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Abstract: Fractional Vegetation Cover (FVC) and Land Surface Temperature (LST) are
critical indicators for assessing grassland ecosystems. Based on global remote sensing data
for FVC and LST from 2001 to 2022, this study employs the Mann–Kendall trend test and
Spearman correlation analysis to explore the dynamic changes in and spatial distribution
patterns of both variables. The results indicate that the FVC is increasing in regions such
as Europe, the eastern southern Sahara, western India, eastern South America, western
and southern North America, and central China. However, it is decreasing in southern
Canada, the central United States, and northern Australia. Significant increases in LST
are observed in subarctic regions and the Tibetan Plateau, attributed to polar warming
effects associated with global climate change. Conversely, the LST is decreasing in central
China, eastern coastal Australia, and southern Africa. The global FVC–LST relationship
exhibits the following four distinct spatial distribution patterns: (1) FVC increase and LST
increase (Type 1), (2) FVC increase and LST decrease (Type 2), (3) FVC decrease and LST
increase (Type 3), and (4) FVC decrease and LST decrease (Type 4). Type 1, covering 33.72%,
is primarily found in high-latitude and high-altitude areas, such as subarctic regions and
the Tibetan Plateau. Type 2, the largest group (46.98%), is mainly located in eastern North
America, eastern South America, and southern Africa. Type 3, which comprises 18.72%, is
concentrated in arid and semi-arid regions, while Type 4, representing only 0.59%, lacks
clear spatial distribution patterns.

Keywords: MODIS; grassland ecosystems; Fractional Vegetation Cover (FVC); Land Surface
Temperature (LST)

1. Introduction
The ramifications of global climate change for ecosystems, especially in highly sensitive

grassland ecosystems, where its impact is notably pronounced, have attracted considerable
attention [1–3]. Covering approximately 20% of the global terrestrial surface, grasslands
play a pivotal role in regulating the global carbon cycle and mitigating climate change [4–6].
Two key indicators of ecosystem status, Fractional Vegetation Cover (FVC) and Land Sur-
face Temperature (LST), can effectively reflect the responses of and changes in grassland
ecosystems in the context of global warming [7,8]. FVC indicates the state of vegetation
growth and the greenness of ecosystems [9,10], while changes in LST directly affect soil
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moisture, evapotranspiration, and plant physiological functions [11]. Investigating the
dynamic relationship between FVC and LST not only helps to reveal the response mecha-
nisms of grassland ecosystems to climate change, but also provides scientific evidence for
climate adaptation and ecological conservation.

Variations in FVC exhibit substantial temporal and spatial disparities across diverse
global ecosystems. In China’s Loess Plateau, there was a notable enhancement in the
overall vegetation coverage from 2000 to 2016, with a marked surge between 2009 and
2016, witnessing a 14.16% rise compared to the period from 2000 to 2007. Nevertheless,
this progression was not consistently distributed; the northern regions experienced a
significant escalation in vegetation coverage, while parts of the northwest displayed a
decline [12]. In the Qinghai–Tibet Plateau, spanning from 2017 to 2022, the overarching
trend in vegetation coverage demonstrated a gradual ascent from west to east and from
north to south. However, these changes were relatively subdued, with greater coverage in
the southeast and diminished coverage in the northwest [13]. On a global scale, prominent
alterations in grassland FVC were observed between 2001 and 2018, especially in specific
areas of East Africa, South America, and Australia [14]. Humid and semi-humid regions
typically present elevated FVC values, whereas arid and semi-arid regions display lower
and more variable FVC values [15].

LST changes are a key indicator in the context of global climate change, and research
in this field has become increasingly in-depth in recent years. Li et al. explored the lasting
stability of LST changes influenced by climate change [16]. Some scholars believe that
anthropogenic halogenated greenhouse gases are the main reason for the global warming
hiatus from 2000 to 2015 and the recent rise in the global LST [17]. On a regional scale,
Munawar et al. conducted research on LST changes in New Guinea Island, where the
LST increased by 0.012 ◦C per decade from 2000 to 2019, but there were variations among
subregions, with a significant decrease in the northwest and a significant increase in the
south [18]. Another study focused on the Gomishan region of Iran, showing that the
average LST reached about 42.5 ◦C in 2017, a significant increase from 33.8 ◦C in 1987 [19].

