The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus
Abstract
:1. Introduction
2. Results
2.1. Effects of Moderate and Severe Salinity on Plant Growth
2.2. Biomass Accumulation in Response to Salinity
2.3. Physiological Response to Salinity
2.4. Effect of Salinity on Carbon Fixation Efficiency
2.5. Water Relations Responses
2.6. Role of Salinity on Leaf Tissue Compounds
2.7. Ion Flux and the Role of Salinity on Tissue Compartementalisation and Combustion Properties
3. Discussion
3.1. Effects of Moderate and Severe Salinity on Biomass Accumulation and Partitioning
3.2. Impact of Salinity on Metabolic and Non-Metabolic Factors
3.3. Proline Accumulation in Relation to Chlorophyll Content, Electrolyte Leakage, and Photosynthetic Performance
3.4. Ion Accumulation and Compartmentalisation Ability
3.5. Biomass Quality and Combustion Properties
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Morphological Measurements
4.3. Stomatal Conductance (gs)
4.4. Relative Water content (RWC)
4.5. Relative Chlorophyll Content
4.6. In Situ Chlorophyll Fluorescence
4.7. Photosynthetic Intercellular-CO2 Response Curves
4.8. Intrinsic Leaf Water Use Efficiency (WUEi)
4.9. Proline Content and Lipid Peroxidation
4.10. Ash Content
4.11. Elemental Content Analysis
4.12. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Robson, P.R.H.; Hastings, A.; Clifton-Brown, J.C.; McAlmont, J.P. Sustainable use of Miscanthus for biofuel. In Achieving Carbon-Negative Bioenergy Systems from Plant Materials; Saffron, C., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; ISBN 9781786762528. [Google Scholar]
- Valentine, J.; Clifton-Brown, J.; Hastings, A.; Robson, P.; Allison, G.; Smith, P. Food vs. fuel: The use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 2012, 4, 1–19. [Google Scholar] [CrossRef]
- Oliver, R.J.; Finch, J.W.; Taylor, G. Second generation bioenergy crops and climate change: A review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. Gcb Bioenergy 2009, 1, 97–114. [Google Scholar] [CrossRef]
- Hung, K.; Chiang, T.; Chiu, C.; Hsu, T.; Ho, C. Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae). Conserv. Genet. 2009, 10, 1377–1380. [Google Scholar] [CrossRef]
- Ogura, A.; Yura, H. Effects of sandblasting and salt spray on inland plants transplanted to coastal sand dunes. Ecol. Res. 2008, 23, 107–112. [Google Scholar] [CrossRef]
- Stavridou, E.; Hastings, A.; Webster, R.J.; Robson, P.R.H. The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. GCB Bioenergy 2016, 9, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Stavridou, E.; Webster, R.J.; Robson, P.R.H. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments. Ann. Bot. 2019, 124, 653–674. [Google Scholar] [CrossRef]
- Scheiber, S.; Sandrock, D.; Alvarez, E.; Brennan, M.M. Effect of salt spray concentration on growth and appearance of “Gracillimus” maiden grass and ’Hamelin’fountain grass. Horttechnology 2008, 18, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Yamada, T.; Takano, T. Salinity Effects on Germination, Growth, Photosynthesis, and Ion Accumulation in Wild Anderss. Populations. Crop Sci. 2014, 54, 2760. [Google Scholar] [CrossRef]
- Chen, C.L.; van der Schoot, H.; Dehghan, S.; Alvim Kamei, C.L.; Schwarz, K.U.; Meyer, H.; Visser, R.G.F.; van der Linden, C.G. Genetic diversity of salt tolerance in Miscanthus. Front. Plant Sci. 2017, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.; Guo, H.; Fang, J.; Ren, W.; Wang, T.; Ji, M.; Zheng, B. Physiological and Biochemical Responses of Miscanthus Sacchariflorus to Salt Stress. Adv. Mater. Res. 2014, 1051, 333–340. [Google Scholar] [CrossRef]
- Płażek, A.; Dubert, F.; Kościelniak, J.; Tatrzańska, M.; Maciejewski, M.; Gondek, K.; Żurek, G. Tolerance of Miscanthus × giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Ind. Crop. Prod. 2014, 52, 278–285. [Google Scholar] [CrossRef]
