,
and enhances drouth tolerance [12]. TaGSK3-3D plants maintain higher relative water
content through stomatal-regulated water loss and reduced ROS levels. Although TaGSK3-
3D plants exhibited growth penalties under normal conditions, upon stress treatment,
they displayed higher survival rates, plant height, and biomass compared to wild-type
plants [474]. BIN2 and its homologues limit plant growth by inhibiting BES1/BZR1 activity;
however, they enhance drought tolerance by phosphorylating SnRK2s, intensifying ABA
signaling, and regulating other transcription factors involved in the activation of drought
tolerance [475,476].

Under normal conditions, BES1 and the transcription factors WRKY46, WRKY54, and
WRKY70 interact to promote the expression of genes related to growth and, at the same time,
repress genes regulated by drought. On the other hand, drought stress conditions increase
BES1 degradation, reducing its impact in plant growth and increasing drought response.
In this condition, BIN2 phosphorylates WRKY54, allowing the expression of drought-
inducible genes and reducing the growth stimulated by brassinosteroids [430]. BES1 also
operates with the transcription factors RD26 (RESPONSIVE TO DESICCATION 26) [469]
and TINY [477], coordinating plant growth and drought tolerance trade-off. RD26 and TINY
are induced by drought and induce drought-responsive genes, increasing drought tolerance
and inhibiting plant growth by inhibiting BES1. RD26 and TINY physically interact with
BES1, inhibiting its transcriptional activity on brassinosteroid-regulated genes. On the other
hand, BES1 represses the transcription of RD26, inhibiting drought responses [469,477].
BIN2 phosphorylates and stabilizes TYNY, performing a positive regulation in drought
stress response [477].

In arabidopsis, a null mutant of the BEH3 gene (pca41, proline content alterative 41)
shows a drought-insensitive phenotype, higher levels of proline accumulation, and reduced
levels of reactive oxygen species. Under osmotic stress, the mutant displays an increase
in APX, CAT, and POD activities. Overexpression of BEH3 results in an osmotic stress-
sensitive phenotype that can be reverted by brassinolide application. BEH3 seems to
operate together with the E3 ligase RZF1, and their expression mediates the water deficit
response through brassinosteroid signaling and ubiquitination action [478]. Overexpression
of the soybean BEH orthologue (GmBEH3L1) in arabidopsis also generates an osmotic-stress
sensitive phenotype [479].

Interestingly, brassinosteroids signaling was also demonstrated as positively regu-
lating drought stress. In wheat, the overexpression of TaBZR2 results in drought-tolerant
plants, while downregulation of the gene by RNAi generates plants that exhibit elevated
drought sensitivity. Under drought conditions, TaBZR2 RNAi plants display increased
superoxide content, and it was demonstrated that TaBZR2 confers drought tolerance by
activating TaGST1 expression [480]. Recently, a new gene involved in brassinosteroid
signaling was identified through a genetic screening for a brassinazole-insensitive phe-
notype. Overexpression of BIL9 (BRZ-INSENSITIVE LONG HYPOCOTYL 9) leads to
drought tolerance, while bil9-knockout plants do not present any visible phenotype under
drought conditions. BIL9 overexpression induces the expression of ABA-induced and
drought-responsive genes. BIL9 physically interacts with HOMEODOMAIN GLABROUS
11/ENHANCED DROUGHT TOLERANCE 1 (HDG11/EDT1), a transcription factor that
promotes drought tolerance. BIL9/HDG11 interaction positively regulates BR-induced
plant growth, promoting drought stress resistance [481].

Brassinosteroid signaling is also mediated by ROS. Brassinosteroid-induced hydro-
gen peroxide accumulation has been reported to be important for heat and oxidative
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stresses [482,483], stomatal movement [100,484], and salt tolerance [485]. Indeed, several
components of the brassinosteroid signaling have been shown to be targets for ROS. The
brassinosteroid co-receptor BAK1 was shown to be modified by glutaredoxin GRXC2,
resulting in the inhibition of its kinase activity [486]. The kinase activity of BIN2 was also
reported to be inhibited by nitric oxide [40]. Hydrogen peroxide leads to oxidative modifi-
cations in specific cysteine residues of BES1/BZR1, enhancing its transcriptional activity
and promoting its interactions with other regulators of auxin and light signaling, such as
ARF6 and PIF4. Oxidized BES1/BZR1 can be reduced by the thioredoxin TRXh5 [487].
Under hydrogen peroxide-deficient conditions, the number of genes regulated by BZR1 is
greatly reduced, and the re-application of hydrogen peroxide partially restores the expres-
sion of the BZR1-regulated genes. Interestingly, BZR1 seems to repress ROS-related genes,
contributing to feedback regulation and redox homeostasis [487]. Drought stress induces
hydrogen peroxide production by brassinosteroid-activated NAPDPH oxidase, which may
also activate BES1/BZR1 to regulate drought response [488].

Brassinosteroids signaling plays a pivotal role in balancing the trade-off between
plant growth and drought tolerance. These hormones promote cell expansion and de-
velopmental processes under optimal conditions, enhancing overall growth. However,
under drought stress, brassinosteroids trigger a complex adaptive response that prioritizes
survival overgrowth. By modulating key signaling pathway, including those mediated
by other phytohormones, brassinosteroids help plants adjust their metabolism, boost
antioxidant defenses, and stabilize cellular structures, thereby minimizing the damage
caused by water deficiency. As such, brassinosteroids are essential regulators that fine-tune
the plant’s ability to conserve resources, optimizing both growth and stress resilience in
challenging environments.

10. Strigolactones
Strigolactones are a small class of carotenoid-derived compounds that play a crucial

role in suppressing shoot branching by inhibiting the outgrowth of axillary buds [489,490].
Initially, they were characterized as rhizosphere signals, helping root-parasitic plants detect
and colonize their hosts [491]. However, strigolactones are now known to be involved in
many other aspects of plant development [492]. They influence internode length [493,494],
leaf morphology [495,496], leaf senescence [494,497], shoot gravitropism [498], stem
thickness [499], as well as seed germination and early seedling development [500,501].

In the root system, strigolactones enhance the growth of primary roots, elongate root
hairs, and promote the growth of rice crown roots [502–504]. Conversely, they inhibit
adventitious root formation in eudicots [505–507]. Additionally, strigolactones play crucial
roles in plant adaptive responses to environmental factors such as phosphate, nitrogen,
light, drought, and high salinity [506,508–512].

10.1. Strigolactones Metabolism

In arabidopsis, MORE AXILLARY GROWTH genes MAX1, MAX3, and MAX4 encode
enzymes involved in the strigolactone-biosynthetic pathway. MAX1 encodes a cytochrome
P450 monooxygenase that is believed to be involved in a catalytic step downstream of
MAX3 and MAX4 [509]. MAX3 and MAX4 encode carotenoid cleavage dioxygenase
7 (CCD7, EC 1.13.11.68) and CCD8 (EC 1.13.11.68), respectively. These enzymes catalyze
sequential carotenoid cleavage reactions to produce an apocarotenone called carlactone,
proposed as strigolactone precursor [513]. Indeed, an arabidopsis mutant in MAX3 and
MAX4 exhibited a 70–75% reduction in strigolactones content [489]. After biosynthesis, a
portion of strigolactones is exuded from the roots and enters the rhizosphere. In petunia, the
PLEIOTROPIC DRUG RESISTANCE 1 (PDR1) protein played a crucial role in regulating the



Plants 2025, 14, 208 33 of 66

development of arbuscular mycorrhiza fungi and axillary branches [514]. PDR1 belongs to
the ABC transporter family, which is also involved in the transport of other phytohormones,
such as abscisic acid (ABA), auxin, and brassinosteroids [248,407,515,516]. Despite this, the
mechanism underlying the transport of active strigolactones to the shoot remains unclear.

10.2. Strigolactones Signaling

The perception of strigolactones requires a hormone-dependent interaction between
the receptor D14 and the F-box proteins D3 (in rice) or MAX2 (in arabidopsis), which are
F-box leucine-rich repeat proteins structurally similar to the auxin receptor TIR1 and part
of the SCF ubiquitination complex. During this process, strigolactones are hydrolyzed into
a covalently linked intermediate molecule (CLIM), triggering a conformational change
in D14 that facilitates its interaction with D3/MAX2 [517] (Figure 9). This mechanism is
distinct from that of all known active phytohormones, which are produced by biosynthesis
enzymes and then reversibly bound by their receptors to initiate signal transduction.