While regional and short-term studies have yielded insights into the relationship
between FVC and LST, their limited scope constrains their applicability. For instance, early
research in the grasslands of northeastern Kansas, USA, revealed a significant negative
correlation between LST and the Normalized Difference Vegetation Index (NDVI), indicat-
ing that vegetation cover substantially influences LST [20]. In the Tibetan Plateau, satellite
data analysis showed that forest expansion during dormant seasons reduced the LST [21].
Research on shrub encroachment demonstrated that changes in LST vary by regional con-
ditions. Generally, LST increases in the semi-arid grasslands of the northern temperate
zone but decreases in the humid regions of the southwestern United States [22]. On the
global scale, studies analyzing the relationship between Green Vegetation Fraction and LST
further revealed the impact of vegetation photosynthesis rates and water use efficiency on
LST [23]. Long-term data analysis has been crucial in understanding the relationship be-
tween vegetation and temperature dynamics. For example, a long-term LST analysis from
2003 to 2017 based on the MODIS and ERA5 datasets showed a significant warming trend
in northern latitudes. This was mainly caused by solar radiation and atmospheric longwave
radiation [24]. In temperate grassland research, the asymmetric effects of daytime and
nighttime temperature changes on vegetation coverage were revealed. Nighttime warming
promotes FVC more effectively than daytime warming [25]. A subtropical spatiotemporal
analysis of FVC from 2001 to 2018 confirmed significant growth trends that were closely
related to precipitation and minimum temperatures, indicating regional differences in
climate effects on vegetation dynamics [26].
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In summary, while previous research has primarily centered on regional scales and
short-term observations, yielding insights into the relationships between FVC and LST
within specific ecosystems, their limited spatial and temporal scopes have constrained
a comprehensive understanding of the long-term dynamics between FVC and LST. Ad-
dressing this limitation, our study adopts a global perspective on grassland ecosystems,
leveraging a dataset that spans from 2001 to 2022. Through the application of Mann–
Kendall trend analysis and Spearman correlation analysis, we aim to rigorously examine
the trends and spatial distribution differences in FVC and LST changes. This investigation
not only presents a novel exploration of the interrelationship between FVC and LST across
global grasslands but also contributes vital insights for grassland management and the
formulation of climate change adaptation strategies.

2. Results
2.1. Trend Variation

Figures 1 and 2 illustrate the distribution characteristics of the Mann–Kendall Z (MK-
Z) and TS slope of FVC in global grasslands from 2001 to 2022. From a global perspective,
significant geographical distribution differences are observed in the MK-Z (p < 0.05) and
TS slope (p < 0.05) of FVC.

Plants 2025, 14, x FOR PEER REVIEW 3 of 19 
 

 

growth trends that were closely related to precipitation and minimum temperatures, in-
dicating regional differences in climate effects on vegetation dynamics [26]. 

In summary, while previous research has primarily centered on regional scales and 
short-term observations, yielding insights into the relationships between FVC and LST 
within specific ecosystems, their limited spatial and temporal scopes have constrained a 
comprehensive understanding of the long-term dynamics between FVC and LST. Ad-
dressing this limitation, our study adopts a global perspective on grassland ecosystems, 
leveraging a dataset that spans from 2001 to 2022. Through the application of Mann–Ken-
dall trend analysis and Spearman correlation analysis, we aim to rigorously examine the 
trends and spatial distribution differences in FVC and LST changes. This investigation not 
only presents a novel exploration of the interrelationship between FVC and LST across 
global grasslands but also contributes vital insights for grassland management and the 
formulation of climate change adaptation strategies. 

2. Results 
2.1. Trend Variation 

Figures 1 and 2 illustrate the distribution characteristics of the Mann–Kendall Z (MK-
Z) and TS slope of FVC in global grasslands from 2001 to 2022. From a global perspective, 
significant geographical distribution differences are observed in the MK-Z (p < 0.05) and 
TS slope (p < 0.05) of FVC. 

 

Figure 1. Per−pixel Mann−Kendall Z value of FVC from 2001 to 2022. 

 

Figure 2. Per−pixel TS slope value of FVC from 2001 to 2022. 

FVC’s TS slope and MK-Z trends demonstrate similar patterns across various re-
gions. In Europe, the eastern part of the southern Sahara Desert, eastern South America, 

Figure 1. Per−pixel Mann−Kendall Z value of FVC from 2001 to 2022.

Plants 2025, 14, x FOR PEER REVIEW 3 of 19 
 

 

growth trends that were closely related to precipitation and minimum temperatures, in-
dicating regional differences in climate effects on vegetation dynamics [26]. 

In summary, while previous research has primarily centered on regional scales and 
short-term observations, yielding insights into the relationships between FVC and LST 
within specific ecosystems, their limited spatial and temporal scopes have constrained a 
comprehensive understanding of the long-term dynamics between FVC and LST. Ad-
dressing this limitation, our study adopts a global perspective on grassland ecosystems, 
leveraging a dataset that spans from 2001 to 2022. Through the application of Mann–Ken-
dall trend analysis and Spearman correlation analysis, we aim to rigorously examine the 
trends and spatial distribution differences in FVC and LST changes. This investigation not 
only presents a novel exploration of the interrelationship between FVC and LST across 
global grasslands but also contributes vital insights for grassland management and the 
formulation of climate change adaptation strategies. 

2. Results 
2.1. Trend Variation 

Figures 1 and 2 illustrate the distribution characteristics of the Mann–Kendall Z (MK-
Z) and TS slope of FVC in global grasslands from 2001 to 2022. From a global perspective, 
significant geographical distribution differences are observed in the MK-Z (p < 0.05) and 
TS slope (p < 0.05) of FVC. 