- Wang, Q.; Kanga, L.; Lin, C.; Song, Z.; Tao, C.; Liu, W.; Sang, T.; Yan, J. Transcriptomic evaluation of Miscanthus photosynthetic traits to salinity stress. Biomass Bioenergy 2019, 125, 123–130. [Google Scholar] [CrossRef]
- Munns, R.; Schachtman, D.; Condon, A. The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley. Aust. J. Plant Physiol. 1995, 22, 561. [Google Scholar] [CrossRef]
- Flowers, T.J.; Flowers, S.A. Why does salinity pose such a difficult problem for plant breeders? Agric. Water Manag. 2005, 78, 15–24. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.-K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef]
- Amini, F.; Ehsanpour, A.A.; Hoang, Q.T.; Shin, J.S. Protein pattern changes in tomato under in vitro salt stress. Russ. J. Plant Physiol. 2007, 54, 464–471. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013; pp. 25–87. ISBN 1461447461. [Google Scholar]
- Waisel, Y. Biology of Halophytes; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0323151582. [Google Scholar]
- Laetsch, W.M. The C4 Syndrome: A Structural Analysis. Annu. Rev. Plant Physiol. 1974, 25, 27–52. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Berry, W.L.; Wheeler, R.M. Sodium—A functional plant nutrient. Crc. Crit. Rev. Plant Sci. 2003, 22, 391–416. [Google Scholar]
- Ohnishi, J.; Flügge, U.-I.; Heldt, H.W.; Kanai, R. Involvement of Na+ in Active Uptake of Pyruvate in Mesophyll Chloroplasts of Some C4 Plants Na+/Pyruvate Cotransport. Plant Physiol. 1990, 94, 950–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Long, S.P.; Zhu, X.-G. Elements Required for an Efficient NADP-Malic Enzyme Type C4 Photosynthesis. Plant Physiol. 2014, 164, 2231–2246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokhrel, R.; McConnell, I.L.; Brudvig, G.W. Chloride regulation of enzyme turnover: Application to the role of chloride in photosystem II. Biochemistry 2011, 50, 2725–2734. [Google Scholar] [CrossRef]
- Raven, J.A. Chloride: Essential micronutrient and multifunctional beneficial ion. J. Exp. Bot. 2017, 68, 359–367. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant. Cell Environ. 2002, 25, 239–250. [Google Scholar] [PubMed]
- Jones, M.B.; Finnan, J.; Hodkinson, T.R. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy 2015, 7, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Horie, T.; Karahara, I.; Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 2012, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Blumwald, E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 2000, 12, 431–434. [Google Scholar] [CrossRef]
- Wang, B.; Davenport, R.J.; Volkov, V.; Amtmann, A. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J. Exp. Bot. 2006, 57, 1161–1170. [Google Scholar] [CrossRef] [Green Version]
- Lokhande, V.H.; Suprasanna, P. Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M.N.V., Eds.; Elsevier: Berlin, Germany, 2012; pp. 1–515. ISBN 9781461408154. [Google Scholar]
- Ahuja, I.; de Vos, R.C.H.; Bones, A.M.; Hall, R.D. Plant molecular stress responses face climate change. Trends Plant Sci. 2010, 15, 664–674. [Google Scholar] [CrossRef]
- Jithesh, M.N.; Prashanth, S.R.; Sivaprakash, K.R.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 2006, 85, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T. Plant proteome responses to salinity stress-comparison of glycophytes and halophytes. Funct. Plant Biol. 2013, 40, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, R.; Uzilday, B.; Sekmen, A.H.; Turkan, I. Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 2013, 40, 832–847. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef]