Strigolactone signaling depends on the inhibitory proteins SMAX1 (suppressor of
MAX2 1), SMXL6 (SMAX-like 6), SMXL7 (SMAX-like 7), and SMXL8 (SMAX-like 8). In the
absence of strigolactones, SMAX/SMXL proteins interact with transcriptional corepressors
TPL and TPRs, potentially repressing the activities of target transcription factors such as
BRC1 (BRANCHED1) [518–520] (Figure 9). The SMAX/SMXL proteins share high similarity
with rice D53 and are also referred to as D53-like SMXLs [518,521]. In the presence of
strigolactone, D3/MAX2 acts as the substrate-recruiting subunit of the SCF-type ubiquitin–
E3 ligase complex D14-SCFD3 [509], which leads to the degradation of the inhibitory
protein D53 through the 26S proteasome system, thereby allowing the expression of genes
related to strigolactone response, such as BRC1, which encodes a TCP-type transcription
factor that acts downstream of MAX2 in the regulation of shoot branching [509].

Strigolactones also interacts with other hormonal signaling. It has also been
demonstrated that strigolactones induce the expression of CYTOKININ OXIDASISE DE-
HYDROGENASE 9 (CKX9), promoting cytokinin degradation [522,523]; inhibit auxin
transport [524]; and regulate PIN auxin efflux carriers [525]. In apple, strigolactones regu-
late shoot regeneration through interaction with other phytohormones [526]. Strigolactones
treatment induces members of the auxin biosynthesis gene family Yucca as well as Aux/IAA
and ARF transcriptional factors, suggesting that strigolactones increase auxin levels, in-
hibiting shoot regeneration. The hormonal treatment also inhibits the ABA receptor PYL4
and the cytokinin oxidase GA2ox2 involved in the inhibition of active GA. Treatments
with an inhibitor of strigolactones increase the expression of the brassinosteroid receptor
BRI1 [526]. These results suggest that, besides the reduction in cytokinin and increased
auxin signaling, abscisic acid, gibberellin, and brassinosteroids might also be involved in
the strigolactone-mediated inhibition of shoot regeneration [526].
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Figure 9. Strigolactone signaling. Strigolactones (SL) are perceived by the receptor D14, which is 
located in the nucleus. Although the mechanism of strigolactone influx into the cell is not yet fully 
elucidated, once inside, the hormone binds to D14, leading to its interaction with the repressor 
protein D53. This interaction facilitates the ubiquitination and proteasome-mediated degradation of 
D53, a process dependent on the F-box protein D3/MAX2. D3/MAX2, as an F-box protein, plays a 
crucial role in this degradation process, allowing the release of the transcription factor BRC1 from 
the D53-TPL/TPR corepressor complex. This release enables the activation of strigolactone-

Figure 9. Strigolactone signaling. Strigolactones (SL) are perceived by the receptor D14, which is
located in the nucleus. Although the mechanism of strigolactone influx into the cell is not yet fully
elucidated, once inside, the hormone binds to D14, leading to its interaction with the repressor protein
D53. This interaction facilitates the ubiquitination and proteasome-mediated degradation of D53, a
process dependent on the F-box protein D3/MAX2. D3/MAX2, as an F-box protein, plays a crucial
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role in this degradation process, allowing the release of the transcription factor BRC1 from the D53-
TPL/TPR corepressor complex. This release enables the activation of strigolactone-responsive genes.
Strigolactones regulate key developmental processes, including the inhibition of shoot branching,
modulation of root architecture, and promotion of symbiotic interactions with mycorrhizal fungi.
The hormonal receptor is indicated in yellow, while activators of the signaling are shown in blue and
inhibitors in salmon. Membrane channels/transporters are represented in green and transcription
factors in purple.Red lines with bars represent inhibition of phytohormone signaling, black lines with
arrow indicate induction, and green line with arrow indicates transmembrane transport. Proteins
with identity still not confirmed are marked with “?”.

10.3. Strigolactones and ROS on Drought Response

Strigolactones positively regulate drought and high-salinity responses in arabidopsis.
Both strigolactone-deficient and strigolactone-responsive mutants exhibit hypersensitivity
to drought and salt stress. Exogenous strigolactone treatment rescues the drought-sensitive
phenotype of strigolactone-deficient mutants but not of strigolactone-responsive mutants.
This treatment also enhances drought tolerance in WT plants, confirming the role of
strigolactones as positive regulators in stress responses. Additionally, the MAX3 and
MAX4 genes, which are involved in strigolactone biosynthesis, are significantly induced by
dehydration in leaves [527].

Strigolactones promote the expression of stress-related genes RD22, RD29a, and RD29b,
improving tolerance to drought [528]. In addition, strigolactones are also involved in fine-
tuning the plant’s response to oxidative stress by enhancing the expression and activity of
antioxidant enzymes such as SOD, CAT, and POD [529,530] and promoting the production
of non-enzymatic antioxidants, including reduced ascorbate, glutathione, and phenolic
compounds, which scavenge ROS and protect against oxidative damage [531,532]. This
helps maintain a balanced cellular redox state and shields plants from oxidative stress
induced by environmental factors [529]. Thus, during the stress response, strigolactones
play a critical role in the balance between ROS detoxification and production, ensuring the
activation of ROS-dependent signaling and protecting against oxidative stress. However,
as the field of strigolactones research is still evolving, further studies are needed to eluci-
date the precise mechanisms of strigolactones action and their potential applications in
agricultural systems.

11. Phytohormones Crosstalk During Drought Response
Although ABA is recognized as the main phytohormone related to drought, the out-

comes of response and tolerance to adverse conditions result from a complex interaction of
multiple hormonal actions [533]. The stress response pathways exhibit intricate connec-
tions, often converging on common elements, which is referred to as “crosstalk”. The term
crosstalk denotes situations where different signaling share one or more elements, resulting
in shared outputs [534] (Figure 10). The plants’ physiological responses to stressful envi-
ronments, involving changes in biological processes, arise from antagonistic or synergistic
interactions between various phytohormones [535]. Consequently, the development of
tolerance in plants against drought emerges as a complex phenomenon involving intricate
interactions across various cellular, molecular, and metabolic dimensions [8].
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among strigolactones (SL), auxin (AUX), gibberellin (GA), brassinosteroids (BR), abscisic acid 
(ABA), ethylene (ET), salicylic acid (SA), jasmonates (JA), and cytokinin (CK) signaling pathways 
are very complex and may vary across species. Lines with arrows indicate activation, whereas lines 
with bars represent inhibition. Arrows and lines colors have been used according to the hormone 
color in the figure. These crosstalk mechanisms play a key role in regulating ROS production and 

Figure 10. Hormonal crosstalk regulating ROS and antioxidant capacity. The crosstalk mechanisms
among strigolactones (SL), auxin (AUX), gibberellin (GA), brassinosteroids (BR), abscisic acid (ABA),
ethylene (ET), salicylic acid (SA), jasmonates (JA), and cytokinin (CK) signaling are very complex and
may vary across species. Lines with arrows indicate activation, whereas lines with bars represent
inhibition. Arrows and lines colors have been used according to the hormone color in the figure. These
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crosstalk mechanisms play a key role in regulating ROS production and antioxidant capacity in plant
cells. Under environmental stresses, ROS production is induced, triggering different signaling that
mediate the trade-off between growth control and stress responses. In these conditions, the activation
of antioxidant defenses is essential to balance the redox status and prevent oxidative damage. During
drought stress, both phytohormones and ROS act as second messengers in several stress signaling,
which is engaged to reduce water loss through transpiration and enhance water uptake by the roots,
including stomatal closure, root growth, leaf senescence, and osmoprotectant synthesis.

