The Effect of Organic Mulching and Irrigation on the Weed Species Composition and the Soil Weed Seed Bank of Tomato
Abstract
:1. Introduction
Objectives
2. Results
2.1. Open-Field Experiment
2.2. Evaluation of Soil Weed Seed Bank
3. Discussion
3.1. The Impact of Mulching—Standing Weed Composition
3.2. The Impact of Mulching—Weed Seed Bank
3.3. The Impact of Irrigation and Water Availability—Weed Composition
3.4. The Impact of Irrigation and Water Availability—Weed Seed Bank
3.5. The Impact of Margins—Weed Composition
3.6. The Impact of Margins—Weed Seed Bank
3.7. The Impact of Time of Season and Succession—Weed Composition and Weed Seed Bank
4. Materials and Methods
4.1. Open-Field Experiment
4.1.1. Monitoring Weed Species Composition
4.1.2. Evaluation of the Weed Seed Bank
4.2. Data Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Kristiansen, P.E. Sustainable Weed Management in Organic Herb and Vegetable Production. Ph.D. Thesis, University of New England, Armidale, Australia, June 2003. [Google Scholar]
- Tei, F.; Montemurro, P.; Baumann, D.T.; Dobrzanski, A.; Giovinazzo, R.; Kleifeld, Y.; Rocha, F.; Rzozi, S.B.; Sanseovic, T.; Simončič, A.; et al. Weeds and weed management in processing tomato. Acta Hortic. 2003, 613, 111–121. [Google Scholar] [CrossRef]
- Alex, J.F. Weeds of tomato and corn fields in two regions of Ontario. Weed Res. 1964, 4, 308–318. [Google Scholar] [CrossRef]
- Helyes, L. A Paradicsom és Termesztése; [Tomato and Tomato Production] Mezőgazda Kiadó: Budapest, Hungary, 2014; p. 236. (In Hungarian) [Google Scholar]
- Hossain, M.; Begum, M. Soil weed seed bank: Importance and management for sustainable crop production—A Review. J. Bangladesh Agric. Univ. 2016, 13, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Menalled, F. Weed Seedbank Dynamics and Integrated Management of Agricultural Weeds. Montana State University Extension MontGuide MT200808AG. 2008. Available online: http://ipm.montana.edu/documents/Seedbank%20dynamics%20MT200808AG.pdf (accessed on 11 December 2019).
- Gardarin, A.; Dürr, C.; Colbach, N. Effects of seed depth and soil aggregates on the emergence of weeds with contrasting seed traits. Weed Res. 2010, 50, 91–101. [Google Scholar] [CrossRef]
- Moles, A.T.; Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 2006, 113, 91–105. [Google Scholar] [CrossRef]
- Burgos, N.R.; Talbert, R.E. Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Sci. 2000, 48, 302–310. [Google Scholar] [CrossRef]
- Tanveer, A.; Tasneem, M.; Khaliq, A.; Javaid, M.M.; Chaudhry, M.N. Influence of seed size and ecological factors on the germination and emergence of field bindweed (Convolvulus arvensis). Planta Daninha 2013, 31, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Batlla, D.; Benech-Arnold, R.L. Weed seed germination and the light environment: Implications for weed management. Weed Biol. Manag. 2014, 14, 77–87. [Google Scholar] [CrossRef]
- Nandula, V.K.; Eubank, T.W.; Poston, D.H.; Koger, C.H.; Reddy, K.N. Factors affecting germination of horseweed (Conyza canadensis). Weed Sci. 2006, 54, 898–902. [Google Scholar] [CrossRef]
