Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Field Dodder on Peppermint Aerial Biomass and Oil Production
2.2. Effects of Field Dodder on Chamomile Aerial Biomass and Oil Production
3. Materials and Methods
3.1. Study Site
3.2. Collection and Preparation of Plant Material
3.3. Isolation of Essential Oil
3.4. Gas Chromatography (GC) Analyses and Identification of Components
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [PubMed]
- Oksman-Caldentey, K.M.; Inze, D. Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites. Trends Plant Sci. 2004, 9, 433–440. [Google Scholar] [PubMed]
- Pavarini, D.; Pavarini, S.; Niehues, M.; Lopes, N. Exogenous influences on plant secondary metabolite levels. Anim. Feed Sci. Technol. 2012, 176, 5–16. [Google Scholar] [CrossRef]
- Gutbrodt, B.; Dorn, S.; Unsicker, S.B.; Mody, K. Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology 2012, 22, 101–111. [Google Scholar]
- Aziz, E.A.; Hendawi, S.T.; Azza, E.E.D.; Omer, E.A. Effect of soil type and irrigation intervals on plant growth, essential oil yield and constituents of Thymus vulgaris plant. Am.-Eur. J. Agric. Environ. Sci. 2008, 4, 443–450. [Google Scholar]
- Clark, R.J.; Menary, R.C. Environmental effects on peppermint (Mentha piperita L.). II. Effects of temperature on photosynthesis, photorespiration and dark respiration in peppermint with reference to oil composition. Aust. J. Plant Physiol. 2008, 7, 693–697. [Google Scholar]
- Ormeno, E.; Baldy, V.; Ballini, C.; Fernandez, C. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: Effect of soil nutrients. J. Chem. Ecol. 2008, 34, 1219–1229. [Google Scholar]
- Nogues, I.; Muzzini, V.; Loreto, F.; Bustamante, M. Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci. Total Environ. 2015, 538, 768–778. [Google Scholar] [CrossRef]
- Heywood, V.H. The conservation of genetic and chemical diversity in medicinal and aromatic plants. In Biodiversity: Biomolecular Aspects of Biodiversity and Innovative Utilization; Sener, B., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 13–22. [Google Scholar]
- Pirzad, A.; Alyari, H.; Shakiba, M.R.; Zehtab-Salmasi, S.; Mohammadi, A. Essential oil content and composition of German chamomile (Matricaria chamomilla L.) at different irrigation regimes. J. Agron. 2006, 5, 451–455. [Google Scholar]
- Šalamon, I.; Ghanavati, M.; Abrahimpour, F. Potential of medicinal plant production in Iran and variability of chamomile (Matricaria recutita L.) essential oil quality. J. Essent. Oil-Bear. Plants 2010, 13, 638–643. [Google Scholar] [CrossRef]
- Santoro, M.V.; Zygadlo, J.; Giordano, W.; Banchio, E. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol. Biochem. 2011, 49, 1177–1182. [Google Scholar] [CrossRef]