- Stewart, G.R.; Lee, J.A. The Role of Proline Accumulation in Halophytes. Planta 1974, 120, 279–289. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Greenway, H.; Munns, R. Mechanisms of Salt Tolerance in Nonhalophytes1. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Yokoi, S.; Bressan, R.A.; Hasegawa, P.M. Salt Stress Tolerance of Plants. JIRCAS Work. Rep. 2002, 23, 25–33. [Google Scholar]
- Hare, P.D.; Cress, W.A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997, 21, 79–102. [Google Scholar] [CrossRef]
- Kao, W.-Y.; Tsai, T.-T.; Shih, C.-N. Photosynthetic Gas Exchange and Chlorophyll a Fluorescence of Three Wild Soybean Species in Response to NaCl Treatments. Photosynthetica 2003, 41, 415–419. [Google Scholar] [CrossRef]
- Yan, K.; Chen, P.; Shao, H.; Zhao, S.; Zhang, L.; Xu, G.; Sun, J. Responses of Photosynthesis and Photosystem II to Higher Temperature and Salt Stress in Sorghum. J. Agron. Crop Sci. 2012, 198, 218–225. [Google Scholar] [CrossRef]
- Johnston, M.; Grof, C.P.L.; Brownell, P.F. Effect of Sodium Nutrition on Chlorophyll a/b Ratios in C4 Plants. Aust. J. Plant Physiol. 1984, 11, 325–332. [Google Scholar] [CrossRef]
- Lacerda, D.; Antonio, M.; Alberto, H. Solute accumulation and distribution during shoot and leaf de v elopment in two sorghum genotypes under salt stress. Environ. Exp. Bot. 2003, 49, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Shabala, S.N.; Shabala, S.I.; Martynenko, A.I.; Babourina, O.; Newman, I.A. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. Funct. Plant Biol. 1998, 25, 609–616. [Google Scholar] [CrossRef]
- James, A.; Thring, R.; Helle, S.; Ghuman, H. Ash Management Review—Applications of Biomass Bottom Ash. Energies 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, U. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy 1997, 12, 155–169. [Google Scholar] [CrossRef]
- Brosse, N.; Dufour, A.; Meng, X.; Sun, Q.; Ragauskas, A. Miscanthus: A fast growing crop for biofuels and chemicals production. Biofuels Bioprod. Biorefining 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Study of Miscanthus × giganteus ash composition—Variation with agronomy and assessment method. Fuel 2012, 95, 50–62. [Google Scholar] [CrossRef]
- Clifton Brown, J.C.; Breuer, J.; Jones, M.B. Carbon mitigation by the energy crop, Miscanthus. Glob. Chang. Biol. 2007, 13, 2296–2307. [Google Scholar]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, E.M.; Fahmi, R.; Yates, N.; Barraclough, T.; Shield, I.; Allison, G.; Bridgwater, A.V.; Donnison, I.S. Miscanthus as a feedstock for fast-pyrolysis: Does agronomic treatment affect quality? Bioresour. Technol. 2010, 101, 6185–6191. [Google Scholar] [CrossRef] [PubMed]
- Karp, A.; Shield, I. Bioenergy from plants and the sustainable yield challenge. New Phytol. 2008, 179, 15–32. [Google Scholar] [CrossRef]
- Bannari, A.; Al-Ali, Z.M. Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using Landsat TM, ETM+ and OLI data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Busoms, S.; Paajanen, P.; Marburger, S.; Bray, S.; Huang, X.Y.; Poschenrieder, C.; Yant, L.; Salt, D.E. Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2018, 115, E12443–E12452. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, K.; Tester, M.; Roy, S.J. Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 2009, 32, 237–249. [Google Scholar] [CrossRef]
- Netondo, G.W.; Onyango, J.C.; Beck, E. Sorghum and Salinity: II. Gas Exchange and Chlorophyll Fluorescence of Sorghum under Salt Stress. Crop Sci. 2004, 44, 806–811. [Google Scholar]
- James, R.A.; von Caemmerer, S.; Condon, A.G.T.; Zwart, A.B.; Munns, R. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct. Plant Biol. 2008, 35, 111–123. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hichem, H.; Naceur, E.A.; Mounir, D. Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 2009, 47, 517–526. [Google Scholar] [CrossRef]