- Kruk, B.; Insausti, P.; Razul, A.; Benech-Arnold, R. Light and thermal environments as modified by a wheat crop: Effects on weed seed germination. J. Appl. Ecol. 2006, 43, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Budelman, A. The performance of the leaf mulches of Leucaena leucocephala, Flemingia macrophylla and Gliricidia sepium in weed control. Agrofor. Syst. 1988, 6, 137–145. [Google Scholar] [CrossRef]
- Roberts, H.A. Seedbanks in soil. Adv. Appl. Biol. 1981, 6, 1–55. [Google Scholar]
- Wei, D.; Liping, C.; Zhijun, M.; Guangwei, W.; Ruirui, Z. Review of non-chemical weed management for green agriculture. Int. J. Agric. Biol. Eng. 2010, 3, 52–60. [Google Scholar] [CrossRef]
- Moonen, A.C.; Bàrberi, P. Size and composition of the weed seedbank after 7 years of different cover crop maize management systems. Weed Res. 2004, 44, 163–177. [Google Scholar] [CrossRef]
- Moonen, A.C.; Bàrberi, P. An ecological approach to study the physical and chemical effects of rye cover crop residues on Amaranthus retroflexus, Echinochloa crus-galli and maize. Ann. Appl. Biol. 2006, 148, 73–89. [Google Scholar] [CrossRef]
- Creamer, N.G.; Bennett, M.A.; Stinner, B.R.; Cardina, J.; Regnier, E.E. Mechanisms of weed suppression in cover crop-based production systems. HortScience 1996, 31, 410–413. [Google Scholar] [CrossRef]
- Blum, U. Benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. J. Chem. Ecol. 1997, 23, 347–362. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crop. Res. 2006, 95, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Zaniewicz-Bajkowska, A.; Franczuk, J.; Kosterna, E. Direct and secondary effects of soil mulching with straw on fresh mass and number of weeds, vegetable yield. Pol. J. Environ. Stud. 2009, 18, 1185–1190. [Google Scholar]
- Kosterna, E. The effect of soil mulching with organic mulches, on weed infestation in broccoli and tomato cultivated under polypropylene fibre, and without a cover. J. Plant Prot. Res. 2014, 54, 188–198. [Google Scholar] [CrossRef]
- Pupalienė, R.; Sinkevičienė, A.; Jodaugienė, D.; Bajorienė, K. Weed control by organic mulch in organic farming system. In Weed Biology and Control; Pilipavicius, V., Ed.; InTech: Rijeka, Croatia, 2015; pp. 65–86. [Google Scholar] [CrossRef] [Green Version]
- Radics, L.; Bognár, E.S. Comparison of different mulching methods for weed control in organic green bean and tomato. Acta Hort. 2004, 638, 189–196. [Google Scholar] [CrossRef]
- Ozores-Hampton, M. Compost as an alternative weed control method. HortScience 1998, 33, 938–940. [Google Scholar] [CrossRef]
- Petrikovszki, R.; Erdei, M.; Erdélyi, M.; Nagy, P.; Simon, B.; Tóth, F. Examination of background factors to decrease the damage by Meloidogyne incognita in an open-field tomato experiment. In Proceedings of the 33th Symposium of the European Society of Nematologists, Abstract book, Ghent, Belgium, 9–13 September 2018; p. 315. [Google Scholar]