- Guo, K.; Sui, Y.; Li, Z.; Huang, Y.; Zhang, H.; Wang, W. Colonization of Trichoderma viride Tv-1511 in peppermint (Mentha × piperita L.) roots promotes essential oil production by triggering ROS mediated MAPK activation. Plant Physiol. Biochem. 2020, 151, 705–718. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cerven, V.; Cantrell, C.L.; Ebelhar, W.M.; Horgan, T. Effect of nitrogen, location, and harvesting stage on peppermint productivity, oil content, and oil composition. HortScience 2009, 44, 1267–1270. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, B.; Radanović, D. Tehnologija Gajenja Lekovitog Bilja u Srbiji; Institut za proučavanje lekovitog bilja “Dr Josif Pančić”: Beograd, Srbija, 2011; pp. 195–203. (In Serbian) [Google Scholar]
- Rahmati, M.; Azizi, M.; Khayyat, M.H.; Nemati, H.; Asili, J. Yield and oil constituents of chamomile (Matricaria chamomilla L.) flowers depending on nitrogen application, plant density and climate conditions. J. Essent. Oil-Bear. Plants 2011, 14, 731–741. [Google Scholar] [CrossRef]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Phcog. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrubba, A. Weed and weeding effects on medicinal herbs. In Medicinal Plants and Environmental Challenges; Ghorbanpour, M., Varma, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 95–327. [Google Scholar]
- Dhima, K.; Vasilakoglou, I.; Garane, V.; Ritzoulis, C.; Lianopoulou, V.; Panou-Philotheou, E. Competitiveness and essential oil phytotoxicity of seven annual aromatic plants. Weed Sci. 2010, 58, 457–465. [Google Scholar] [CrossRef]
- Matković, A.; Marković, T.; Filipović, V.; Radanović, D.; Vrbničanin, S.; Božić, D. Preliminary investigation on efficiency of mulches and other mechanical weeding methods applied in Mentha piperita L. cultivation. Lek. Sirov. 2016, 36, 61–74. [Google Scholar] [CrossRef]
- Darre, A.; Novo, R.; Zumelzu, G.; Bracamonte, R. Chemical control of annual weeds in Mentha piperita. Agriscientia 2004, 21, 39–44. [Google Scholar]
- Karkanis, A.; Lykas, C.; Liava, V.; Bezou, A.; Petropoulos, S.; Tsiropoulos, N. Weed interference with peppermint (Mentha × piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: Effects on biomass and essential oil yield. J. Sci. Food Agric. 2017, 98, 43–50. [Google Scholar] [CrossRef]
- Heide-Jorgensen, H.S. The parasitic syndrome in higher plants. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Musselman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–18. [Google Scholar]
- Yoshida, S.; Cui, S.; Ichihashi, Y.; Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 2016, 67, 643–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarić-Krsmanović, M.; Božić, D.; Radivojević, L.; Gajić Umiljendić, J.; Vrbničanin, S. Response of alfalfa and sugar beet to field dodder (Cuscuta campestris Yunck.) parasitism: Physiological and anatomical approach. Can. J. Plant Sci. 2019, 99, 199–209. [Google Scholar] [CrossRef]
- Garcia, M.A.; Costea, M.; Kuzmina, M.; Stefanovic, S. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am. J. Bot. 2014, 101, 670–690. [Google Scholar] [CrossRef] [PubMed]