The ABA regulation of stomatal closure under abiotic stress is directly related to
ethylene signaling, which can act as either a positive or negative regulator [101]. This
mechanism is dependent on ABA concentration. When ABA is not sufficient, drought stress
leads to ethylene synthesis, which then induces the accumulation of ROS synergistically
with ABA, inducing stomatal closure through the synthesis of NO and the activation
of the SLACs channel [98,536]. In this condition, ethylene is also able to induce ABA
biosynthesis through ERF transcription factors. In different species, the overexpression
of ERFs results in increased ABA content, rapid stomal closure, and enhanced abiotic
stress tolerance [101]. On the other hand, ABA inhibits ERF1 gene expression through a
negative-feedback mechanism [537]. When ABA levels are high, ethylene starts to have an
oppositive effect, inhibiting ABA-induced stomatal closure [98]: both exogenous ethylene
and the ethylene-overproducing mutant eto1-1 show a reduced ABA-induced stomatal
closure in drought-stressed arabidopsis [538]. It has been suggested that, under these
conditions, ethylene might trigger the production of flavonoids, which could decrease
NADPH oxidase activity. This would subsequently inhibit the synthesis of ROS induced
by ABA, ultimately preventing ABA-induced stomatal closure [539,540]. Ethylene also
regulates ROS metabolism by modulating antioxidant enzymes such as SOD, CAT, APX,
and GR [541,542]. Similarly, the ethylene precursor ACC induces APX, CAT, SOD, and
POX activities and reduces lipid peroxidation [543].

Despite the initial observation of water stress-induced ethylene synthesis [544], some
studies have yielded varied and sometimes contradictory results, suggesting that drought
stress either fails to increase or reduces ethylene production [545]. The ABA-induced
transcription factor ABI4 mediates the transcriptional repression of ACS4 and ACS8, re-
sulting in inhibition of ethylene biosynthesis during elevated ABA levels [98]. This is
supported by the increased ethylene production in maize and tomato mutants deficient
in ABA synthesis [546,547]. The combined ethylene–ABA stimulus results in half-open
stomata, with diminished closure compared to the effect of the individual ABA or ethy-
lene stimulus [548]. In this context, it was demonstrated that the inhibition of ethylene
biosynthesis and perception can increase stomata closure, enhancing drought tolerance.
In maize, the silencing of ACS decreases ethylene biosynthesis and improves drought
tolerance [549]. Similarly, plants with reduced ethylene sensitivity, such as arabidopsis and
maize overexpressing ARGOS genes [74] and arabidopsis mutants etr1-1 and ein2-1 [550],
showed reduced water loss through transpiration and increased drought tolerance.

Despite this, reduced stomatal conductance and transpiration are not directly asso-
ciated with drought tolerance, and the limitation of stomatal conductance is recognized
as the primary factor contributing to the reduction in photosynthesis and oxidative stress
during drought response [551–553]. Although reduced stomatal conductance leads to
lower transpiration and water loss, it also restricts the supply of CO2 for RubisCO (EC
4.1.1.39) carboxylase activity, thereby limiting photosynthesis and diverting ribulose bispho-
sphate (RuBP) to photorespiration, which is the primary source of ROS in photosynthetic
tissues [551–553]. Therefore, the regulation of ABA-induced stomatal closure, along with
the activation of the antioxidant system through the ethylene signaling, plays a central role
in ensuring an appropriate response to drought (Figure 10).
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Under moderate drought conditions, ABA can positively regulate root system archi-
tecture, increasing primary root length and root hair density through its induction of auxin
biosynthesis and transport in the primary roots [554–557]. Indeed, the knockout of the ABA
catabolic gene ABA8ox in rice [556] or the exogenous ABA application in arabidopsis [555]
increases the auxin flux towards the root, resulting in increased root length and drought
tolerance. Low concentrations of ABA also facilitate primary root growth by mitigating
PP2C-D-mediated inhibition of the apoplastic efflux of H+ through the AHA2 channel [558].
For effective hydrotropism, the ABA-induced kinase SnRK2.2 is required at the cortical cells
in the root elongation zone, where it promotes cellular elongation, allowing differential
growth [559]. On the other hand, at elevated concentrations, ABA inhibits root growth by
disrupting auxin signaling in roots, repressing genes encoding transporters responsible for
auxin translocation [560]. Taken together, these observations show that both auxin and ABA
play crucial roles in shaping the root system architecture in response to water availability.
Mild soil drying and low ABA concentrations stimulate root growth by inducing auxin
signaling. However, as drought conditions intensify, and ABA and ROS levels increase,
auxin signaling and root growth are suppressed. While this inhibition does not enhance
water absorption, it serves as an adaptive strategy during severe drought, allowing plants
to allocate resources toward preserving photosynthetic tissues, thereby maximizing their
chances of survival [561].

ABA and brassinosteroids are known to act antagonistically, balancing growth and
stress response. BIN2 kinase seems to be the central hub of this interaction since its activity
is repressed by dephosphorylation mediated by PP2Cs, a part of the central core of ABA
signaling [476,562]. Under drought conditions, the increase in ABA leads to the repression
of the PP2Cs ABI1 and ABI2. This allows BIN2 to be an active kinase, attenuating growth
responses due to the phosphorylation of BES1/BZR1 transcriptional factors, which reduces
the transcription of the brassinosteroid-induced genes related to growth [476]. On the
other hand, BIN2 also phosphorylates SnRK2s, intensifying ABA signaling [475,563]. ABA
also negatively regulates the expression of the transcriptional factors BEE1, BEE2, and
BEE3 [464].

Pioneer analyses of auxin and brassinosteroid co-regulation have demonstrated that
the signaling of both hormones converges at the promoters of shared target genes [462,564].
BES1 and BZR1 also integrate brassinosteroid signaling with other phytohormone sig-
naling, co-regulating plant growth and stress tolerance [565–568]. Promoter regions
from several transcriptional factor genes involved in light, auxin, and gibberellin sig-
naling are targets of BZR1 [460]. BES1 and BZR1 also interact with PIF and DELLA
transcriptional factors, coregulating several genes and modulating cell elongation and
photomorphogenesis [456,569–571].

The presence of jasmonic acid in the roots has been suggested as essential during water
stress to increase ABA levels [27,572]. Despite this, jasmonic acid inhibits root growth and
reduces meristem activity [573]. This inhibition appears to be mediated by the interaction
between jasmonic acid and auxin signaling [574]. Upon jasmonic acid induction, MYC2
binds to the promoters of the auxin-responsive gene PLT (PLETHORA), responsible for
stem cell niche maintenance and cell division, leading to suppression of its expression
and thereby inhibiting root meristem activity [574]. On the other hand, jasmonic acid
inhibition of root growth is negatively regulated by brassinosteroids [575], which act an-
tagonistically to jasmonic acid during plant defense [576]. The antagonistic regulation
of metabolic genes is the main feature of gibberellin and ABA interactions [574]. ABA-
deficient mutants exhibit elevated gibberellin levels, highlighting ABA’s role in suppressing
gibberellin metabolic genes (GA3ox1/2 and GA3ox1/2/3) during seed germination. Con-
versely, gibberellin-deficient mutants show increased ABA levels by upregulating ABA
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biosynthetic genes (ABA1, NCED6, and NCED9) while downregulating the ABA catabolic
gene (CYP707A2) [577,578]. Under water-limited conditions, gibberellin can inhibit ABA
biosynthesis and stomatal closure [579]. Gibberellin is also recognized to antagonize ABA
regulation of different developmental stages, including seed dormancy, seed germination,
root growth, leaf development, flowering time, and responses to environmental cues such
as light, temperature, and other abiotic stresses [580].

The gibberellin signaling appears to impair stress responses. The DELLA protein fam-
ily, which inhibits gibberellin signaling in its absence, also promotes an ABA response by
promoting the expression of the ABA transporter gene ABA-IMPORTING TRANSPORTER
1.1 (AIT1.1) in guard cells [540] and activating ABI transcription factors [581]. Trans-
genic tomato plants overexpressing the constitutively active DELLA protein procera∆17
(pro∆17) showed decreased stomatal aperture and plant transpiration; however, these
effects are suppressed in the ABA-deficient sitiens (sit) mutant, suggesting DELLA’s role
is ABA-dependent [241]. Similarly, DELLA can bind and inhibit JAZ, the central negative
regulator of jasmonic acid signaling [582]. Gibberellin-mediated degradation of DELLA
contributes to improve JAZ inhibition of jasmonate-responsive gene expression [583,584]
and jasmonate-mediated plant immune responses [585].