- Law, D.M.; Rowell, A.B.; Snyder, J.C.; Williams, M.A. Weed control efficacy of organic mulches in two organically managed bell pepper production systems. HortTechnology 2006, 16, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Zalai, M.; Szlovák, P.; Dorner, Z. Szalmatakarás hatása a szőlő gyomosodására hajósi ültetvényekben (in Hungarian). [Efficiency of straw-mulching on weed flora of vineyards close to Hajós]. Növényvédelem 2015, 51, 457–463. [Google Scholar]
- Bibbey, R.O. Physiological studies of weed seed germination. Plant Physiol. 1947, 23, 467–484. [Google Scholar] [CrossRef] [Green Version]
- Miura, R.; Kobayashi, H.; Kusanagi, T. A comparative study of seed dormancy and germination behavior between Stellaria media, an agrestal weed, and S. neglecta, a ruderal. Weed Res. 1995, 40, 271–278. [Google Scholar] [CrossRef]
- Botto, J.F.; Scopel, A.L.; Sánchez, R.A. Water constraints on the photoinduction of weed seed germination during tillage. Aust. J. Plant Physiol. 2000, 27, 463–471. [Google Scholar] [CrossRef]
- Borhidi, A. Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 1995, 39, 97–182. [Google Scholar]
- Helyes, L.; Varga, G.Y. Irrigation demand of tomato according to the results of three decades. Acta Hort 1994, 376, 323–328. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Lososová, Z.; Chytrý, M.; Cimalová, S.; Kropáč, Z.; Otýpková, Z.; Pyšek, P.; Tichý, L. Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci. 2004, 15, 415–422. [Google Scholar] [CrossRef]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003; p. 269. [Google Scholar]
- Wagner, H.H. Direct multi-scale ordination with canonical correspondence analysis. Ecology 2004, 85, 342–351. [Google Scholar] [CrossRef]
- Fox, J.; Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 1992, 87, 178–183. [Google Scholar] [CrossRef]
Gross Effect | Net Effect | ||||||
---|---|---|---|---|---|---|---|
Factors | d.f. | Explained Variation (%) | R2adj | Explained Variation (%) | R2adj | F | p-Value |
Mulching | 1 | 3.669 | 0.03400 | 3.681 | 0.03533 | 16.939 | 0.001 |
Margin | 1 | 5.813 | 0.05550 | 5.835 | 0.05729 | 26.849 | 0.001 |
Seasonality | 4 | 3.128 | 0.02857 | 1.004 | 0.00802 | 4.620 | 0.001 |
Year | 2 | 8.922 | 0.08412 | 8.300 | 0.07999 | 19.097 | 0.001 |
Rainfall | 1 | 0.661 | 0.00384 | 0.855 | 0.00650 | 3.932 | 0.001 |
Temperature | 1 | 3.097 | 0.02827 | 0.722 | 0.00515 | 3.321 | 0.002 |
Irrigation | 1 | 0.807 | 0.00530 | 0.481 | 0.00269 | 2.212 | 0.019 |
Ax 1 Score | Fit | Ax 1 Score | Fit | ||
---|---|---|---|---|---|
Mulching (+ yes; − no) | Rainfall (+ high; − low) | ||||
Convolvulus arvensis | 0.3296 | 0.0749 | Echinochloa crus-galli | 0.1486 | 0.0253 |
Conyza canadensis | −0.0633 | 0.0370 | Portulaca oleracea | 0.1167 | 0.0132 |
Setaria viridis | −0.0710 | 0.0271 | Digitaria sanguinalis | 0.0942 | 0.0170 |
Galinsoga parviflora | −0.1102 | 0.0453 | Sonchus asper | 0.0092 | 0.0105 |
Echinochloa crus-galli | −0.1282 | 0.0188 | Solidago canadensis | −0.0163 | 0.0322 |
Digitaria sanguinalis | −0.1295 | 0.0322 | Galinsoga parviflora | −0.0436 | 0.0071 |
Chenopodium album | −0.1587 | 0.0290 | Setaria pumila | −0.0589 | 0.0235 |