- Press, M.C.; Phoenix, G.K. Impacts of parasitic plants on natural communities. N. Phytol. 2005, 16, 737–751. [Google Scholar] [CrossRef]
- Albert, M.; Belastegui-Macadam, X.M.; Bleischwitz, M.; Kaldenhoff, R. Cuscuta spp.: “Parasitic Plants in the Spotlight of Plant Physiology, Economy and Ecology”. In Progress in Botany; Lüttge, U., Beyschlag, W., Murata, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 69, pp. 267–277. [Google Scholar]
- Fernández-Aparicio, M.; Delavault, P.; Timko, M. Management of infection by parasitic weeds: A review. Plants 2020, 9, 1184. [Google Scholar] [CrossRef]
- Lanini, W.T.; Kogan, M. Biology and management of Cuscuta in crops. Cien. Inv. Agric. 2005, 32, 127–141. [Google Scholar] [CrossRef]
- Sarić-Krsmanović, M.; Matković, A.; Radivojević, L.; Gajić Umiljendić, J.; Šantrić, L.; Đurović-Pejčev, R. Alterations in yield of seed essential oil from Foeniculum vulgare upon infestation by Cuscuta campestris. In Proceedings of the Book of Abstracts of the VIII Congress on Plant Protection: Integrated Plant Protection for Sustainable Crop Production and Forestry, Zlatibor, Serbia, 25–29 November 2019; Tanović, B., Dolzhenko, V., Nicot, P., Eds.; Plant Protection Society of Serbia: Zlatibor, Serbia, 2019; p. 162. [Google Scholar]
- Soković, M.; Marin, P.; Brkić, D.; Van Griensven, L. Chemical composition and antibacterial activity of essential oils of ten aromatic plants against human pathogenic bacteria. Food 2008, 1, 220–226. [Google Scholar]
- Soković, M.; Vukojević, J.; Marin, P.; Brkić, D.; Vajs, V.; Van Griensven, L. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef]
- Paudel, P.; Satyal, P.; Maharjan, S.; Shrestha, N.; Setzer, W.N. Volatile analysis and antimicrobial screening of the parasitic plant Cuscuta reflexa Roxb. from Nepal. Nat. Prod. Res. 2014, 28, 106–110. [Google Scholar] [CrossRef]
- Villa-Ruano, N.; Pacheco-Hernández, Y.; Rubio-Rosas, E.; Cruz-Durán, R.; Lozoya-Gloria, E. Essential oil composition, carotenoid profile, antioxidant and antimicrobial activities of the parasitic plant Cuscuta Mitraeformis. Bol. Latinoam. Caribe. Plant Med. Aromat. 2017, 16, 463–470. [Google Scholar]
- Tjiurutue, M.C.; Sandler, H.A.; Kersch-Becker, M.F.; Theis, N.; Adler, L.A. Cranberry resistance to dodder parasitism: Induced chemical defenses and behavior of a parasitic plant. J. Chem. Ecol. 2016, 42, 95–106. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Šarić, L.; Paperbark, I.; Šarić, B.; Plavšić, D.; Lević, J.; Pavkov, S.; Kokić, B. Composition and antimicrobial activity of some essential oils from Serbia. Agro Food Ind. Hi Tec. 2014, 25, 40–43. [Google Scholar]
- Đurović-Pejčev, R.; Potočnik, I.; Milijašević-Marčić, S.; Todorović, B.; Rekanović, E.; Stepanović, M. Antifungal activity of six plant essential oils from Serbia against Trichoderma aggressivum f. europaeum. Pestic. Phytomed. 2014, 29, 291–297. [Google Scholar]