Despite antagonizing the stress-induced ABA and jasmonate responses, gibberellin
acts synergically to auxin, brassinosteroids, and ethylene, exerting a pivotal role in the
modulation of intricated molecular and cellular processes that allow plants to respond to
environmental conditions [239]. Gibberellin can regulate the auxin transport by inducing
the expression of the PIN-FORMED auxin transporters PIN1, PIN2, and PIN3. This mecha-
nism has an important role in gravitropism and xylogenesis [294,586]. Indeed, arabidopsis
gibberellin biosynthesis- and signaling-deficient mutants show reduced activity of PIN,
and the wild-type phenotype is restored upon exogenous gibberellin application [587].
Additionally, DELLA protein RGA interacts with and inhibits the auxin-responsible fac-
tors ARF6, ARF7, and ARF8. Gibberellin enhances the transcription of auxin response by
promoting DELLA degradation [568]. Similar mechanisms appear to allow gibberellin to
positively regulate the transcription of brassinosteroids and ethylene-responsive genes.
DELLA also regulates BES1 and BZR1 1transcription factors, which control the responses
and are activated by gibberellin via DELLA degradation [588], indicating an important
intersection between gibberellin and brassinosteroids signaling. In ethylene signaling,
the degradation of DELLA mediated by gibberellin is accompanied by the inhibition of
the stress-responsive genes AP2/ERF [239]. Additionally, gibberellin induces ethylene
biosynthesis by inducing ACS5 and ACS8 [589].

Stress-induced ABA accumulation downregulates cytokinin biosynthesis through the
MYB2 transcription factor, which relieves the repression of cytokinin signaling and activates
ABA- and stress-inducible genes [590]. Indeed, ABA and cytokinins regulate bud outgrowth
antagonistically [591]. Under drought conditions, tZ transport is impaired [592]. Key ki-
nases in the ABA signaling, such as SnRK2.2, SnRK2.3, and SnRK2.6, directly phosphorylate
several Ser residues of ARR5, a type-A ARR and inhibitor of cytokinin signaling. This
phosphorylation stabilizes the ARR5 protein, enhancing drought tolerance by suppressing
cytokinin signaling and by positively regulating ABA signaling in an SnRK2-dependent
manner [593]. Despite acting antagonistically, during biotic stress response, cytokinins
induce ROS production and stomata closure. This mechanism is not affected in the ost1-3
mutant, indicating that it occurs in an ABA-independent manner [160]. In arabidopsis,
both ABA and drought downregulate the expression of ARR1, ARR10, and ARR12 [397].
Additionally, ABA-activated ABI4 binds the promoters of ARR6, ARR7, and ARR15, further
impairing their expression [594–596]. Thus, the ABA-mediated inhibition of cytokinin
signaling can reshape the plant body by downregulating shoot growth while accelerating
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root growth. This allows the plant to reduce water loss and increase water uptake from
deeper soil layers [590].

Conversely, elevated endogenous cytokinins suppress ABA signaling, thereby influ-
encing a trade-off between growth and defense mechanisms. This reduced sensitivity to
ABA under high cytokinins levels is thought to be mediated through type-B ARRs such
as ARR1, ARR11, and ARR12, which interact directly with SnRK2s, inhibiting the kinase
activity of SnRK2.6 [593]. Indeed, AHK2, AHK3, and AHK4 defective mutants as well as
type-B ARRs ARR1, ARR10, and ARR16 exhibit higher sensitivity to ABA and display
increased resistance to drought [397,597,598]. On the other hand, the type-A ARRs ARR4,
ARR5, and ARR6 downregulate ABI5 expression, contributing to ABA response [595].

Strigolactones act as positive regulators of stress signaling networks and various ABA
signaling by regulating the expression of many stress- and ABA-responsive genes involved
in plant development and abiotic stress responses. Impaired strigolactone signal trans-
duction also leads to the downregulation of CKX genes, which are necessary for cytokinin
degradation [527]. These findings suggest that coordinated crosstalk between strigolac-
tones, ABA, and cytokinins signaling networks regulates plant adaptation to adverse
environmental conditions. Consistent with the drought-sensitive phenotype, max mutants,
which show disrupted strigolactone biosynthesis, displayed increased leaf stomatal den-
sity compared to wild-type plants and exhibited slower ABA-induced stomatal closure.
Relative to the wild type, max mutants showed a higher rate of leaf water loss during
dehydration and reduced ABA responsiveness during germination and post germination,
underscoring the role of strigolactones as positive regulators of ABA signaling [527].

12. Concluding Remarks
In summary, plant hormones play a crucial and multifaceted role in mediating plant

responses to drought stress. Unlike animal hormones, which often have a single, well-
defined function, plant hormones operate across a spectrum of functions, with their effects
depending on the interplay between different signaling. This complexity allows plants to
finely tune their responses to the timing and intensity of drought stress.

ABA is recognized as the primary regulator of drought responses, driving stomatal
closure through ROS production and optimizing root tissue patterning to minimize water
loss and enhance uptake. Ethylene complements ABA at low concentrations but opposes
its effects when ABA levels are high. Salicylic acid also supports ABA by inducing ROS-
mediated stomatal closure when ABA signaling is insufficient; jasmonates improve ABA
accumulation, aiding stomatal closure and root adaptations; and strigolactones enhance
drought tolerance by amplifying ABA responses, regulating stress-related genes, and
strengthening antioxidant defenses. In contrast, gibberellins and cytokinins counteract
ABA by suppressing stomatal closure, ROS production, and growth under stress. Auxins
and brassinosteroids act mainly in the balance between growth and stress adaptation,
optimizing root architecture and enhancing antioxidant defenses (Figure 10).

These nine classes of plant hormones interact synergistically, coordinating a com-
prehensive response to stress while balancing growth and survival. These hormones do
not function in isolation but rather through intricate networks where crosstalk between
pathways is vital. Notably, ROS often mediate these signaling, acting as key molecular
signals that integrate stress responses (Figure 10). These mechanisms are essential for
plant stress responses and occur differently depending on the intensity of the stress. In
moderate stress conditions, such as mild drought, the crosstalk between various signaling
promotes coordinated responses that enable the plant to maintain growth and adapt to
the environment, such as auxin activation to stimulate root growth (Figure 10). However,
under severe stress, like intense drought, these crosstalk mechanisms shift, prioritizing
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the preservation of photosynthetic tissues and minimizing cellular damage. The trade-off
between growth and stress response reflects the differential allocation of energy resources,
allowing the plant to prioritize survival under stress without irreversibly compromising
development (Figure 10). In this context, the interaction between different phytohormones
and ROS signaling can inhibit processes such as root growth, favoring adaptive strategies
that ensure the plant’s survival by redirecting resources to essential vital functions.

From an evolutionary perspective, the ability of plants to modulate their responses
through such diverse and interconnected hormonal signals has been crucial for their adapta-
tion to fluctuating environments. As we face increasing climatic extremes and the pressing
need to expand agricultural production to meet growing food demands, understanding
these hormonal pathways offers the potential to identify new biotechnological targets. This
knowledge is essential for developing crops with enhanced resilience to drought, ultimately
contributing to global food security and sustainable agricultural practices.
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ABP1 is crucial for its gain-of-function cellular and developmental roles. J. Exp. Bot. 2015, 66, 5055–5065. [CrossRef] [PubMed]
257. Michalko, J.; Dravecká, M.; Bollenbach, T.; Friml, J.; Ostergaard, L.; Napier, R.M.; Luschnig, C. Embryo-lethal phenotypes in early

abp1 mutants are due to disruption of the neighboring BSM gene. F1000Research 2015, 4, 1104. [CrossRef] [PubMed]
258. Gao, Y.; Zhang, Y.; Zhang, D.; Dai, X.; Estelle, M.; Zhao, Y. Auxin binding protein 1 (ABP1) is not required for either auxin

signaling or Arabidopsis development. Proc. Natl. Acad. Sci. USA 2015, 112, 2275–2280. [CrossRef] [PubMed]
259. Gelová, Z.; Gallei, M.; Pernisová, M.; Brunoud, G.; Zhang, X.; Glanc, M.; Li, L.; Michalko, J.; Pavlovičová, Z.; Verstraeten, I.; et al.
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512. Zwanenburg, B.; Pospíšil, T.; Ćavar Zeljković, S. Strigolactones: New plant hormones in action. Planta 2016, 243, 1311–1326.
[CrossRef] [PubMed]

513. Alder, A.; Jamil, M.; Marzorati, M.; Bruno, M.; Vermathen, M.; Bigler, P.; Ghisla, S.; Bouwmeester, H.; Beyer, P.; Al-Babili, S. The
path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335, 1348–1351. [CrossRef]

514. Kretzschmar, T.; Kohlen, W.; Sasse, J.; Borghi, L.; Schlegel, M.; Bachelier, J.B.; Reinhardt, D.; Bours, R.; Bouwmeester, H.J.;
Martinoia, E. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 2012, 483,
341–344. [CrossRef] [PubMed]