Glechoma hederacea | −0.1669 | 0.0164 | Solanum tuberosum | −0.0651 | 0.0323 |
Taraxacum officinale | −0.2355 | 0.0590 | Setaria viridis | −0.0682 | 0.0250 |
Portulaca oleracea | −0.3994 | 0.1553 | Elymus repens | −0.1477 | 0.0105 |
Weeding date (+ late; − early) | 2016 (+ high; − low) | ||||
Elymus repens | −0.2319 | 0.0259 | Stellaria media | 0.235 | 0.050202 |
Solanum tuberosum | −0.0665 | 0.0337 | Digitaria sanguinalis | 0.228 | 0.100282 |
Acer platanoides | −0.0397 | 0.0067 | Chenopodium album | 0.227 | 0.059332 |
Galinsoga parviflora | −0.0381 | 0.0054 | Galinsoga parviflora | 0.161 | 0.096344 |
Conyza canadensis | −0.0316 | 0.0092 | Setaria viridis | 0.130 | 0.091409 |
Amaranthus retroflexus | −0.0204 | 0.0079 | Acer platanoides | 0.118 | 0.058729 |
Solidago canadensis | −0.0137 | 0.0228 | Setaria pumila | 0.097 | 0.064132 |
Polygonum aviculare | −0.0128 | 0.0072 | Solanum tuberosum | 0.095 | 0.069209 |
Digitaria sanguinalis | 0.0617 | 0.0073 | Elymus repens | −0.495 | 0.118287 |
Glechoma hederacea | 0.1417 | 0.0118 | Glechoma hederacea | −0.517 | 0.156645 |
Temperature (+ high; − low) | 2017 (+ high; − low) | ||||
Portulaca oleracea | 0.2062 | 0.0414 | Glechoma hederacea | 0.2879 | 0.0487 |
Convolvulus arvensis | 0.1303 | 0.0117 | Echinochloa crus-galli | 0.2759 | 0.0872 |
Digitaria sanguinalis | 0.0949 | 0.0173 | Conyza canadensis | 0.0508 | 0.0238 |
Solanum tuberosum | 0.0334 | 0.0085 | Trifolium repens | 0.0255 | 0.0103 |
Solidago canadensis | 0.0104 | 0.0130 | Polygonum aviculare | −0.0164 | 0.0119 |
Medicago lupulina | −0.0097 | 0.0063 | Solanum tuberosum | −0.0477 | 0.0173 |
Chelidonium majus | −0.0159 | 0.0125 | Cynodon dactylon | −0.0523 | 0.0137 |
Conyza canadensis | −0.0425 | 0.0167 | Setaria viridis | −0.0750 | 0.0302 |
Acer platanoides | −0.1048 | 0.0465 | Digitaria sanguinalis | −0.0998 | 0.0191 |
Stellaria media | −0.2645 | 0.0637 | Stellaria media | −0.2394 | 0.0522 |
Margin (+ marginal area; − central area) | 2018 (+ high; − low) | ||||
Elymus repens | 0.6448 | 0.2004 | Elymus repens | 0.4424 | 0.0943 |
Glechoma hederacea | 0.3932 | 0.0907 | Glechoma hederacea | 0.2287 | 0.0307 |
Cynodon dactylon | 0.0310 | 0.0048 | Cynodon dactylon | 0.1045 | 0.0549 |
Medicago lupulina | 0.0124 | 0.0102 | Amaranthus retroflexus | −0.0311 | 0.0183 |
Sonchus asper | 0.0097 | 0.0115 | Setaria pumila | −0.0652 | 0.0288 |
Solanum tuberosum | −0.0458 | 0.0160 | Acer platanoides | −0.0865 | 0.0317 |
Taraxacum officinale | −0.0909 | 0.0088 | Digitaria sanguinalis | −0.1287 | 0.0318 |
Chenopodium album | −0.0932 | 0.0100 | Galinsoga parviflora | −0.1294 | 0.0625 |
Portulaca oleracea | −0.1836 | 0.0328 | Chenopodium album | −0.3077 | 0.1090 |
Convolvulus arvensis | −0.2864 | 0.0566 | Echinochloa crus-galli | −0.3826 | 0.1678 |
Factor Variable | d.f. | ANCOVA | Tukey Comparison | |||
F | p-Value | Group | Avg Value (min/microplot) | Sign. Class | ||
Mulching | 1 | 79.814 | 0.000 | mulched | 5.41 | a |
unmulched | 9.63 | b | ||||
Year | 2 | 82.743 | 0.000 | 2016 | 11.08 | c |
2017 | 7.81 | b | ||||