- Farage, P.K.; Blowere, D.; Long, S.P.; Baker, N.R. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus x giganteus. Plant Cell Environ. 2006, 29, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Cordero, Á.; Osborne, B.A. Variation in leaf-level photosynthesis among Switchgrass genotypes exposed to low temperatures does not scale with final biomass yield. GCB Bioenergy 2017, 9, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Glowacka, K.; Ahmed, A.; Sharma, S.; Abbott, T.; Comstock, J.C.; Long, S.P.; Sacks, E.J. Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane? GCB Bioenergy 2016, 8, 407–418. [Google Scholar] [CrossRef]
- Muranaka, S.; Shimizu, K.; Kato, M. A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica 2002, 40, 509–512. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Govindjee, B.K.; Koscielniak, J.; Zuk-Gołaszewska, K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 2011, 73, 64–72. [Google Scholar] [CrossRef]
- Flowers, T.J.; Yeo, A.R. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 1986, 13, 75–91. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.R.; Jin, Y.L.; Avice, J.C.; Cliquet, J.B.; Ourry, A.; Kim, T.H. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytol. 2009, 182, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Kavi Kishor, P.B.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Bayuelo-Jiménez, J.S.; Debouck, D.G.; Lynch, J.P. Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crop Res. 2003, 80, 207–222. [Google Scholar]
- Cramer, G.R.; Epstein, E.; Lauchli, A. Effects of sodium, potassium and calcium on salt-stressed barley. II. Elemental analysis. Physiol. Plant. 1991, 81, 197–202. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar] [CrossRef]
- Soussi, M.; Ocaña, A.; Lluch, C. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J. Exp. Bot. 1998, 48, 1329–1337. [Google Scholar]
- Wei, W.; Bilsborrow, P.E.; Hooley, P.; Fincham, D.A.; Lombi, E.; Forster, B.P. Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 2003, 250, 183–191. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Guo, J.; Chazen, O.; Cramer, G.R. Water relations and leaf expansion: Importance of time scale. J. Exp. Bot. 2000, 51, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
- Carden, D.E.; Walker, D.J.; Flowers, T.J.; Miller, A.J. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol. 2003, 131, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Hasnain, S.; Berge, O.; Mahmood, T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 2004, 40, 157–162. [Google Scholar] [CrossRef]
- Woli, K.P.; David, M.B.; Tsai, J.; Voigt, T.B.; Darmody, R.G.; Mitchell, C.A. Evaluating silicon concentrations in biofuel feedstock crops Miscanthus and switchgrass. Biomass Bioenergy 2011, 35, 2807–2813. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Functions and transport of silicon in plants. Cell. Mol. Life Sci. 2008, 65, 3049–3057. [Google Scholar] [CrossRef]
- Ahmad, R.; Zaheer, S.H.; Ismail, S. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci. 1992, 85, 43–50. [Google Scholar] [CrossRef]
- Matoh, T.; Kairusmee, P.; Takahashi, E. Salt-Induced Damage to Rice Plants and Alleviation Effect of Silicate. Soil Sci. Plant Nutr. 1986, 32, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, I.; Kicherer, A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur. J. Agron. 1997, 6, 163–177. [Google Scholar] [CrossRef]
- Cadoux, S.; Ferchaud, F.; Demay, C.; Boizard, H.; Machet, J.M.; Fourdinier, E.; Preudhomme, M.; Chabbert, B.; Gosse, G.; Mary, B. Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 2014, 6, 425–438. [Google Scholar] [CrossRef]
