Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea mays L.) Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Plants and Growth Conditions
2.2. Plant Biomass Measurements
2.3. Determination of Antioxidant Enzymes Activity
2.4. Determination of Lipid Peroxidation
2.5. Determination of Membrane Stability Index
2.6. Tissues Nitrogen and Phosphorus Determination
2.7. Atomic Absorption Spectrometric Measurements
2.8. Statistical Analysis
3. Results
3.1. Growth of Maize Hybrids
3.2. Antioxidant Enzymes Activity
3.3. Membrane Stability Index and Malondialdehyde Contents
3.4. Nutrient Concentration in Tissues and Root to Shoot Translocation
3.5. Plant Tissues Nickel Concentration, Uptake, and Root to Shoot Translocation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gajewska, E.; Skłodowska, M. Nickel-induced changes in nitrogen metabolism in wheat shoots. J. Plant Physiol. 2009, 166, 1034–1044. [Google Scholar] [CrossRef]
- Fabiano, C.; Tezotto, T.; Favarin, J.L.; Polacco, J.C.; Mazzafera, P. Essentiality of nickel in plants: A role in plant stresses. Front. Plant Sci. 2015, 6, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreekanth, T.; Nagajyothi, P.; Lee, K.; Prasad, T. Occurrence, physiological responses and toxicity of nickel in plants. Int. J. Environ. Sci. Technol. 2013, 10, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Brake, S.; Jensen, R.; Mattox, J. Effects of nickel amended soils on tomato plants. Plant Soil 2004, 54, 860–869. [Google Scholar]
- Gad, N.; El-Sherif, M.; El-Gereedly, A. Influence of nickel on some physiological aspects of tomato plants. Aust. J. Basic Appl. Sci. 2007, 1, 286–293. [Google Scholar]
- Brown, P.H.; Welch, R.M.; Madison, J.T. Effect of nickel deficiency on soluble anion, amino acid, and nitrogen levels in barley. Plant Soil 1990, 125, 19–27. [Google Scholar] [CrossRef]
- Ali, B.; Hayat, S.; Fariduddin, Q.; Ahmad, A. Nickel: Essentiality, Toxicity and Tolerance in Plants; Nickel in Relation to Plants; Narosa Publishing House: New Delhi, India, 2009; pp. 73–80. [Google Scholar]
- McIlveen, W.D.; Negusanti, J.J. Nickel in the terrestrial environment. Sci. Total Environ. 1994, 148, 109–138. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000; p. 245. [Google Scholar]
- Zwolsman, J.J.G.; Van Bokhoven, A.J. Impact of summer droughts on water quality of the Rhine River-a preview of climate change? Water Sci. Tech. 2007, 56, 45–55. [Google Scholar] [CrossRef]
- Chen, C.; Huang, D.; Liu, J. Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean Soil Air Water 2009, 37, 304–313. [Google Scholar] [CrossRef]
- de Queiroz Barcelos, J.P.; de Souza Osorio, C.R.W.; Leal, A.J.F.; Alves, C.Z.; Santos, E.F.; Reis, H.P.G.; dos Reis, A.R. Effects of foliar nickel (Ni) application on mineral nutrition status, urease activity and physiological quality of soybean seeds. Aust. J. Crop Sci. 2017, 11, 184. [Google Scholar] [CrossRef]
- Sheoran, I.; Aggarwal, N.; Singh, R. Effects of cadmium and nickel on in vivo carbon dioxide exchange rate of Pigeon pea (Cajanus cajan L.). Plant Soil 1990, 129, 243–249. [Google Scholar] [CrossRef]
- Pandey, N.; Pathak, G. Nickel alters antioxidative defense and water status in green gram. Ind. J. Plant Physiol. 2006, 11, 113. [Google Scholar]
- Gajewska, E.; Bernat, P.; Długoński, J.; Skłodowska, M. Effect of nickel on membrane integrity, lipid peroxidation and fatty acid composition in wheat seedlings. J. Agron. Crop Sci. 2012, 198, 286–294. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, R.; Dubey, R. Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Reg. 2009, 59, 37–49. [Google Scholar] [CrossRef]
- Gopal, R.; Nautiyal, N. Growth, antioxidant enzymes activities, and proline accumulation in mustard due to nickel. Int. J. Veg. Sci. 2012, 18, 223–234. [Google Scholar] [CrossRef]