 

Figure 1. Per−pixel Mann−Kendall Z value of FVC from 2001 to 2022. 

 

Figure 2. Per−pixel TS slope value of FVC from 2001 to 2022. 

FVC’s TS slope and MK-Z trends demonstrate similar patterns across various re-
gions. In Europe, the eastern part of the southern Sahara Desert, eastern South America, 
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FVC’s TS slope and MK-Z trends demonstrate similar patterns across various regions.
In Europe, the eastern part of the southern Sahara Desert, eastern South America, western
and southern North America, and central China, FVC exhibits an increasing trend. In
contrast, in southern Canada, the central United States, and northern Australia, a decreasing



Plants 2025, 14, 439 4 of 18

trend of FVC appears in a scattered pattern, while its declining trend in West Africa
and central Asia is relatively concentrated. In the Americas, the increase in FVC is not
prominent, with a TS slope ranging from 0.0010 to 0.0030, while major increase areas
are concentrated in central Brazil and Mexico, where the TS slope ranges from 0.0050 to
0.0110. In Europe, areas with notable FVC increases are mainly located on the northern
shore of the Mediterranean, with a TS slope ranging from 0.0045 to 0.0078. In Africa,
the southern part of the Sahara Desert shows a slight increase in FVC, with a TS slope
ranging from 0.0015 to 0.0032, while in southern Africa and areas around South Sudan,
FVC increases are more pronounced, with a TS slope ranging from 0.0035 to 0.0082. In Asia,
a particularly significant FVC increase is observed in East Asia, especially central China,
with a TS slope ranging from 0.0058 to 0.0118. Similar increases are seen in southeastern
Australia, although on a smaller scale, with a TS slope ranging from 0.0035 to 0.0088. In
contrast, northern Australia shows localized decreases in FVC, with a TS slope ranging from
−0.0014 to −0.0032. In the Americas, areas of FVC decline are dispersed, with a TS slope
ranging from −0.0017 to −0.0061. In Africa, FVC decline regions are both concentrated
and scattered, encompassing central areas like Ghana and Nigeria (TS slope ranging from
−0.0012 to −0.0028), eastern regions like Somalia, Kenya, and Tanzania (TS slope ranging
from −0.0025 to −0.0048), and southern areas like Angola and Madagascar (TS slope
ranging from −0.0028 to −0.0056). Central Asia, especially Kazakhstan and its surrounding
areas, exhibits the largest concentration of FVC decline, with a TS slope ranging from
−0.0014 to −0.0031.

Figures 3 and 4 display the distributions of Mann–Kendall Z (MK-Z) and the Theil–Sen
(TS) slope for LST from 2001 to 2022. Overall, there are significant geographical distribution
differences in the MK-Z (p < 0.05) and TS slope (p < 0.05) of LST globally.
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A large positive MK-Z and TS slope (TS slopes ranging from 0.18 to 0.26) are found
across northern Asia, particularly near the Arctic Ocean, where LST has increased by
at least 3.96 ◦C over the last two decades. Significant increasing trends in LST are also
observed along the Eurasian–African continental boundary (TS slopes ranging 0.08 to
0.24). Furthermore, a large increasing trend is noticed over parts of central southern Africa
and central South America, and small to moderate increases are observed in northeastern
Canada and the western United States.

Notably, the Tibetan Plateau in China shows a significant rise in LST, with TS slopes
ranging from 0.10 to 0.17. On the other hand, some regions, including the Andes Mountains
in South America, the southern Sahara Desert in Africa, the Indian subcontinent, central
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China, and eastern Australia, display negative MK-Z values and TS slopes, indicating a
relative decline in LST in these areas. Regions with more significant temperature declines
(TS slope < −0.20) are represented in deep blue in Figure 4.
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Comparing the trends in FVC and LST shows that there are often region-specific
associations between the variables. For example, in central South America, central southern
Africa, and Southeast Asia, both FVC’s MK-Z and TS slope are positive, indicating an
increase in vegetation cover. In these regions, LST tends to show negative or relatively
stable trends. This suggests a decoupling of vegetation and temperature increases, where
vegetation expansion does not correspond to a rise in temperature.

In contrast, in northern Asia, the Tibetan Plateau, and the southernmost part of the
Andes Mountains, both FVC’s MK-Z and TS slope are positive, and LST’s MK-Z and TS
slope are also positive. This indicates that, in these areas, the increase in vegetation cover
aligns with the rise in LST, exhibiting a consistent spatial distribution of both trends.

Considering these observations, it is imperative to investigate the correlation between
FVC and LST. This will enhance our understanding of the interplay between vegetation
changes and temperature variations across distinct regions.