- Samojlik, I.; Petković, S.; Mimica-Dukić, N.; Božin, B. Acute and chronic pretreatment with essential oil of peppermint (Mentha piperita L., Lamiaceae) influence drug effects. Phytother. Res. 2012, 26, 820–825. [Google Scholar]
- Sharma, S.; Khanna, R.; Sanwal, G.G. Lipids of Cuscuta reflexa and changes in lipids of its host plants after infection. Physiol. Plant. 1985, 63, 315–321. [Google Scholar]
- Mishra, S.; Sanwal, G.G. Alterations in lipid composition of seed oil from Brassica júncea upon infection by Cuscuta reflexa. J. Agric. Food Chem. 1992, 40, 52–55. [Google Scholar] [CrossRef]
- Furuhashi, T.; Fragner, L.; Furuhashi, K.; Valledor, L.; Sun, X.; Weckwerth, W. Metabolite changes with induction of Cuscuta haustorium and translocation from host plants. J. Plant Interact. 2012, 7, 84–93. [Google Scholar] [CrossRef]
- Frost, A.; Lopes-Gutierrez, C.; Purrington, B. Cuscuta sahina (Convolvulaceae) parasitizing Beta vulgaris (Chenopodiaceae). Am. J. Bot. 2003, 90, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Wolswinkel, P.; Ammerlaan, A.; Peters, H.F.C. Phloem unloading of amino acids at the site of attachment of Cuscuta europaea. Plant Physiol. 1984, 75, 13–20. [Google Scholar] [PubMed] [Green Version]
- Dawson, J.H.; Musselman, L.J.; Wolswinkel, P.; Dörr, I. Biology and control of Cuscuta. Rev. Weed Sci. 1994, 6, 265–317. [Google Scholar]
- Kaiser, B.; Vogg, G.; Fürst, U.B.; Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeschke, W.D.; Hilpert, A. Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: Nitrogen and carbon relations of the parasitic association Cuscuta reflexa-Ricinus communis. Plant Cell Environ. 1997, 20, 47–56. [Google Scholar] [CrossRef]
- Jeschke, W.D.; Baig, A.; Hilpert, A. Sink-stimulated photosynthesis, increased transpiration and increased demand-dependent stimulation of nitrate uptake: Nitrogen and carbon relations in the parasitic association Cuscuta reflexa-Coleus blumei. J. Exp. Bot. 1997, 48, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Sarić-Krsmanović, M.; Božić, D.; Radivojević, L.; Gajić Umiljendić, J.; Vrbničanin, S. Impact of field dodder (Cuscuta campestris Yunk.) on chlorophyll fluorescence and chlorophyll content of alfalfa and sugar beet plants. Russ. J. Plant Physiol. 2018, 65, 726–731. [Google Scholar] [CrossRef]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an In vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Jakovljević, M.; Antić-Mladenović, S.; Ristić, M.; Maksimović, S.; Blagojević, S. Influence of selenium on the yield and quality of chamomile (Chamomilla recutita (L.) Rausch.). Rostl. Vyrob. 2000, 46, 123–126. [Google Scholar]
- Pekić, B.; Zeković, Z.; Petrović, L.; Adamović, D. Essential oil of chamomile ligulate and tubular flowers. J. Essent. Oil Res. 1999, 11, 16–18. [Google Scholar] [CrossRef]
- Munns, R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 1993, 16, 15–24. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2004; pp. 217–218. [Google Scholar]