515. Kang, J.; Hwang, J.U.; Lee, M.; Kim, Y.Y.; Assmann, S.M.; Martinoia, E.; Lee, Y. PDR-type ABC transporter mediates cellular
uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 2010, 107, 2355–2360. [CrossRef] [PubMed]

516. Kuromori, T.; Miyaji, T.; Yabuuchi, H.; Shimizu, H.; Sugimoto, E.; Kamiya, A.; Moriyama, Y.; Shinozaki, K. ABC transporter
AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. USA 2010, 107, 2361–2366. [CrossRef]

https://doi.org/10.1105/tpc.104.027714
https://doi.org/10.1111/tpj.12265
https://www.ncbi.nlm.nih.gov/pubmed/23773129
https://doi.org/10.1242/dev.129.5.1131
https://doi.org/10.1007/s00425-014-2096-0
https://doi.org/10.1073/pnas.1411859111
https://www.ncbi.nlm.nih.gov/pubmed/25028496
https://doi.org/10.1073/pnas.1111902108
https://www.ncbi.nlm.nih.gov/pubmed/22123958
https://doi.org/10.1093/pcp/pcr176
https://www.ncbi.nlm.nih.gov/pubmed/22173099
https://doi.org/10.1038/nchembio.435
https://www.ncbi.nlm.nih.gov/pubmed/20818397
https://doi.org/10.1007/s00344-011-9228-6
https://doi.org/10.1111/gtc.12025
https://www.ncbi.nlm.nih.gov/pubmed/23301669
https://doi.org/10.1007/s00425-010-1310-y
https://doi.org/10.1111/j.1469-8137.2012.04265.x
https://doi.org/10.1007/s00425-013-1911-3
https://www.ncbi.nlm.nih.gov/pubmed/23801297
https://doi.org/10.1111/ppl.12246
https://doi.org/10.1093/mp/sss130
https://www.ncbi.nlm.nih.gov/pubmed/23155045
https://doi.org/10.1016/j.tplants.2012.10.003
https://www.ncbi.nlm.nih.gov/pubmed/23182342
https://doi.org/10.1080/15592324.2015.1110662
https://www.ncbi.nlm.nih.gov/pubmed/26515106
https://doi.org/10.1111/tpj.12488
https://www.ncbi.nlm.nih.gov/pubmed/24612082
https://doi.org/10.1007/s00425-015-2455-5
https://www.ncbi.nlm.nih.gov/pubmed/26838034
https://doi.org/10.1126/science.1218094
https://doi.org/10.1038/nature10873
https://www.ncbi.nlm.nih.gov/pubmed/22398443
https://doi.org/10.1073/pnas.0909222107
https://www.ncbi.nlm.nih.gov/pubmed/20133880
https://doi.org/10.1073/pnas.0912516107


Plants 2025, 14, 208 63 of 66

517. Yao, R.; Ming, Z.; Yan, L.; Li, S.; Wang, F.; Ma, S.; Yu, C.; Yang, M.; Chen, L.; Chen, L.; et al. DWARF14 is a non-canonical hormone
receptor for strigolactone. Nature 2016, 536, 469–473. [CrossRef] [PubMed]

518. Jiang, L.; Liu, X.; Xiong, G.; Liu, H.; Chen, F.; Wang, L.; Meng, X.; Liu, G.; Yu, H.; Yuan, Y.; et al. DWARF 53 acts as a repressor of
strigolactone signalling in rice. Nature 2013, 504, 401–405. [CrossRef]

519. Smith, S.M.; Li, J. Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 2014, 21, 23–29. [CrossRef]
[PubMed]

520. Xiong, G.; Wang, Y.; Li, J. Action of strigolactones in plants. Enzymes 2014, 35, 57–84. [CrossRef] [PubMed]
521. Stanga, J.P.; Morffy, N.; Nelson, D.C. Functional redundancy in the control of seedling growth by the karrikin signaling pathway.

Planta 2016, 243, 1397–1406. [CrossRef]
522. Duan, J.; Yu, H.; Yuan, K.; Liao, Z.; Meng, X.; Jing, Y.; Liu, G.; Chu, J.; Li, J. Strigolactone promotes cytokinin degradation

through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc. Natl. Acad. Sci. USA 2019, 116,
14319–14324. [CrossRef] [PubMed]

523. Huang, X.; Hilscher, J.; Stoger, E.; Christou, P.; Zhu, C. Modification of cereal plant architecture by genome editing to improve
yields. Plant Cell Rep. 2021, 40, 953–978. [CrossRef]

524. Okazaki, K.; Watanabe, S.; Koike, I.; Kawada, K.; Ito, S.; Nakamura, H.; Asami, T.; Shimomura, K.; Umehara, M. Strigolactone
signaling inhibition increases adventitious shoot formation on internodal segments of ipecac. Planta 2021, 253, 123. [CrossRef]
[PubMed]

525. Zhang, J.; Mazur, E.; Balla, J.; Gallei, M.; Kalousek, P.; Medved’ová, Z.; Li, Y.; Wang, Y.; Prát, T.; Vasileva, M.; et al. Strigolactones
inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Commun. 2020, 11, 3508. [CrossRef] [PubMed]

526. Asghar, S.; Xiong, Y.; Che, M.; Fan, X.; Li, H.; Wang, Y.; Xu, X.; Li, W.; Han, Z. Transcriptome analysis reveals the effects of
strigolactone on shoot regeneration of apple. Plant Cell Rep. 2022, 41, 1613–1626. [CrossRef] [PubMed]

527. Ha, C.V.; Leyva-González, M.A.; Osakabe, Y.; Tran, U.T.; Nishiyama, R.; Watanabe, Y.; Tanaka, M.; Seki, M.; Yamaguchi, S.; Dong,
N.V.; et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA 2014,
111, 851–856. [CrossRef]

528. Nisa, Z.U.; Wang, Y.; Ali, N.; Chen, C.; Zhang, X.; Jin, X.; Yu, L.; Jing, L.; Chen, C.; Elansary, H.O. Strigolactone signaling gene
from soybean GmMAX2a enhances the drought and salt-alkaline resistance in Arabidopsis via regulating transcriptional profiles
of stress-related genes. Funct. Integr. Genom. 2023, 23, 216. [CrossRef] [PubMed]

529. Mostofa, M.G.; Rahman, M.M.; Nguyen, K.H.; Li, W.; Watanabe, Y.; Tran, C.D.; Zhang, M.; Itouga, M.; Fujita, M.; Tran, L.P.
Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice
roots. J. Hazard. Mater. 2021, 415, 125589. [CrossRef]

530. Vurro, M.; Prandi, C.; Baroccio, F. Strigolactones: How far is their commercial use for agricultural purposes? Pest Manag. Sci.
2016, 72, 2026–2034. [CrossRef] [PubMed]

531. Carreon-Gonzalez, M.; Alvarez-Idaboy, J.R. The Synergy between Glutathione and Phenols-Phenolic Antioxidants Repair
Glutathione: Closing the Virtuous Circle-A Theoretical Insight. Antioxidants 2023, 12, 1125. [CrossRef]

532. Tai, Z.; Yin, X.; Fang, Z.; Shi, G.; Lou, L.; Cai, Q. Exogenous GR24 Alleviates Cadmium Toxicity by Reducing Cadmium Uptake in
Switchgrass (Panicum virgatum) Seedlings. Int. J. Environ. Res. Public Health 2017, 14, 852. [CrossRef] [PubMed]

533. Singh, A.; Roychoudhury, A. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Rep.
2023, 42, 961–974. [CrossRef]

534. Jogawat, A. Crosstalk among phytohormone signaling pathways during abiotic stress. In Molecular Plant Abiotic Stress: Biology
and Biotechnology; Roychoudhury, A., Tripathi, D., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 209–220.