2.2. Correlation Analysis

Figure 5 shows the spatial distribution of the Spearman correlation coefficients
(p < 0.05) between FVC and LST, addressing the issue of the correlation between their
trend changes. Different colors in the figure denote both the magnitude and direction of the
correlation coefficient. Green indicates a positive correlation, where the trends of FVC and
LST increase or decrease together, which typically occurs in high-latitude and high-altitude
regions. Pink represents a negative correlation, suggesting that the trends of FVC and LST
are opposite, and this is mainly distributed in tropical and subtropical regions, particularly
in the central and eastern parts of South America, eastern and southern Africa, Australia,
and the Indian subcontinent.

In order to more effectively delineate the spatial distributions of the varying increasing
and decreasing trends in FVC and LST, the combinations of FVC and LST growth directions
were categorized into the following four distinct classifications (Figure 6): FVC increase
and LST increase (Type 1); FVC increase and LST decrease (Type 2); FVC decrease and LST
increase (Type 3); and FVC decrease and LST decrease (Type 4).
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and LST.

Figure 7 illustrates the data distribution patterns for FVC_TS slope, LST_TS slope,
Spearman correlation, Elevation, and Latitude_abs. Additionally, it depicts the proportion
of each type. As shown in the proportion subplot of Figure 7, Type 2 has the highest
proportion, accounting for 46.98%, while Type 4 has the lowest proportion, at only 0.59%.
Types 1 and 3 account for 33.72% and 18.72%, respectively.
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Table 1. Distribution of data under different increasing and decreasing trends of FVC and LST.

Trend
Type

FVC_TS Slope LST_TS Slope Spearman Correlation Elevation (m) Latitude_abs
(◦)

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 0.002322 0.001219 0.121369 0.080988 0.649541 0.390623 2198.14 1805.94 55.27 20.84

2 0.004002 0.002200 −0.072790 0.057298 −0.625784 0.211534 859.98 806.06 24.45 13.63

3 −0.003213 0.002747 0.121344 0.072349 −0.665806 0.159668 586.37 644.62 21.00 15.07

4 −0.003450 0.004297 −0.110851 0.144191 0.079621 0.556339 835.98 1056.23 26.74 18.83

3. Data and Methods
3.1. Data Sources and Preprocessing
3.1.1. Data Sources

The data for this study were primarily obtained through the Google Earth Engine
(GEE) platform. GEE provides convenient cloud computing resources and a rich repository
of remote sensing datasets, enabling large-scale spatiotemporal analyses. The specific
datasets selected for this study are listed in Table 2.

Table 2. Overview of remote sensing dataset information.

Data Type GEE Product Number Minimum Resolution (m) Obtain Time Range

NDVI MODIS/006/MOD13Q1 250 2001–2022
Landcover MODIS/061/MCD12Q1 500 2001–2022

LST MODIS/061/MOD11A1 1000 2001–2022
DEM COPERNICUS/DEM/GLO30 30 -

The datasets used in this study include the MODIS NDVI (https://lpdaac.usgs.
gov/products/mod13q1v061/, accessed on 26 July 2024), LST (https://lpdaac.usgs.gov/

https://lpdaac.usgs.gov/products/mod13q1v061/
https://lpdaac.usgs.gov/products/mod13q1v061/
https://lpdaac.usgs.gov/products/mod11a1v061/
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products/mod11a1v061/, accessed on 11 August 2024), Landcover (https://lpdaac.usgs.
gov/products/mcd12q1v061/, accessed on 31 July 2024), and the Digital Elevation
Model (DEM, https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-
contributing-missions/collections-description/COP-DEM, accessed on 16 August 2024).
These datasets span the period from 2001 to 2022 and have varying spatial resolutions
ranging from 30 m to 1000 m.

Preprocessing steps were applied to the downloaded data to ensure their quality and
usability. These steps included resampling all data to a 1000 m resolution (each pixel
covered an area of 1 km2 of the ground, or 1000 m × 1000 m), coordinate registration, cloud
cover removal, and data reprojection. The representativeness and limitations of the datasets
were considered in the analysis, and detailed descriptions of the data preprocessing steps,
quality, and accuracy assessments are provided in the manuscript. Furthermore, all ethical
and legal standards were adhered to throughout the study.

3.1.2. Preprocessing

In the data preprocessing process of this study, the identification of grassland extent
was based on the MODIS Landcover. Specifically, we extracted the spatial distributions
of grassland cover types for each year from 2001 to 2022, and subsequently overlaid the
grassland distribution layers for all years. Through overlay and frequency analysis, areas
where grassland appeared more than 5 times or continuously existed for more than 3 years
at the same coordinate points were designated as the grassland mask. This approach helped
to exclude interference from short-term natural phenomena or human activities that could
affect grassland identification, thus enhancing the robustness of the results and providing
reliable spatial base data for subsequent grassland-related analysis. Based on this mask,
the spatial ranges of NDVI, LST, and DEM for each year were further extracted to reduce
the subsequent computational workload.

FVC was calculated using NDVI. NDVI, a commonly used indicator of vegetation
growth status, ranges from −1 to +1 and can effectively reflect the health and growth
condition of vegetation. To convert NDVI values into FVC values, an empirical formula-
based method (Equation (1)) [19] was applied, which mapped NDVI values to the FVC
range through a linear relationship. As a variable that more directly reflects vegetation
cover, FVC provides more accurate and meaningful results.