- Dahl, J.; Obernberger, I. Evaluation of the combustion characteristics of four perennial energy crops (Arundo donax, Cynara cardunculus, Miscanthus × giganteus and Panicum virgatum). In Proceedings of the 2nd World Conference Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–14 May 2004; pp. 1265–1270. [Google Scholar]
- Shiu, S.-H.; Shih, M.-C.; Li, W.-H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol. 2005, 139, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel 2014, 117, 851–869. [Google Scholar] [CrossRef] [Green Version]
- Lanzerstorfer, C. Combustion of miscanthus: Composition of the ash by particle size. Energies 2019, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Baxter, L.L.; Miles, T.R.; Miles, T.R., Jr.; Jenkins, B.M.; Milne, T.; Dayton, D.; Bryers, R.W.; Oden, L.L. The behavior of inorganic material in biomass-fired power boilers: Field and laboratory experiences. Fuel Process. Technol. 1998, 54, 32. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I. Fuel indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 2012, 26, 380–390. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 1–39. [Google Scholar]
- von Caemmerer, S. Biochemical Models of Leaf Photosynthesis, 2nd ed.; Csiro Publishing: Victoria, Australia, 2000; ISBN 064306379X. [Google Scholar]
- Bellasio, C.; Beerling, D.J.; Griffiths, H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: Theory and practice. Plant Cell Environ. 2016, 39, 1164–1179. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Bernacchi, C. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 2003, 54, 2393–2401. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; Sharkey, T.D. Stomatal Conductance and Photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Naidu, S.L.; Long, S.P. Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: An in vivo analysis. Planta 2004, 220, 145–155. [Google Scholar] [CrossRef]
- Bacon, M. Water Use Efficiency in Plant Biology; Wiley-Blackwell: Oxford, UK, 2009; ISBN 140514999X. [Google Scholar]
- Webster, R.J.; Driever, S.M.; Kromdijk, J.; McGrath, J.; Leakey, A.D.B.; Siebke, K.; Demetriades-Shah, T.; Bonnage, S.; Peloe, T.; Lawson, T.; et al. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo Donax. Sci. Rep. 2016, 6, 20694. [Google Scholar] [CrossRef]
- Carillo, P.; Mastrolonardo, G.; Nacca, F.; Parisi, D.; Verlotta, A.; Fuggi, A. Nitrogen metabolism in durum wheat under salinity: Accumulation of proline and glycine betaine. Funct. Plant Biol. 2008, 35, 412. [Google Scholar] [CrossRef]
- Carillo, P.; Gibon, Y. Prometheus Wiki Contributors PROTOCOL: Extraction and Determination of Proline. PrometheusWiki Wiki01/2011. 2011. Available online: http://www.researchgate.net/publication/211353600_PROTOCOL_Extraction_and_determination_of_proline (accessed on 1 February 2020).
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Gautier, H.; Laupez-Lauri, F.; Massot, C.; Murshed, R.; Marty, I.; Grasselly, D.; Keller, C.; Sallanon, H.; Gélnard, M. Impact of ripening and salinity on tomato fruit ascorbate content and enzymatic activities related to ascorbate recycling. Funct. Plant Sci. Biotechnol. 2010, 4, 66–75. [Google Scholar]
- Yasar, F.; Uzal, O.; Ozpay, T. Changes of the lipid peroxidation and chlorophyll amount of green bean genotypes under drought stress. Afr. J. Agric. Res. 2010, 5, 2705–2709. [Google Scholar]
- Singmann, H.; Bolker, B.; Westfall, J.; Aust, F. afex: Analysis of Factorial Experiments. R Package Version 0.16-1. 2016. Available online: https://CRAN.R-project.org/package=afex (accessed on 20 September 2020).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-8. Available online: http://cran.r-project.org/package=agricolae (accessed on 1 February 2020).