2018 | 3.67 | a | ||||
Numeric/Interval Variable | d.f. | ANCOVA | Pearson Correlation | |||
F | p-Value | Corr. | p | |||
Weeding date | 1 | 22.335 | 0.000 | −0.197 | 0.001 | |
Rainfall | 1 | 25.969 | 0.000 | −0.335 | 0.000 | |
Margin | 1 | 0.061 | ns | - | - | |
Temperature | 1 | 3.518 | ns | - | - | |
Irrigation | 1 | 0.607 | ns | - | - |
Factoral Variable | d.f. | ANCOVA | Tukey Comparison | |||
F | p-Value | Group | Avg Value (%) | Sign. Class | ||
Mulching | 1 | 8.21 | 0.004 | mulched | 7.35 | a |
unmulched | 11.59 | b | ||||
Year | 2 | 20.034 | 0.000 | 2016 | 13.32 | b |
2017 | 11.40 | b | ||||
2018 | 3.69 | a | ||||
Numeric/Interval variable | d.f. | ANCOVA | Pearson Correlation | |||
F | p-Value | Corr. | p | |||
Sampling date | 1 | 66.345 | 0.000 | −0.405 | 0.000 | |
Rainfall | 1 | 0.103 | ns | - | - | |
Margin | 1 | 0.07 | ns | - | - | |
Temperature | 1 | 9.874 | 0.00186 | −0.486 | 0.000 | |
Irrigation | 1 | 1.32 | ns | - | - |
Gross Effect | Net Effect | ||||||
---|---|---|---|---|---|---|---|
Factors | d.f. | Explained Variation (%) | R2adj | Explained Variation (%) | R2adj | F | p-Value |
Mulching | 1 | 1.820 | 0.01119 | 1.848 | 0.01272 | 3.067 | 0.003 |
Margin | 1 | 1.172 | 0.00466 | 1.094 | 0.00502 | 1.815 | 0.044 |
Depth | 4 | 1.491 | 0.00787 | 1.502 | 0.00919 | 2.494 | 0.006 |
Year | 1 | 12.994 | 0.12372 | 13.012 | 0.12679 | 21.598 | 0.001 |
Year | |||
---|---|---|---|
2016 | 2017 | 2018 | |
Planting | 2 June | 12 May | 9 May |
Mulching | 18 March | 17 March | 9 May |
Harvest | 30 August | 19 September | 26 September |
Rainfall (during the growing season) | 213 mm | 299.5 mm | 370.5 mm |
Irrigation water | 153 mm | 303.2 mm | 193.4 mm |
Average temperature | 21.0 °C | 21.1 °C | 21.6 °C |
Minimum temperature | 8.6 °C | 7.0 °C | 0.0 °C |
Maximum temperature | 35.0 °C | 38.0 °C | 35.0 °C |
Weed survey and Weeding | 26 May | 2 June | 5 June |
27 June | 23 June | 26 June | |
18 July | 18 July | 18 July | |
5 August | 6 August | 9 August | |
28 August | 26 August | 4 September |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrikovszki, R.; Zalai, M.; Tóthné Bogdányi, F.; Tóth, F. The Effect of Organic Mulching and Irrigation on the Weed Species Composition and the Soil Weed Seed Bank of Tomato. Plants 2020, 9, 66. https://doi.org/10.3390/plants9010066
Petrikovszki R, Zalai M, Tóthné Bogdányi F, Tóth F. The Effect of Organic Mulching and Irrigation on the Weed Species Composition and the Soil Weed Seed Bank of Tomato. Plants. 2020; 9(1):66. https://doi.org/10.3390/plants9010066
Chicago/Turabian StylePetrikovszki, Renáta, Mihály Zalai, Franciska Tóthné Bogdányi, and Ferenc Tóth. 2020. "The Effect of Organic Mulching and Irrigation on the Weed Species Composition and the Soil Weed Seed Bank of Tomato" Plants 9, no. 1: 66. https://doi.org/10.3390/plants9010066
APA StylePetrikovszki, R., Zalai, M., Tóthné Bogdányi, F., & Tóth, F. (2020). The Effect of Organic Mulching and Irrigation on the Weed Species Composition and the Soil Weed Seed Bank of Tomato. Plants, 9(1), 66. https://doi.org/10.3390/plants9010066