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(1)

where NDVImin values corresponding to bare soil are close to 0, while NDVImax values for
fully vegetated areas approach 1. However, remote sensing images are often affected by
noise. Therefore, the minimum and maximum values of NDVI correspond to confidence
intervals that should be selected based on specific conditions. In this study, the 5th and
95th percentiles of the lower and higher NDVI values, respectively, were chosen [27].

After completing the data clipping, a normality test was performed on the FVC and
LST data for the period from 2001 to 2022 to ensure statistical validity for the regions used
in subsequent analyses. Given the large dataset, the D’Agostino’s K-squared test [28] (also
known as the D’Agostino–Pearson test) was selected. This method is widely used to assess
whether data conform to the normal distribution assumption. D’Agostino’s K-squared test
combines information about the skewness and kurtosis of the data to evaluate the degree
of deviation of the sample data. Skewness measures the symmetry of the data distribution,
while kurtosis measures the sharpness or flatness of the distribution. By examining these
two statistical measures together, this test provides a comprehensive assessment of whether
the data follow a normal distribution.
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Since the data consisted of large-scale raster information, to improve computational
efficiency and ensure test representativeness, 1,000,000 random pixel points were selected
from each raster file for the normality test. This approach ensured that data processing
efficiency was maintained while providing a sufficiently large statistical sample size to
guarantee the reliability of the normality test results. The test results showed that both the
FVC and LST data did not follow a normal distribution (p < 0.01), providing the basis for
the selection of subsequent methods.

3.2. Trend Test and Estimator

The Mann–Kendall (MK) trend test and the Theil–Sen (TS) estimator are commonly
used non-parametric methods for time series data analysis. They serve different purposes,
but are often used together in trend analysis [29,30].

The MK trend test is designed to identify significant upward or downward trends in a
time series without making assumptions about the specific form of data distribution. This
test detects trends by assessing the signs of the differences between every pair of values in
the sequence, and calculates the significance of the trend, typically presented in the form
of a standardized statistic (Z-value). Specifically, a positive Z-value indicates an upward
trend, while a negative Z-value indicates a downward trend. By standardizing the trend
statistic into a Z-value, the significance of the trend can be evaluated. If the Z-value exceeds
the critical value (p < 0.05), the trend is considered to be statistically significant [31,32]. The
calculation of the Z-value is shown as follows:

The MK test determines the existence of trends at different time scales by calculating
the MK statistic (S) (Equations (2) and (3)), as follows:

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(
xi − xj

)
(2)

sgn
(
xi − xj

)
=


−1, xi − xj < 0
0, xi − xj = 0
1, xi − xj > 0

(3)

where xi and xj represent data points at time i and j (i > j) and n is the total number of
data points.

To quantify the significance of the trend from a statistical perspective, it is necessary
to compute the probability related to S and the sample size nnn. For n ≥ 10, the statistic S
is approximately normally distributed, with its mean and variance given by the following
Equation (4):

Var(S) =
n(n − 1)(2n + 5)− ∑

g
p=1 tp

(
tp − 1

)(
2tp + 5

)
18

(4)

where n represents the number of data points, g is the number of sample datasets with the
same value, and tp is the number of data points in the p-th group. For more details, refer to
reference [33].

The standardized Z test statistic is calculated using Equation (5), as follows:

Z =


S−1√
Var (S)

, S > 0

0, S = 0
S+1√
Var (S)

, S < 0
(5)

While the MK test elucidates the direction and significance of trends within data,
it does not directly quantify the intensity or rate of change of these trends. To address
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this limitation, the Theil–Sen (TS) estimator was developed. This estimator calculates
the median of all possible slope values for pairs of data points (Equation (6)), thereby
estimating the overall rate of change of the trend. Notably, the TS estimator is characterized
by its robustness, particularly when dealing with outliers in data. By effectively mitigating
the influence of outliers, it offers a more precise estimation of the trend slope compared to
traditional linear regression methods [34,35].

TS slope = Median

(
xi − xj

ti − tj

)
(6)

where xi and xj represent the data values at times ti and tj (i > j).
The combination of the MK test and the TS estimator enhances the reliability of trend

analysis, allowing for the revelation of the trend directions in time series data and the
quantification of their rates of change. This combination enabled us to identify significant
trends and estimate their specific rates of change, thereby providing a more comprehensive
trend analysis. The MK test provides insight into the significance of the trend, while
the TS estimator furnishes a quantitative slope estimate for the trend’s progression. This
combination is particularly apt for time series data that deviate from a normal distribution
and include outliers.

3.3. Correlation Test

In this study, to systematically assess the relationship between FVC and LST, we em-
ployed the Spearman correlation test. Spearman correlation is a rank-based non-parametric
statistical method that calculates the correlations between variables by ranking the ob-
served values, and it does not rely on the assumption of normality of data [36]. Unlike
Pearson correlation, Spearman correlation is more robust when dealing with non-normal
distributions, nonlinear relationships, or data with outliers, making it advantageous for
handling the complexity of ecological data [37].