Parameters | Treatment | Harvest day | Interaction |
---|---|---|---|
Final height | <0.05 | ns | <0.1 |
Leaf area (LA) | <0.05 | ns | ns |
Total leaves | <0.05 | <0.1 | ns |
Fresh matter (FM) above | <0.001 | <0.05 | ns |
FM leaves | <0.001 | ns | <0.05 |
FM stems | <0.001 | <0.01 | ns |
FM below | <0.001 | <0.05 | <0.05 |
FM rhizome | <0.001 | <0.001 | <0.001 |
FM roots | <0.001 | <0.05 | ns |
FM total | <0.001 | <0.001 | <0.001 |
Dry matter (DM) above | <0.001 | <0.001 | <0.001 |
DM leaves | <0.001 | <0.001 | ns |
DM stems | <0.001 | <0.001 | <0.001 |
DM below | <0.001 | <0.001 | <0.001 |
DM rhizome | <0.001 | <0.001 | <0.001 |
DM roots | <0.01 | <0.001 | <0.001 |
DM total | <0.001 | <0.001 | <0.001 |
Relative Water Content (RWC) | <0.01 | <0.1 | <0.1 |
%Electrolyte Leakage (EL) | <0.001 | <0.001 | <0.001 |
Malondialdehyde (MDA) | <0.001 | <0.001 | <0.05 |
Proline | <0.05 | ns | <0.001 |
Days | NaCl | Above DM ± SE | THSD BT | THSD WT | Leaves DM ± SE | THSD BT | THSD WT | Stems DM ± SE | THSD BT | THSD WT | Below DM ± SE | THSD BT | THSD WT | Rhizome DM ± SE | THSD BT | THSD WT | Roots DM ± SE | THSD BT | THSD WT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 | 0 | 46.7 ± 2.1 | a | B | 22.4 ± 1.2 | a | B | 24.5 ± 0.9 | a | C | 27.6 ± 1.0 | a | B | 16.4 ± 0.7 | a | ns | 11.2 ± 0.6 | a | C |
5.44 | 42.7 ± 3.2 | ab | ns | 19.8 ± 1.3 | a | B | 23.0 ± 2.1 | a | B | 29.3 ± 2.7 | a | C | 17.3 ± 2.1 | a | A | 12.0 ± 0.9 | a | C | |
19.97 | 33.5 ± 2.7 | b | ns | 14.8 ± 1.2 | b | ns | 18.7 ± 1.5 | a | ns | 30.3 ± 2.3 | a | ns | 20.9 ± 1.6 | a | A | 9.4 ± 0.6 | a | B | |
32 | 0 | 53.1 ± 1.6 | a | B | 22.7 ± 0.6 | a | B | 30.4 ± 1.5 | a | BC | 42.6 ± 5.4 | a | B | 18.7 ± 3.6 | a | ns | 23.9 ± 2.8 | a | BC |
5.44 | 41.8 ± 3.2 | b | ns | 17.9 ± 1.3 | b | B | 23.9 ± 2.0 | ab | B | 31.5 ± 4.4 | a | BC | 9.5 ± 0.9 | b | B | 22.1 ± 3.5 | a | B | |
19.97 | 35.7 ± 2.8 | b | ns | 15.2 ± 1.1 | b | ns | 20.5 ± 1.8 | b | ns | 32.9 ± 3.1 | a | ns | 10.9 ± 0.7 | ab | B | 22.0 ± 2.5 | a | A | |
46 | 0 | 61.8 ± 6.2 | a | B | 24.6 ± 2.6 | a | B | 37.3 ± 3.7 | a | B | 46.3 ± 3.5 | a | B | 13.4 ± 1.5 | a | ns | 32.9 ± 3.4 | a | BC |
5.44 | 50.2 ± 2.9 | b | ns | 20.9 ± 1.1 | a | B | 29.3 ± 1.9 | ab | B | 45.4 ± 4.7 | ab | AB | 12.1 ± 1.5 | ab | AB | 33.3 ± 2.8 | a | A | |
19.97 | 38.5 ± 4.0 | b | ns | 18.1 ± 1.6 | a | ns | 20.5 ± 2.4 | b | ns | 31.9 ± 3.6 | b | ns | 8.4 ± 0.8 | b | B | 23.5 ± 3.3 | a | A | |
54 | 0 | 88.9 ± 4.0 | a | A | 33.8 ± 1.5 | a | A | 55.2 ± 2.7 | a | A | 68.8 ± 6.7 | a | A | 20.9 ± 1.1 | a | ns | 47.9 ± 7.1 | a | A |