Host | Treatment | Aromatic Host Aerial Biomass Dry Weight (g/plant ± s.e.) | Field Dodder Aerial Biomass Dry Weight (g/m2 ± s.e.) |
---|---|---|---|
Peppermint | Np (control) | 1.24 ± 0.09 a | - |
Ip | 0.94 ± 0.08 b | 46.68 ± 0.51 | |
Chamomile | Nc (control) | 0.83 ± 0.06 a | - |
Ic | 0.31 ± 0.05 b | 39.48 ± 0.48 |
Yield of Essential Oils (%, v/w) | |||
---|---|---|---|
Peppermint | Chamomile | ||
Np | Ip | Nc | Ic |
3.63 | 3.87 | 0.5 | 0.2 |
N0 | Components | RIEXP 1 | RILIT 2 | Class 3 | Content (%) | Infested Peppermint/Noninfested Peppermint (Ratio) | |
---|---|---|---|---|---|---|---|
Noninfested Peppermint (Control) | Infested Peppermint | ||||||
1 | α-thujene | 925 | 924 | MH | 0.07 ± 0.01 a | 0.06 ± 0.01 b | 0.86 * |
2 | α-pinene | 932 | 932 | MH | 0.66 ± 0.03 a | 0.62 ± 0.02 b | 0.94 * |
3 | sabinene | 972 | 969 | MH | 0.61 ± 0.02 a | 0.59 ± 0.04 a | 0.97 ns |
4 | β-pinene | 975 | 974 | MH | 1.21 ± 0.11 a | 1.14 ± 0.08 b | 0.94 * |
5 | myrcene | 988 | 988 | MH | 0.31 ± 0.02 a | 0.30 ± 0.02 a | 0.97 ns |
6 | 3-octanol | 992 | 988 | O | 0.22 ± 0.01 a | 0.18 ± 0.01 b | 0.82 * |
7 | p-cymene | 1023 | 1020 | MH | 0.69 ± 0.04 a | 0.64 ± 0.03 b | 0.93 * |
8 | limonene + 1,8-cineole | 1027/1029 | 1024/1026 | MH/OM | 5.85 ± 0.12 a | 5.51 ± 0.09 b | 0.94 * |
10 | (Z)-β-ocimene | 1034 | 1032 | MH | 0.42 ± 0.04 a | 0.29 ± 0.01 b | 0.69 * |
11 | (E)-β-ocimene | 1044 | 1044 | MH | 0.12 ± 0.01 a | 0.07 ± 0.01 b | 0.58 * |
12 | γ-terpinene | 1056 | 1054 | MH | 0.16 ± 0.02 a | 0.10 ± 0.01 b | 0.63 * |
13 | cis-sabinene hydrate | 1065 | 1065 | OM | 2.27 ± 0.18 a | 2.42 ± 0.10 b | 1.07 * |
14 | linalool | 1096 | 1095 | OM | 0.38 ± 0.02 a | 0.40 ± 0.03 b | 1.05 * |
15 | (2E,4E)-octadienal | 1104 | 1102 | O | 0.15 ± 0.01 a | 0.10 ± 0.01 b | 0.67 * |
16 | trans-sabinol | 1138 | 1137 | OM | 0.10 ± 0.01 a | 0.12 ± 0.02 b | 1.20 * |
17 | trans-dihydro-α-terpineol | 1143 | 1143 | OM | 0.12 ± 0.02 a | 0.13 ± 0.01 b | 1.08 * |
18 | menthone | 1153 | 1148 | OM | 31.15 ± 0.35 a | 38.18 ± 0.56 b | 1.23 * |
19 | menthofuran | 1162 | 1159 | OM | 8.82 ± 0.14 a | 9.28 ± 0.08 b | 1.05 * |
20 | menthol | 1172 | 1167 | OM | 29.15 ± 0.18 a | 25.94 ± 0.13 b | 0.89 * |
21 | 4-terpineol | 1176 | 1174 | OM | 1.77 ± 0.04 a | 1.80 ± 0.03 a | 1.02 ns |
22 | cis-pinocarveol | 1181 | 1182 | OM | 0.51 ± 0.03 a | 0.39 ± 0.02 b | 0.77 * |
23 | α-terpineol | 1188 | 1186 | OM | 0.59 ± 0.03 a | 0.65 ± 0.03 b | 1.10 * |
24 | pulegone | 1237 | 1233 | OM | 3.84 ± 0.07 a | 1.28 ± 0.04 b | 0.33 * |
25 | piperitone | 1252 | 1249 | OM | 0.22 ± 0.01 a | 0.33 ± 0.01 b | 1.50 * |
26 | neo-menthyl acetate | 1271 | 1271 | OM | 0.33 ± 0.02 a | 0.25 ± 0.01 b | 0.76 * |
27 | menthyl acetate | 1290 | 1294 | OM | 4.12 ± 0.09 a | 2.90 ± 0.04 b | 0.70 * |
28 | iso-menthyl acetate | 1305 | 1304 | OM | 0.17 ± 0.01 a | 0.11 ± 0.01 b | 0.65 * |
29 | (3Z)-hexenyl-(3Z)-hexenoate | 1383 | 1383 | O | 0.23 ± 0.01 a | 0.20 ± 0.02 b | 0.87 * |
30 | β-bourbonene | 1389 | 1387 | SH | 0.55± 0.02 a | 0.64 ± 0.04 b | 1.16 * |