The Spearman correlation test allows for identifying the monotonic relationship be-
tween FVC and LST, which does not necessarily have to be linear, but rather assesses the
trend between the ranks of the two variables. The correlation coefficient ranges from −1 to
+1, where +1 indicates a perfect positive correlation, −1 indicates a perfect negative corre-
lation, and values close to 0 suggest no significant correlation between the two variables.
Specifically, we used Spearman correlation to explore the association between FVC and
LST under different trend conditions, thereby revealing the potential ecological linkages
between vegetation cover and LST change patterns.

4. Discussion
This study analyzes the MK-Z, TS slope, and Spearman correlation of the FVC and LST

in global grasslands from 2001 to 2022, revealing the trends and significance of global FVC
and LST changes. The findings reveal that FVC and LST demonstrate substantial differences
in geographical distribution across the world. These disparities may be attributed to a
multitude of factors, such as climate change, human activities, and dynamic changes in
natural ecosystems.

4.1. Analysis of Regional Change Trends

From the content of Figures 1–4, it can be seenn that in Europe, the eastern region of
the southern Sahara Desert, western India, eastern South America, western and southern
North America, and central China, there is an observed increasing trend in FVC. Along the
comparatively arid southern edge of the Sahara Desert, the effects of climate warming on
LST trends remain ambiguous. Although the FVC has significantly declined in the western
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part of this region, there was a slight increase noted in the eastern part. Prior research has
proposed that the decrease in FVC in the Sahel (the southern edge of the Sahara Desert) is
due to reduced precipitation [7], a proposition that exhibits spatial inconsistency with our
analysis. Furthermore, some studies have challenged the assertion that Sahel desertification
can be solely attributed to decreased precipitation [38]. In some regions, FVC growth may be
primarily attributed to large-scale ecological restoration and vegetation protection policies.
For instance, measures implemented in China, such as the Grain for Green Program and
ecological compensation initiatives, have facilitated grassland restoration and an increased
FVC [39,40]. Similar efforts towards vegetation restoration and land conservation have been
undertaken in numerous European countries to mitigate climate change and prevent soil
degradation [41]. Additionally, in much of Europe, rising temperatures have allowed for
the influx of moisture from the Mediterranean, creating favorable conditions for vegetation
growth [42]. In some areas with appropriate climatic conditions, the ecosystem itself has a
strong self-recovery capability, and FVC can be gradually restored, even without human
activities. For instance, the western and southern parts of North America, characterized
by relatively stable climate conditions and abundant water resources, enable the rapid
recovery of grasslands from disasters [43,44].

In contrast, FVC showed a decreasing trend in southern Canada, the central United
States (Great Plains region), and northern Australia (tropical grasslands and savanna
regions), where the dominant causes were land use changes. The expansion of agriculture
is the main driver of land use changes in southern Canada and central United States, leading
to a reduction in natural grasslands and, consequently, a low FVC [45]. Similar land use
transitions have occurred in northern Australia, where resource development activities may
have further diminished grassland cover [46]. Additionally, northern Australia frequently
experiences droughts driven by climate change, directly resulting in sparse grassland
resources [47]. Extreme weather events such as wildfires and floods, which are becoming
more frequent and severe in these regions, pose a challenge for the steady recovery of
grassland ecosystems [48].

There were notable LST increases in northern Asia (Siberian tundra region), the
boundary region between the Eurasian and African plates, eastern Africa, and central South
America. In northern Asia, particularly in the area around the Arctic Ocean, the prominent
temperature increase is closely related to global-warming-induced polar amplification (or
Arctic amplification) [49,50]. This phenomenon has accelerated the rate of warming in
high-latitude regions and exacerbated permafrost degradation, resulting in substantial
carbon release and further LST increases [51,52]. In certain regions, such as eastern Africa
and central South America, human-induced ecosystem changes have also contributed to
the observed LST rise [53,54].

4.2. Analysis of Spatial Difference

Figure 8 shows the trends of changes in the average FVC and LST over time for
significantly changed grasslands from 2001 to 2022. Overall, the global average FVC and
LST show an increasing trend, with FVC showing a better linear trend (R2 = 0.9067) than
LST, which has a greater variability (R2 = 0.2597).