5.44 | 65.4 ± 0.6 | b | ns | 25.9 ± 0.6 | b | A | 39.5 ± 1.1 | b | A | 56.7 ± 2.4 | a | A | 15.6 ± 1.4 | b | AB | 41.1 ± 1.2 | a | A | |
19.97 | 41.1 ± 3.3 | c | ns | 19.7 ± 1.8 | c | ns | 21.4 ± 1.8 | c | ns | 27.6 ± 2.6 | b | ns | 9.5 ± 1.2 | c | B | 18.1 ± 1.5 | b | A |
Harvest Day | NaCl | Proline ± SE | THSD BT | THSD WT |
---|---|---|---|---|
19 | 0 | 0.017 ± 0.001 | a | A |
5.44 | 0.015 ± 0.001 | a | ns | |
19.97 | 0.019 ± 0.003 | a | B | |
32 | 0 | 0.007 ± 0.001 | b | B |
5.44 | 0.007 ± 0.001 | b | ns | |
19.97 | 0.17 ± 0.061 | a | A | |
46 | 0 | 0.007 ± 0.001 | b | B |
5.44 | 0.008 ± 0.001 | b | ns | |
19.97 | 0.238 ± 0.036 | a | A | |
54 | 0 | 0.006 ± 0.001 | c | B |
5.44 | 0.016 ± 0.005 | b | ns | |
19.97 | 0.238 ± 0.036 | a | A |
Effects | Ash Content |
---|---|
Treatment | <0.001 |
Harvest day | <0.1 |
Tissue | <0.001 |
Tissue * Treatment | <0.001 |
Treatment * Harvest day | <0.001 |
Element | NaCl | Leaves (mg kg−1) | THSD BT | THSD WT | Stems (mg kg−1) | THSD BT | THSD WT | Rhizome (mg kg−1) | THSD BT | THSD WT |
---|---|---|---|---|---|---|---|---|---|---|
K | 0 | 4851 ± 280.6 | b | B | 4717 ± 377 | b | B | 13,904 ± 1082 | ns | A |
5.44 | 5639 ± 366.6 | b | B | 7909 ± 1865 | ab | B | 13,262.4 ± 299 | ns | A | |
19.97 | 14,043± 1851 | a | A | 11,959 ± 2662 | a | A | 15,636.2 ± 1742 | ns | A | |
Na | 0 | 67.6 ± 24.7 | b | ns | 723 ± 644 | c | ns | 235.2 ± 78.7 | c | ns |
5.44 | 907 ± 276 | b | C | 2908 ± 435 | b | B | 4842 ± 135.6 | b | A | |
19.97 | 22,891 ± 2625 | a | A | 12,126 ± 846 | a | B | 9871 ± 377 | a | B | |
Cl | 0 | 3866 ± 868 | b | ns | 16,260 ± 8452 | ns | ns | 2520 ± 165 | c | ns |
5.44 | 10,333 ± 3788 | ab | B | 37,020 ± 9488 | ns | A | 9560 ± 409 | b | B | |
19.97 | 35,433 ± 9249 | a | A | 29,240 ± 2734 | ns | A | 15,880 ± 603 | a | B | |
Ca | 0 | 6488 ± 602 | b | A | 1309 ± 84 | b | B | 810 ± 376 | ns | B |
5.44 | 9298 ± 417 | a | A | 1622 ± 32 | b | B | 379 ± 8.71 | ns | C | |
19.97 | 9679 ± 730 | a | A | 1962 ± 137 | a | B | 633.8 ± 113 | ns | C | |
Mg | 0 | 5685 ± 471.6 | ns | A | 2407 ± 133 | ns | B | 738 ± 39.8 | b | C |
5.44 | 7391 ± 676 | ns | A | 2514 ± 165 | ns | B | 752.8 ± 40.8 | b | C | |
19.97 | 5848 ± 801 | ns | A | 3090 ± 334 | ns | B | 1026 ± 102.8 | a | C | |
S | 0 | 875 ± 43.7 | ns | B | 733 ± 57 | b | B | 1207 ± 49.7 | b | A |
5.44 | 740 ± 18 | ns | B | 697 ± 43 | b | B | 1106 ± 46.9 | b | A | |
19.97 | 924 ± 86.9 | ns | B | 1043 ± 95.8 | a | B | 1478 ± 61.7 | a | A | |