- Amjad, M.; Akhtar, J.; Haq, M.; Riaz, M.; Jacobsen, S.-E. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes. Pak. J. Agric. Sci. 2014, 51, 969–976. [Google Scholar]
- Gautam, S.; Pandey, S. Growth and biochemical responses of nickel toxicity on leguminous crop (Lens esculentum) grown in alluvial soil. Res. Environ. Life Sci. 2008, 1, 25–28. [Google Scholar]
- Georgiadou, E.C.; Kowalska, E.; Patla, K.; Kulbat, K.; Smolińska, B.; Leszczyńska, J.; Fotopoulos, V. Influence of heavy metals (Ni, Cu, and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Front Plant Sci. 2018, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Myśliwa-Kurdziel, B.; Prasad, M.N.V.; Strzałka, K. Photosynthesis in heavy metal stressed plants. In Prasad MNV(ed) Heavy Metal Stress in Plants: From Biomolecules to Ecosystems; Springer: Berlin, Germany, 2004; pp. 146–181. [Google Scholar]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef]
- Athar, R.; Ahmad, M. Heavy metal toxicity in legume-microsymbiont system. J. Plant Nutr. 2002, 25, 369–386. [Google Scholar] [CrossRef]
- Pillay, S.V.; Rao, V.; Rao, K. Effect of nickel toxicity in Hyptis suareeolens (L.) Poit. and Helianthus annuus L. Ind. J. Plant Physiol. 1996, 1, 153–156. [Google Scholar]
- El-Shintinawy, F.; El-Ansary, A. Differential effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedlings. Biol. Plantar. 2000, 43, 79–84. [Google Scholar] [CrossRef]
- Baccouch, S.; Chaoui, A.; El Ferjani, E. Nickel toxicity induces oxidative damage in Zea mays roots. J. Plant Nutr. 2001, 24, 1085–1097. [Google Scholar] [CrossRef]
- Pandey, N.; Sharma, C.P. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci. 2002, 163, 753–758. [Google Scholar] [CrossRef]
- Ameen, N.; Amjad, M.; Murtaza, B.; Abbas, G.; Shahid, M.; Imran, M.; Asif, M.A.; Niazi, N.K. Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environ. Sci. Poll. Res. 2019, 26, 10496–10514. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Gupta, A.S.; Heinen, J.L.; Holaday, A.S.; Burke, J.J.; Allen, R.D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 1993, 90, 1629–1633. [Google Scholar] [CrossRef] [Green Version]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; pp. 121–126. [Google Scholar]
- Amako, K.; Chen, G.-X.; Asada, K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 1994, 35, 497–504. [Google Scholar]
- Sairam, R.K.; Rao, K.V.; Srivastava, G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Smeets, K.; Cuypers, A.; Lambrechts, A.; Semane, B.; Hoet, P.; Van Laere, A.; Vangronsveld, J. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol. Biochem. 2005, 43, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.; Akhtar, J.; Murtaza, B.; Abbas, G.; Jawad, H. Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Horti. Environ. Biotech. 2016, 57, 248–258. [Google Scholar] [CrossRef]
- Buresh, R.J.; Austin, E.R. Direct measurement of dinitrogen and nitrous oxide flux in flooded rice fields. Soil Sci. Soci. Am. J. 1988, 52, 681–688. [Google Scholar] [CrossRef]
- Jones, D.; Smith, B.F.L.; Wilson, M.J.; Goodman, B.A. Phosphate solubilizing fungi in a Scottish upland soil. Mycol. Res. 1991, 95, 1090–1903. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West, Asia and North Africa Region; ICARDA: Beirut, Lebanon, 2013. [Google Scholar]
- Ain, Q.; Akhtar, J.; Amjad, M.; Haq, M.; Saqib, Z. Effect of Enhanced Nickel Levels on Wheat Plant Growth and Physiology under Salt Stress. Comm. Soil Sci. Plant Anal. 2016, 47, 2538–2546. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Rea, E.; Colla, G.J.E.; Botany, E. Grafting of cucumber as a means to minimize copper toxicity. Environ. Exper. Bot. 2008, 63, 49–58. [Google Scholar] [CrossRef]
- Gratão, P.L.; Monteiro, C.C.; Carvalho, R.F.; Tezotto, T.; Piotto, F.A.; Peres, L.E.; Azevedo, R.A. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol. Biochem. 2012, 56, 79–96. [Google Scholar] [CrossRef]