Figure 9 shows the time series of FVC and LST under different trend types, and
intuitively shows the corresponding regression equations and R2 values of the four different
trend types. The FVC under different trend types and the FVC of globally significant
changing grasslands both have a good linear relationship, with R2 ≥ 0.8950. In contrast, the
LST under different trend types shows a better linear fit with the LST of globally significant
changing grasslands, with R2 ≥ 0.5787, even reaching 0.8961 under Type 3 conditions
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(decreasing FVC and increasing LST). This also indicates that, under certain conditions,
more refined classification conditions can capture more accurate changes.
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Among the four types of FVC and LST trends, Type 2 (FVC increase and LST decrease)
accounts for the largest proportion, primarily distributed in the temperate grasslands of
eastern North and South America, savannas of southern Africa, grasslands of central Asia,
and tropical grasslands of northern Australia. Over the past two decades, these regions
have experienced an average FVC increase of 8.80% ± 4.48% (p < 0.05) and an average
LST decrease of 1.60 ◦C ± 1.26 ◦C (p < 0.05). Strong evidence supports the hypothesis that
the LST reduction in these regions has been driven by the feedback regulation from the
increased FVC (Spearman correlation = −0.63 ± 0.21). Research indicates that a surge in
FVC typically results in a reduction in LST by amplifying latent heat flux (transpiration).
This process is facilitated by the enhancement of surface roughness and conductivity,
subsequently fostering turbulent flux dissipation. Nevertheless, this cooling impact might
diminish in regions with limited water resources [55]. In low-latitude regions with sufficient
water availability, an increase in FVC tends to result in a decrease in LST [56]. Hence, in
Type 2 regions, especially those with tropical and subtropical humid climates, ecological
restoration initiatives should prioritize maintaining an adequate water supply to guarantee
successful vegetation rehabilitation.

The impact of FVC on LST in arid regions may differ from that in humid regions [8].
While a strong negative correlation is also observed (Spearman correlation = −0.67 ± 0.16),
these areas are predominantly characterized by a decreasing FVC and increasing LST (Type
3). Such regions are mainly distributed in deserts and their surrounding areas, including
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the North American deserts, the Patagonian Desert, the Sahara Desert, the Turkestan
Desert, the Taklamakan Desert, and the Australian deserts. Over the past two decades,
these areas have experienced an average FVC decrease of 7.07% ± 6.04% (p < 0.05) and
an average LST increase of 2.67 ◦C ± 1.59 ◦C (p < 0.05). Previous studies have indicated
that an FVC decrease might cause a surface albedo decrease, and, thus, increase LST.
At the same time, a decline in FVC might also cause a vegetation transpiration and soil
evaporation decrease, leading to a surface moisture supply decrease, which might further
affect LST [57,58]. Global-scale analyses by Duveiller et al. and Lian et al. emphasized
the impact of vegetation changes on the surface energy balance, identifying the decline
in vegetation cover in arid regions as a critical factor contributing to LST increases [59,60].
Moreover, studies have revealed that urban vegetation might reduce LST via shading and
transpiration, thus playing a role in alleviating the urban heat island effect, which indicates
that, in arid regions, an FVC decrease might also cause a transpiration decrease, and, thus,
lead to a higher LST [61].

Type 1 (FVC increase and LST increase) exhibits distinct spatial characteristics, consis-
tent with the findings of Myneni et al. in the late 20th century [62]. Vegetation growth in
these regions is primarily concentrated in high-latitude (Latitude_abs = 55.27◦ ± 20.84◦)
and high-altitude (Elevation = 2198.14 m ± 1805.94 m) areas, including northern Asia,
northern North America, and the Qinghai–Tibet Plateau. This spatial pattern has been
confirmed by many studies, which believe that the greening of the Arctic caused by climate
warming and the increasing concentration of CO2 can absorb more solar radiation, thus
increasing the LST and forming a positive feedback mechanism that may intensify climate
warming [63–65]. This phenomenon is reflected in the northward expansion of Arctic
grasslands and boreal forests, supported by studies from Stow et al. [66] and Pearson
et al. [67]. In the pan-third-pole region, permafrost degradation may increase surface water
availability and greenhouse gas emissions, influencing vegetation growth. Simultaneously,
LST increases extend the vegetation growing season [68,69]. However, due to the spatial
heterogeneity of climate change in the Qinghai–Tibet Plateau, FVC and LST changes may
exhibit varied patterns across regions [70,71], aligning with the findings of this study. Al-
though the FVC generally increased across the third pole, certain areas, such as central Asia
and Russia, showed a decline in FVC, highlighting that the trend of an increasing FVC is
not uniform across all regions [72].

Type 4, characterized by a decreased FVC and a decreased LST, represents a mere
0.59% of global grasslands. This pattern is largely influenced by seasonal variations [73],
ecosystem transitions (e.g., grasslands transitioning into shrublands), and human activities,
with no discernible correlation between FVC and LST. While FVC showed an increasing
trend in 80.69% of global grasslands, this trend remains unstable in high-latitude and
high-altitude regions. Furthermore, degraded grasslands account for 19.31% of the global
grassland area over the past two decades, highlighting the persistent issue of desertification.
In these areas, the LST primarily exhibits an upward trajectory, potentially exacerbating the
desertification process.

4.3. Analysis of Accuracy

When calculating the grassland range, the maximum area where grassland has ap-
peared more than five times or has existed continuously for more than 3 years at the
same coordinate point from 2001 to 2022 was used as the grassland range, ignoring the
dynamic process of the grassland. This calculation often makes the grassland range not
very accurate.