535. Müller, M.; Munné-Bosch, S. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol. 2021, 185,
1500–1522. [CrossRef]

536. Desikan, R.; Last, K.; Harrett-Williams, R.; Tagliavia, C.; Harter, K.; Hooley, R.; Hancock, J.T.; Neill, S.J. Ethylene-induced stomatal
closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 2006, 47, 907–916. [CrossRef]

537. Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-
responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013,
162, 1566–1582. [CrossRef]

538. Tanaka, Y.; Sano, T.; Tamaoki, M.; Nakajima, N.; Kondo, N.; Hasezawa, S. Ethylene inhibits abscisic acid induced stomatal closure
in Arabidopsis. Plant Physiol. 2005, 138, 2337–2343. [CrossRef] [PubMed]

539. Watkins, J.M.; Hechler, P.J.; Muday, G.K. Ethylene induced favonol accumulation in guard cells suppresses reactive oxygen
species and moderates stomatal aperture. Plant Physiol. 2014, 164, 1707–1717. [CrossRef] [PubMed]

540. Watkins, J.M.; Chapman, J.M.; Muday, G.K. Abscisic acid-induced reactive oxygen species are modulated by favonols to control
stomata aperture. Plant Physiol. 2017, 175, 1807–1825. [CrossRef]

541. Rasheed, F.; Sehar, Z.; Fatma, M.; Iqbal, N.; Masood, A.; Anjum, N.A.; Khan, N.A. Involvement of ethylene in reversal of salt stress
by salicylic acid in the presence of sulfur in mustard (Brassica juncea L.). J. Plant Growth Regul. 2021, 41, 3449–3466. [CrossRef]

https://doi.org/10.1038/nature19073
https://www.ncbi.nlm.nih.gov/pubmed/27479325
https://doi.org/10.1038/nature12870
https://doi.org/10.1016/j.pbi.2014.06.003
https://www.ncbi.nlm.nih.gov/pubmed/24996032
https://doi.org/10.1016/B978-0-12-801922-1.00003-8
https://www.ncbi.nlm.nih.gov/pubmed/25740715
https://doi.org/10.1007/s00425-015-2458-2
https://doi.org/10.1073/pnas.1810980116
https://www.ncbi.nlm.nih.gov/pubmed/31235564
https://doi.org/10.1007/s00299-021-02668-7
https://doi.org/10.1007/s00425-021-03640-1
https://www.ncbi.nlm.nih.gov/pubmed/34014387
https://doi.org/10.1038/s41467-020-17252-y
https://www.ncbi.nlm.nih.gov/pubmed/32665554
https://doi.org/10.1007/s00299-022-02882-x
https://www.ncbi.nlm.nih.gov/pubmed/35680714
https://doi.org/10.1073/pnas.1322135111
https://doi.org/10.1007/s10142-023-01151-8
https://www.ncbi.nlm.nih.gov/pubmed/37391642
https://doi.org/10.1016/j.jhazmat.2021.125589
https://doi.org/10.1002/ps.4254
https://www.ncbi.nlm.nih.gov/pubmed/26869010
https://doi.org/10.3390/antiox12051125
https://doi.org/10.3390/ijerph14080852
https://www.ncbi.nlm.nih.gov/pubmed/28758909
https://doi.org/10.1007/s00299-023-03013-w
https://doi.org/10.1093/plphys/kiaa119
https://doi.org/10.1111/j.1365-313X.2006.02842.x
https://doi.org/10.1104/pp.113.221911
https://doi.org/10.1104/pp.105.063503
https://www.ncbi.nlm.nih.gov/pubmed/16024687
https://doi.org/10.1104/pp.113.233528
https://www.ncbi.nlm.nih.gov/pubmed/24596331
https://doi.org/10.1104/pp.17.01010
https://doi.org/10.1007/s00344-021-10526-9


Plants 2025, 14, 208 64 of 66

542. Fatma, M.; Iqbal, N.; Gautam, H.; Sehar, Z.; Sofo, A.; D’Ippolito, I.; Khan, N.A. Ethylene and sulfur coordinately modulate the
antioxidant system and ABA accumulation in mustard plants under salt stress. Plants 2021, 10, 180. [CrossRef] [PubMed]

543. Poór, P.; Nawaz, K.; Gupta, R.; Ashfaque, F.; Khan, M.I. Ethylene involvement in the regulation of heat stress tolerance in plants.
Plant Rep. 2021, 41, 675–698. [CrossRef]

544. McMichael, B.L.; Jordan, W.R.; Powell, R.D. An effect of water stress on ethylene production by intact cotton petioles. Plant
Physiol. 1972, 49, 658–660. [CrossRef] [PubMed]

545. Dong, Z.; Yu, Y.; Li, S.; Wang, J.; Tang, S.; Huang, R. Abscisic acid antagonizes ethylene production through the ABI4-mediated
transcriptional repression of ACS4 and ACS8 in Arabidopsis. Mol. Plant 2016, 9, 126–135. [CrossRef] [PubMed]

546. Voisin, A.S.; Reidy, B.; Parent, B.; Rolland, G.; Redondo, E.; Gerentes, D.; Tardieu, F.; Muller, B. Are ABA, ethylene or their
interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic
transformation of ABA production in maize. Plant Cell Environ. 2006, 29, 1829–1840. [CrossRef]

547. Sharp, R.E.; LeNoble, M.E.; Else, M.A.; Thorne, E.T.; Gherardi, F. Endogenous ABA maintains shoot growth in tomato indepen-
dently of effects on plant water balance: Evidence for an interaction with ethylene. J. Exp. Bot. 2000, 51, 1575–1584. [CrossRef]
[PubMed]

548. Nazareno, A.L.; Hernandez, B.S. A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on
stomatal closure in plants. PLoS ONE 2017, 12, e0171065. [CrossRef] [PubMed]

549. Habben, J.E.; Bao, X.; Bate, N.J.; DeBruin, J.L.; Dolan, D.; Hasegawa, D.; Helentjaris, T.G.; Lafitte, R.H.; Lovan, N.; Mo, H.;
et al. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant
Biotechnol. J. 2014, 12, 685–693. [CrossRef] [PubMed]

550. Tholen, D.; Pons, T.L.; Voesenek, L.A.C.J.; Poorter, H. The role of ethylene perception in the control of photosynthesis. Plant Signal.
Behav. 2008, 3, 108–109. [CrossRef] [PubMed]

551. Da Silva, J.M.; Arrabaça, M.C. Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with
both rapidly and slowly imposed water deficits. Physiol. Plant. 2004, 121, 409–420. [CrossRef]

552. Xu, Z.; Zhou, G.; Shimizu, H. Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J. Exp.
Bot. 2009, 60, 3737–3749. [CrossRef]

553. Jardim-Messeder, D.; Caverzan, A.; Rauber, R.; Cunha, J.R.; Carvalho, F.E.L.; Gaeta, M.L.; Da Fonseca, G.C.; Costa, J.M.; Frei,
M.; Silveira, J.A.G.; et al. Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.).
Environ. Exp. Bot. 2018, 150, 46–56. [CrossRef]

554. Xu, W.; Jia, L.; Shi, W.; Liang, J.; Zhou, F.; Li, Q.; Zhang, J. Abscisic acid accumulation modulates auxin transport in the root tip to
enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 2013, 197, 139–150. [CrossRef]

555. Xie, Q.; Essemine, J.; Pang, X.; Chen, H.; Cai, W. Exogenous application of abscisic acid to shoots promotes primary root cell
division and elongation. Plant Sci. 2020, 292, 110385. [CrossRef]

556. Zhang, Y.; Wang, X.; Luo, Y.; Zhang, L.; Yao, Y.; Han, L.; Chen, Z.; Wang, L.; Li, Y. OsABA8ox2, an ABA catabolic gene, suppresses
root elongation of rice seedlings and contributes to drought response. Crop J. 2020, 8, 480–491. [CrossRef]

557. Zhang, Y.; Du, H.; Gui, Y.; Xu, F.; Liu, J.; Zhang, J.; Xu, W. Moderate water stress in rice induces rhizosheath formation associated
with abscisic acid and auxin responses. J. Exp. Bot. 2021, 71, 2740–2751. [CrossRef] [PubMed]

558. Miao, R.; Yuan, W.; Wang, Y.; Garcia-Maquilon, I.; Dang, X.; Li, Y.; Zhang, J.; Zhu, Y.; Rodriguez, P.L.; Xu, W. Low ABA
concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma
membrane H+-ATPase 2. Sci. Adv. 2021, 7, eabd4113. [CrossRef]

559. Aslam, M.; Sugano, S.S.; Takahashi, H. Hydrotropism in plants: Mechanisms and biological significance. Plant Cell Environ. 2022,
45, 315–327. [CrossRef]

560. Qin, H.; Wang, J.; Zhou, J.; Qiao, J.; Li, Y.; Quan, R.; Huang, R. Abscisic acid promotes auxin biosynthesis to inhibit primary root
elongation in rice. Plant Physiol. 2023, 191, 1953–1967. [CrossRef] [PubMed]