- Feroza, K.; Rosa, M. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar]
- Pandey, S.; Gautam, S. Effect of nickel stress on growth and physiological responses of Trigonella foenum-graecum L. plants grown in Gomati upland alluvial soil of Lucknow. Ind. Botan. Soci. 2009, 88, 1–3. [Google Scholar]
- Peters, L.P.; Carvalho, G.; Martins, P.F.; Dourado, M.; Vilhena, M.B.; Pileggi, M.; Azevedo, R.A.J.P. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS ONE 2014, 9, e112271. [Google Scholar] [CrossRef] [PubMed]
- Sengar, R.; Gupta, S.; Gautam, M.; Sharma, A.; Sengar, K. Occurrence, uptake, accumulation and physiological responses of nickel in plants and its effects on environment. Res. J. Phytochem. 2008, 2, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Sheetal, K.; Singh, S.; Anand, A.; Prasad, S. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Ind. J. Plant Physiol. 2016, 21, 219–223. [Google Scholar] [CrossRef]
- Gonçalves, M.T.; Gonçalves, S.C.; Portugal, A.; Silva, S.; Sousa, J.P.; Freitas, H. Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representatives of two trophic levels. Plant Soil 2007, 293, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Palacios, G.; Gomez, I.; Carbonell-Barrachina, A.; Pedreño, J.N.; Mataix, J. Effect of nickel concentration on tomato plant nutrition and dry matter yield. J. Plant Nut. 1998, 21, 2179–2191. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
Ni Concentration | Hybrids | Shoot Fresh Weight (g) Mean ± S.E. | Root Fresh Weight (g) Mean ± S.E. | Shoot Dry Weight (g) Mean ± S.E. | Root Dry Weight (g) Mean ± S.E. | Shoot Length (cm) Mean ± S.E. | Root Length (cm) Mean ± S.E. |
---|---|---|---|---|---|---|---|
0 mg L−1 | Syngenta | 3.28 ± 0.26 a | 2.26 ± 0.24 a | 0.316 ± 0.019 b | 0.135 ± 0.018 a | 38.6 ± 0.95 a | 31.6 ± 0.75 a |
Pioneer | 2.64 ± 0.12 b | 2.33 ± 0.11 a | 0.388 ± 0.002 a | 0.139 ± 0.012 a | 37.6 ± 1.55 a | 32.5 ± 3.30 a | |
20 mg L−1 | Syngenta | 2.16 ± 0.12 (66) c | 2.13 ± 0.21 (94) ab | 0.239 ± 0.016 (76) d | 0.104 ± 0.009 (77) b | 33.1 ± 1.64 (86) b | 27.7 ± 1.44 (88) b |
Pioneer | 2.50 ± 0.05 (95) bc | 2.00 ± 0.13 (86) abc | 0.351 ± 0.013 (90) c | 0.131 ± 0.005 (94) ab | 35.7 ± 1.61 (96) ab | 28.8 ± 1.80 (89) b | |
40 mg L−1 | Syngenta | 1.31 ± 0.06 (40) e | 1.50 ± 0.05 (66) bc | 0.190 ± 0.005 (60) f | 0.094 ± 0.007 (70) c | 30.4 ± 1.78 (79) c | 24.2 ± 0.92 (77) c |
Pioneer | 1.72 ± 0.02 (65) d | 1.65 ± 0.08 (71) c | 0.272 ± 0.017 (70) e | 0.111 ± 0.010 (80) abc | 31.1 ± 3.40 (83) bc | 26.0 ± 3.07 (80) bc | |
p-value | Ni | 0.0000 | 0.0018 | 0.0000 | 0.0132 | 0.0012 | 0.2104 |
MH | 0.0253 | 0.0357 | 0.0263 | 0.0345 | 0.0282 | 0.3312 | |
Ni x MH | 0.0047 | 0.0772 | 0.0001 | 0.0425 | 0.1532 | 0.2461 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amjad, M.; Raza, H.; Murtaza, B.; Abbas, G.; Imran, M.; Shahid, M.; Naeem, M.A.; Zakir, A.; Iqbal, M.M. Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea mays L.) Hybrids. Plants 2020, 9, 5. https://doi.org/10.3390/plants9010005
Amjad M, Raza H, Murtaza B, Abbas G, Imran M, Shahid M, Naeem MA, Zakir A, Iqbal MM. Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea mays L.) Hybrids. Plants. 2020; 9(1):5. https://doi.org/10.3390/plants9010005
Chicago/Turabian StyleAmjad, Muhammad, Hasan Raza, Behzad Murtaza, Ghulam Abbas, Muhammad Imran, Muhammad Shahid, Muhammad Asif Naeem, Ali Zakir, and Muhammad Mohsin Iqbal. 2020. "Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea mays L.) Hybrids" Plants 9, no. 1: 5. https://doi.org/10.3390/plants9010005
APA StyleAmjad, M., Raza, H., Murtaza, B., Abbas, G., Imran, M., Shahid, M., Naeem, M. A., Zakir, A., & Iqbal, M. M. (2020). Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea mays L.) Hybrids. Plants, 9(1), 5. https://doi.org/10.3390/plants9010005