The analysis of FVC and LST trends primarily relies on remote sensing data, which
may be limited by data quality and resolution. The annual mean NDVI and LST used
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in this study were calculated by averaging monthly data for each year to assess global
trends in FVC and LST changes. Although cloud masking algorithms were employed, the
influence of dense cloud cover remained unavoidable. Additionally, factors such as snow
cover, atmospheric aerosols, and extreme weather events often cause monthly NDVI and
LST values to deviate from their standard values [74], potentially affecting the observed
trends. Other disturbances, such as forest fires, floods, droughts, volcanic eruptions, and
human activities, also impact the development of NDVI and LST trends [75]. However,
this study did not account for these factors. Moreover, the analysis exclusively relied on
spatial data of annual mean FVC and LST, which may overlook the impact of seasonal
variations [76].

In arid and semi-arid regions, where the vegetation cover density is low, the surface
reflectance is relatively high, resulting in NDVI values that are lower than their actual
values. Consequently, the FVC trends in these areas may be influenced by unaccounted soil
reflectance [29]. Additionally, factors such as soil moisture, atmospheric conditions, and
biodiversity, which could affect FVC and LST, were not considered in this study. Future
research should integrate a wider range of data and methodologies to achieve a more
comprehensive understanding of FVC and LST trends and their driving mechanisms.

The algorithms used in this study, including Mann–Kendall trend analysis and Spear-
man correlation, were applied uniformly across all regions. However, their applicability
in high-altitude areas may be influenced by the unique climatic and ecological conditions.
For example, the accuracy of LST retrieval algorithms can be affected by snow and ice
cover, while FVC measurements may be less reliable in areas with sparse vegetation. These
factors could introduce uncertainties in the results for regions like the Tibetan Plateau or
the Andes.

5. Summary and Conclusions
This study leveraged long-term remote sensing data (2001–2022) to scrutinize the

trends and interrelationships between FVC and LST in global grassland ecosystems. The
Mann–Kendall trend test and Spearman correlation analysis were employed as analytical
tools. The findings reveal a marked spatial heterogeneity, with the trends of FVC and LST
exhibiting regional variations.

On a global scale, both the FVC and LST trends exhibited regional differentiation.
There was an increase in the FVC across eastern Eurasia, eastern South America, western
and southern North America, and central China. Conversely, a decrease was observed
in southern Canada, the central United States, and northern Australia. In terms of LST,
warming trends were prevalent in North Asia, the Qinghai–Tibet Plateau, central and
southern South America, and Africa. However, cooling trends were evident in the Andes,
southern Sahara, and eastern Australia. Overall, both the global FVC and LST were on the
rise, with FVC displaying a more pronounced linear trend (R2 = 0.9067) compared to LST
(R2 = 0.2597).

Based on the observed trends, global grasslands were classified into the following
four distinct categories: Type 1 (increased FVC and increased LST), Type 2 (increased FVC
and decreased LST), Type 3 (decreased FVC and increased LST), and Type 4 (decreased
FVC and decreased LST). Time series analysis indicated that FVC exhibited a robust linear
trend (R2 ≥ 0.8950), while the linear trend of LST showed an improved consistency within
these classified regions (R2 ≥ 0.5785). This suggests that more refined classifications offer
superior insights into the observed changes.

Among the four types, Type 2 accounted for the largest proportion (46.98%) and was
mainly distributed across the temperate grasslands of eastern North and South America,
savannas of southern Africa, central Asia, and northern Australia, where FVC increased
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and latent heat flux, transpiration, and surface roughness were enhanced, thus reducing
LST. Type 3 accounted for 18.72% of the total area and was mainly distributed in arid
areas such as North American deserts, the Sahara, and Australian deserts, where a low
FVC weakened transpiration and increased LST. Type 1 accounted for 33.72% of the total
area and was mainly distributed in high-latitude and high-altitude regions (e.g., North
Asia, northern North America, and the Qinghai–Tibet Plateau), where increased vegetation
growth intensified LST warming. Type 4 had the smallest area (0.59%) and was mainly
affected by seasonal variation; this type showed no significant correlation between FVC
and LST.

Future research should concentrate on the enduring effects of climate change on
grasslands and emerging ecological challenges. Important areas to explore include
feedback mechanisms between vegetation cover, surface temperature, and climate
variability—particularly the impact of permafrost degradation in high-latitude regions
on ecosystem stability. Incorporating seasonal variations and extreme weather events is
vital for understanding both short-term fluctuations and long-term trends. In regions where
water resources are limited, integrating precipitation and soil moisture data will enhance
our understanding of the factors influencing vegetation dynamics and surface tempera-
ture changes. This knowledge is critical for developing water conservation strategies and
drought-resistant crop plans, thus mitigating the effects of water scarcity on grasslands.
For high-altitude regions, tactics to mitigate surface warming from permafrost degradation
should prioritize promoting vegetation cover to boost insulation, reduce soil erosion, and
manage greenhouse gas emissions from thawing permafrost.
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