Si | 0 | 5566 ± 433 | b | A | 1080 ± 193 | b | B | - | - | - |
5.44 | 6700 ± 737 | ab | A | 1200 ± 130 | b | B | - | - | - | |
19.97 | 8500 ± 503 | a | A | 4100 ± 892 | a | B | - | - | - |
Element | NaCl | Leaves (mg kg−1) | THSD BT | THSD WT | Stems (mg kg−1) | THSD BT | THSD WT | Rhizome (mg kg−1) | THSD BT | THSD WT |
---|---|---|---|---|---|---|---|---|---|---|
K/Na | 0 | 86.8 ± 20.8 | a | ns | 55.8 ± 19.6 | a | ns | 74.9 ± 17.3 | a | ns |
5.44 | 7.43 ± 1.99 | b | A | 2.66 ± 0.29 | b | B | 2.75 ± 0.15 | b | B | |
19.97 | 0.62 ± 0.10 | c | B | 0.97 ± 0.18 | c | AB | 1.58 ± 0.18 | c | A | |
Ca/Na | 0 | 120 ± 34.2 | a | ns | 14.43 ± 4.28 | a | ns | 3.13 ± 0.37 | a | ns |
5.44 | 11.8 ± 2.7 | b | A | 0.60 ± 0.09 | b | B | 0.08±0.004 | b | C | |
19.97 | 0.43±0.1 | c | A | 0.17±0.01 | c | B | 0.064±0.01 | b | C | |
Ca/K | 0 | 1.34 ± 0.15 | ab | A | 0.28 ± 0.02 | ns | B | 0.09 ± 0.06 | ns | C |
5.44 | 1.67 ± 0.17 | a | A | 0.24 ± 0.03 | ns | B | 0.03 ± 0.0004 | ns | C | |
19.97 | 0.73 ± 0.17 | b | A | 0.19 ± 0.03 | ns | B | 0.045 ± 0.01 | ns | C | |
Si/K | 0 | 1.15 ± 0.06 | a | A | 0.24 ± 0.05 | ns | B | - | - | - |
5.44 | 1.21 ± 0.18 | a | A | 0.18 ± 0.04 | ns | B | - | - | - | |
19.97 | 0.62 ± 0.07 | b | A | 0.41 ± 0.14 | ns | B | - | - | - |
Index | NaCl | Leaves | THSD BT | THSD WT | Stems | THSD BT | THSD WT |
---|---|---|---|---|---|---|---|
Rb/a | 0 | 2.59 ± 0.24 | b | B | 10.2 ± 3.08 | ab | A |
5.44 | 2.95 ± 0.26 | b | B | 14.1 ± 4.08 | a | A | |
19.97 | 6.52 ± 0.061 | a | A | 6.61 ± 1.13 | b | A | |
Base (%) | 0 | 3.0 ± 0.18 | c | A | 1.92 ± 0.25 | c | B |
5.44 | 4.14 ± 0.1 | b | A | 3.33 ± 0.61 | b | A | |
19.97 | 11.88 ± 0.76 | a | A | 6.98 ± 0.93 | a | B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavridou, E.; Webster, R.J.; Robson, P.R.H. The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus. Plants 2020, 9, 1266. https://doi.org/10.3390/plants9101266
Stavridou E, Webster RJ, Robson PRH. The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus. Plants. 2020; 9(10):1266. https://doi.org/10.3390/plants9101266
Chicago/Turabian StyleStavridou, Evangelia, Richard J. Webster, and Paul R. H. Robson. 2020. "The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus" Plants 9, no. 10: 1266. https://doi.org/10.3390/plants9101266
APA StyleStavridou, E., Webster, R. J., & Robson, P. R. H. (2020). The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus. Plants, 9(10), 1266. https://doi.org/10.3390/plants9101266