561. Blum, A. Plant Breeding for Water-Limited Environments; Springer: New York, NY, USA, 2011; pp. 217–234.
562. Umezawa, T.; Nakashima, K.; Miyakawa, T.; Kuromori, T.; Tanokura, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular

basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant Cell Physiol. 2010, 51, 1821–1839.
[CrossRef] [PubMed]

563. Wang, H.; Wang, X. GSK3-like Kinases Are a Class of Positive Components in the Core ABA Signaling Pathway. Mol. Plant 2018,
11, 761–763. [CrossRef]

564. Tang, X.; Wang, C.; Liu, Y.; He, G.; Ma, N.; Chai, G.; Li, S.; Xu, H.; Zhou, G. Brassinosteroid Signaling Converges With
Auxin-Mediated C3H17 to Regulate Xylem Formation in Populus. Front. Plant Sci. 2020, 11, 586014. [CrossRef] [PubMed]

565. Zheng, B.; Bai, Q.; Wu, L.; Liu, H.; Liu, Y.; Xu, W.; Li, G.; Ren, H.; She, X.; Wu, G. EMS1 and BRI1 control separate biological
processes via extracellular domain diversity and intracellular domain conservation. Nat. Commun. 2019, 10, 4165. [CrossRef]
[PubMed]

https://doi.org/10.3390/plants10010180
https://www.ncbi.nlm.nih.gov/pubmed/33478097
https://doi.org/10.1007/s00299-021-02675-8
https://doi.org/10.1104/pp.49.4.658
https://www.ncbi.nlm.nih.gov/pubmed/16658022
https://doi.org/10.1016/j.molp.2015.09.007
https://www.ncbi.nlm.nih.gov/pubmed/26410794
https://doi.org/10.1111/j.1365-3040.2006.01560.x
https://doi.org/10.1093/jexbot/51.350.1575
https://www.ncbi.nlm.nih.gov/pubmed/11006308
https://doi.org/10.1371/journal.pone.0171065
https://www.ncbi.nlm.nih.gov/pubmed/28182683
https://doi.org/10.1111/pbi.12172
https://www.ncbi.nlm.nih.gov/pubmed/24618117
https://doi.org/10.4161/psb.3.2.4968
https://www.ncbi.nlm.nih.gov/pubmed/19704724
https://doi.org/10.1111/j.1399-3054.2004.00328.x
https://doi.org/10.1093/jxb/erp216
https://doi.org/10.1016/j.envexpbot.2018.02.012
https://doi.org/10.1111/nph.12004
https://doi.org/10.1016/j.plantsci.2019.110385
https://doi.org/10.1016/j.cj.2019.08.006
https://doi.org/10.1093/jxb/eraa021
https://www.ncbi.nlm.nih.gov/pubmed/32053723
https://doi.org/10.1126/sciadv.abd4113
https://doi.org/10.1111/pce.14123
https://doi.org/10.1093/plphys/kiac586
https://www.ncbi.nlm.nih.gov/pubmed/36535001
https://doi.org/10.1093/pcp/pcq156
https://www.ncbi.nlm.nih.gov/pubmed/20980270
https://doi.org/10.1016/j.molp.2018.03.019
https://doi.org/10.3389/fpls.2020.586014
https://www.ncbi.nlm.nih.gov/pubmed/33193536
https://doi.org/10.1038/s41467-019-12112-w
https://www.ncbi.nlm.nih.gov/pubmed/31519884


Plants 2025, 14, 208 65 of 66

566. Chen, W.; Lv, M.; Wang, Y.; Wang, P.A.; Cui, Y.; Li, M.; Wang, R.; Gou, X.; Li, J. BES1 is activated by EMS1-TPD1-SERK1/2-mediated
signaling to control tapetum development in Arabidopsis thaliana. Nat. Commun. 2019, 10, 4164. [CrossRef]

567. Cai, H.; Huang, Y.; Liu, L.; Zhang, M.; Chai, M.; Xi, X.; Aslam, M.; Wang, L.; Ma, S.; Su, H.; et al. Signaling by the EPFL-
ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. Plant Cell 2023, 35, 1455–1473.
[CrossRef] [PubMed]

568. Cao, X.; Wei, Y.; Shen, B.; Liu, L.; Mao, J. Interaction of the Transcription Factors BES1/BZR1 in Plant Growth and Stress Response.
Int. J. Mol. Sci. 2024, 25, 6836. [CrossRef] [PubMed]

569. Gallego-Bartolomé, J.; Minguet, E.G.; Grau-Enguix, F.; Abbas, M.; Locascio, A.; Thomas, S.G.; Alabadí, D.; Blázquez, M.A.
Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc. Natl.
Acad. Sci. USA 2012, 109, 13446–13451. [CrossRef]

570. Li, Q.F.; Wang, C.; Jiang, L.; Li, S.; Sun, S.S.; He, J.X. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk
between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 2012, 5, ra72. [CrossRef]

571. Oh, E.; Zhu, J.Y.; Wang, Z.Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat.
Cell Biol. 2012, 14, 802–809. [CrossRef]

572. De Ollas, C.; Hernando, B.; Arbona, V.; Gómez-Cadenas, A. Jasmonic acid transient accumulation is needed for abscisic acid
increase in citrus roots under drought stress conditions. Physiol. Plant. 2013, 147, 296–306. [CrossRef] [PubMed]

573. Jang, G.; Chang, S.H.; Um, T.Y.; Lee, S.; Kim, J.K.; Choi, Y. Do Antagonistic interaction between jasmonic acid and cytokinin in
xylem development. Sci. Rep. 2017, 7, 10212. [CrossRef]

574. Chen, Q.; Sun, J.; Zhai, Q.; Zhou, W.; Qi, L.; Xu, L.; Wang, B.; Chen, R.; Jiang, H.; Qi, J.; et al. The basic helix-loop-helix
transcription factor myc2 directly represses plethora expression during jasmonate-mediated modulation of the root stem cell
niche in Arabidopsis. Plant Cell 2011, 23, 3335–3352. [CrossRef]

575. Ren, C.; Han, C.; Peng, W.; Huang, Y.; Peng, Z.; Xiong, X.; Zhu, Q.; Gao, B.; Xie, D. A leaky mutation in DWARF4 reveals
an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol. 2009, 151,
1412–1420. [CrossRef]

576. Nahar, K.; Kyndt, T.; Hause, B.; Höfte, M.; Gheysen, G. Brassinosteroids suppress rice defense against root-knot nematodes
through antagonism with the jasmonate pathway. Mol. Plant. Microbe Interact. 2013, 26, 106–115. [CrossRef] [PubMed]

577. Liu, X.; Hou, X. Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. Front. Plant Sci. 2018, 9, 251.
[CrossRef] [PubMed]

578. Oh, E.; Yamaguchi, S.; Hu, J.H.; Yusuke, J.; Jung, B.; Paik, I.; Lee, H.S.; Sun, T.P.; Kamiya, Y.; Choi, G. PIL5, a phytochrome-
interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis
seeds. Plant Cell 2007, 19, 1192–1208. [CrossRef]

579. Seo, M.; Hanada, A.; Kuwahara, A.; Endo, A.; Okamoto, M.; Yamauchi, Y.; Nambara, E. Regulation of hormone metabolism in
Arabidopsis seeds: Phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.
Plant J. 2006, 48, 354–366. [CrossRef] [PubMed]

580. Du, H.; Chang, Y.; Huang, F.; Xiong, L. GID1 modulates stomatal response and submergence tolerance involving abscisic acid
and gibberellic acid signaling in rice. J. Integr. Plant Biol. 2015, 57, 954–968. [CrossRef] [PubMed]

581. Finkelstein, R.R.; Lynch, T.J. Overexpression of ABI5 Binding Proteins Suppresses Inhibition of Germination Due to Overaccumu-
lation of DELLA Proteins. Int. J. Mol. Sci. 2022, 23, 5537. [CrossRef] [PubMed]

582. Hou, X.; Lee, L.Y.; Xia, K.; Yan, Y.; Yu, H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 2010,
19, 884–894. [CrossRef]

583. Cao, D.; Cheng, H.; Wu, W.; Soo, H.M.; Peng, J. Gibberellin mobilizes distinct DELLA dependent transcriptomes to regulate seed
germination and floral development in Arabidopsis. Plant Physiol. 2006, 142, 509–525. [CrossRef]

584. Hou, X.; Hu, W.W.; Shen, L.; Lee, L.Y.; Tao, Z.; Han, J.H.; Yu, H. Global identification of DELLA target genes during Arabidopsis
flower development. Plant Physiol. 2008, 147, 1126–1142. [CrossRef]

585. Navarro, L.; Bari, R.; Achard, P.; Lison, P.; Nemri, A.; Harberd, N.P.; Jones, J.D. DELLAs control plant immune responses by
modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 2008, 18, 650–655. [CrossRef] [PubMed]

586. Yuan, H.; Zhao, L.; Guo, W.; Yu, Y.; Tao, L.; Zhang, L.; Song, X.; Huang, W.; Cheng, L.; Chen, J.; et al. Exogenous application of
phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii × P. nigra. Int. J.
Mol. Sci. 2019, 20, 792. [CrossRef]

587. Willige, B.C.; Isono, E.; Richter, R.; Zourelidou, M.; Schwechheimer, C. Gibberellin regulates PIN-FORMED abundance and
is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 2011, 23, 2184–2195.
[CrossRef] [PubMed]

588. Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Interactions of Gibberellins with Phytohormones and Their Role in Stress
Responses. Horticulturae 2022, 8, 241. [CrossRef]

https://doi.org/10.1038/s41467-019-12118-4
https://doi.org/10.1093/plcell/koad032
https://www.ncbi.nlm.nih.gov/pubmed/36748257
https://doi.org/10.3390/ijms25136836
https://www.ncbi.nlm.nih.gov/pubmed/38999944
https://doi.org/10.1073/pnas.1119992109
https://doi.org/10.1126/scisignal.2002908
https://doi.org/10.1038/ncb2545
https://doi.org/10.1111/j.1399-3054.2012.01659.x
https://www.ncbi.nlm.nih.gov/pubmed/22671923
https://doi.org/10.1038/s41598-017-10634-1
https://doi.org/10.1105/tpc.111.089870
https://doi.org/10.1104/pp.109.140202
https://doi.org/10.1094/MPMI-05-12-0108-FI
https://www.ncbi.nlm.nih.gov/pubmed/23194343
https://doi.org/10.3389/fpls.2018.00251
https://www.ncbi.nlm.nih.gov/pubmed/29535756
https://doi.org/10.1105/tpc.107.050153
https://doi.org/10.1111/j.1365-313X.2006.02881.x
https://www.ncbi.nlm.nih.gov/pubmed/17010113
https://doi.org/10.1111/jipb.12313
https://www.ncbi.nlm.nih.gov/pubmed/25418692
https://doi.org/10.3390/ijms23105537
https://www.ncbi.nlm.nih.gov/pubmed/35628355
https://doi.org/10.1016/j.devcel.2010.10.024
https://doi.org/10.1104/pp.106.082289
https://doi.org/10.1104/pp.108.121301
https://doi.org/10.1016/j.cub.2008.03.060
https://www.ncbi.nlm.nih.gov/pubmed/18450451
https://doi.org/10.3390/ijms20030792
https://doi.org/10.1105/tpc.111.086355
https://www.ncbi.nlm.nih.gov/pubmed/21642547
https://doi.org/10.3390/horticulturae8030241


Plants 2025, 14, 208 66 of 66

589. Gallego-Bartolomé, J.; Arana, M.V.; Vandenbussche, F.; Žádníková, P.; Minguet, E.G.; Guardiola, V.; Van Der Straeten, D.; Benkova,
E.; Alabadí, D.; Blázquez, M.A. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J. 2011,
67, 622–634. [CrossRef]

590. Li, W.; Herrera-Estrella, L.; Tran, L.P. The Yin-Yang of Cytokinin Homeostasis and Drought Acclimation/Adaptation. Trends Plant
Sci. 2016, 21, 548–550. [CrossRef]

591. Corot, A.; Roman, H.; Douillet, O.; Autret, H.; Perez-Garcia, M.D.; Citerne, S.; Bertheloot, J.; Sakr, S.; Leduc, N.; Demotes-Mainard,
S. Cytokinins and Abscisic Acid Act Antagonistically in the Regulation of the Bud Outgrowth Pattern by Light Intensity. Front.
Plant Sci. 2017, 8, 1724. [CrossRef]

592. Davies, W.J.; Kudoyarova, G.; Hartung, W. Long-Distance ABA Signaling and Its Relation to Other Signaling Pathways in the
Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. J. Plant Growth Regul. 2005, 24, 285–295. [CrossRef]

593. Huang, X.; Hou, L.; Meng, J.; You, H.; Li, Z.; Gong, Z.; Yang, S.; Shi, Y. The Antagonistic Action of Abscisic Acid and Cytokinin
Signaling Mediates Drought Stress Response in Arabidopsis. Mol. Plant 2018, 11, 970–982. [CrossRef] [PubMed]

594. Jeon, J.; Kim, N.Y.; Kim, S.; Kang, N.Y.; Novák, O.; Ku, S.J.; Cho, C.; Lee, D.J.; Lee, E.J.; Strnad, M.; et al. A Subset of Cytokinin
Two-Component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. J. Biol. Chem. 2010, 285,
23371–23386. [CrossRef] [PubMed]

595. Wang, Y.; Li, L.; Ye, T.; Zhao, S.; Liu, Z.; Feng, Y.Q.; Wu, Y. Cytokinin Antagonizes ABA Suppression to Seed Germination of
Arabidopsis by Downregulating ABI5 Expression. Plant J. 2011, 68, 249–261. [CrossRef]

596. Huang, X.; Zhang, X.; Gong, Z.; Yang, S.; Shi, Y. ABI4 Represses the Expression of Type-A ARRs to Inhibit Seed Germination in
Arabidopsis. Plant J. 2017, 89, 354–365. [CrossRef] [PubMed]

597. Tran, L.S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Role of Cytokinin Responsive Two-Component System in ABA and Osmotic
Stress Signaling. Plant Signal. Behav. 2010, 5, 148–150. [CrossRef]

598. Tran, L.S.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional Analysis of
AHK1/ATHK1 and Cytokinin Receptor Histidine Kinases in Response to Abscisic Acid, Drought, and Salt Stress in Arabidopsis.
Proc. Natl. Acad. Sci. USA 2007, 104, 20623–20628. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/j.1365-313X.2011.04621.x
https://doi.org/10.1016/j.tplants.2016.05.006
https://doi.org/10.3389/fpls.2017.01724
https://doi.org/10.1007/s00344-005-0103-1
https://doi.org/10.1016/j.molp.2018.05.001
https://www.ncbi.nlm.nih.gov/pubmed/29753021
https://doi.org/10.1074/jbc.M109.096644
https://www.ncbi.nlm.nih.gov/pubmed/20463025
https://doi.org/10.1111/j.1365-313X.2011.04683.x
https://doi.org/10.1111/tpj.13389
https://www.ncbi.nlm.nih.gov/pubmed/27711992
https://doi.org/10.4161/psb.5.2.10411
https://doi.org/10.1073/pnas.0706547105
https://www.ncbi.nlm.nih.gov/pubmed/18077346

	Introduction 
	Abscisic Acid 
	Abscisic Acid Metabolism 
	Abscisic Acid Signaling 
	Abscisic Acid and ROS on Drought Response 

	Ethylene 
	Ethylene Metabolism 
	Ethylene Signaling 
	Ethylene and ROS on Drought Response 

	Salicylic Acid 
	Salicylic Acid Metabolism 
	Salicylic Acid Signaling 
	Salicylic Acid and ROS on Drought Response 

	Jasmonic Acid 
	Jasmonic Acid Metabolism 
	Jasmonic Acid Signaling 
	Jasmonic Acid and ROS on Drought Response 

	Gibberellins 
	Gibberellins Metabolism 
	Gibberellins Signaling 
	Gibberellins and ROS on Drought Response 

	Auxin 
	Auxin Metabolism 
	Auxin Signaling 
	Auxin and ROS on Drought Response 

	Cytokinin 
	Cytokinin Metabolism 
	Cytokinin Signaling 
	Cytokinin and ROS on Drought Response 

	Brassinosteroids 
	Brassinosteroids Metabolism 
	Brassinosteroids Signaling 
	Brassinosteroids and ROS on Drought Response 

	Strigolactones 
	Strigolactones Metabolism 
	Strigolactones Signaling 
	Strigolactones and ROS on Drought Response 

	Phytohormones Crosstalk During Drought Response 
	Concluding Remarks 
	References