31 | β-caryophyllene | 1418 | 1417 | SH | 2.10 ± 0.03 a | 2.11 ± 0.06 a | 1.01 ns |
32 | α-humulene | 1451 | 1452 | SH | 0.32 ± 0.02 a | 0.29± 0.02 b | 0.91 * |
33 | germacrene D | 1479 | 1484 | SH | 0.96 ± 0.04 a | 1.01± 0.05 b | 1.05 * |
34 | δ-selinene | 1495 | 1492 | SH | 0.21 ± 0.01 a | 0.30 ± 0.02 b | 1.43 ** |
35 | δ-cadinene | 1522 | 1522 | SH | nd | 0.09± 0.01 a | - * |
36 | caryophyllene oxide | 1582 | 1582 | OS | 0.37 ± 0.02 a | 0.36 ± 0.02 a | 0.97 ns |
37 | globulol | 1589 | 1590 | OS | 0.35 ± 0.02 a | 0.37 ± 0.01 b | 1.06 * |
38 | viridiflorol | 1598 | 1592 | OS | 0.25 ± 0.01 a | 0.31 ± 0.02 b | 1.24 * |
Total | 99.35 | 99.45 | 1.00 ns | ||||
Monoterpene hydrocarbons | 4.25 | 3.81 | 0.90 * | ||||
Oxygenated monoterpenes | 83.54 | 84.18 | 1.01 ns | ||||
Sesquiterpene hydrocarbons | 4.14 | 4.44 | 1.07 * | ||||
Oxygenated sesquiterpenes | 0.97 | 1.04 | 1.07 * | ||||
Others | 0.60 | 0.48 | 0.80 * |
N0 | Components | RIEXP 1 | RILIT 2 | Class 3 | Content (%) | Infested Chamomile/Noninfested Chamomile (Ratio) | |
---|---|---|---|---|---|---|---|
Noninfested Chamomile (Control) | Infested Chamomile | ||||||
1 | (E)-anethole | 1281 | 1282 | PP | 0.19 ± 0.01 a | 0.21 ± 0.01 b | 1.11 * |
2 | (E)-β-farnesene | 1452 | 1454 | SH | 2.75 ± 0.06 a | 1.41 ± 0.05 b | 0.51 * |
3 | dehydro-sesquicineole | 1465 | 1469 | OS | 0.97 ± 0.04 a | 0.71 ± 0.03 b | 0.73 * |
4 | γ-muurolene | 1479 | 1478 | SH | 0.16 ± 0.01 a | 0.12 ± 0.01 b | 0.75 * |
5 | germacrene D | 1485 | 1484 | SH | 0.11 ± 0.01 a | 0.15 ± 0.01 b | 1.36 * |
6 | β-selinene | 1491 | 1489 | SH | 0.24 ± 0.02 a | 0.11 ± 0.01 b | 0.46 * |
7 | (E)-nerolidol | 1563 | 1561 | OS | 0.78 ± 0.04 a | 0.85 ± 0.04 b | 1.09 * |
8 | (E)-dendrolasin | 1570 | 1570 | OS | 0.25 ± 0.01 a | nd | - * |
9 | caryophyllene oxide | 1583 | 1582 | OS | 1.28 ± 0.07 a | 0.74 ± 0.03 b | 0.58 * |
10 | salvia-4(14)-en-1-on | 1593 | 1594 | OS | 0.15 ± 0.01 a | 0.24 ± 0.02 b | 1.60 * |
11 | guaia-6,10(14)-dien-4β-ol | 1609 | 1610 | OS | 0.12 ± 0.01 a | 0.20 ± 0.01 b | 1.67 * |
12 | iso-aromadendrene epoxyde | 1614 | 1612 | OS | 1.47 ± 0.07 a | 1.36 ± 0.09 b | 0.93 * |
13 | helifolen-12-al | 1618 | 1619 | OS | 0.35 ± 0.02 a | 0.22 ± 0.01 b | 0.63 * |
14 | iso-spathulenol | 1632 | 1630 | OS | 0.23 ± 0.01 a | 0.15 ± 0.01 b | 0.65 * |
15 | nerolidol oxide | 1638 | 1640 | OS | 0.86 ± 0.04 a | 0.85 ± 0.05 a | 0.99 ns |
16 | α-bisabolol oxide B | 1658 | 1656 | OS | 26.59 ± 0.16 a | 30.85 ± 0.19 b | 1.16 * |
17 | α-bisabolene oxide A | 1685 | 1684 | OS | 12.59 ± 0.11 a | 16.98 ± 0.08 b | 1.35 * |
18 | α-bisabolol | 1686 | 1685 | OS | 0.14 ± 0.01 a | 0.20 ± 0.01 b | 1.43 * |
19 | chamazulene | 1732 | 1730 | SH | 10.45 ± 0.21 a | 6.98 ± 0.12 b | 0.67 * |
20 | α-bisabolol oxide A | 1749 | 1748 | OS | 28.33 ± 0.24 a | 33.67 ± 0.11 b | 1.19 * |
21 | (Z)-en-yn-dicycloether | 1832 | 1830 | O | 5.55 ± 0.09 a | 0.87 ± 0.02 b | 0.16 * |
22 | (E)-en-yn-dicycloether | 1841 | 1839 | O | 6.35 ± 0.08 a | 2.81 ± 0.03 b | 0.44 * |
23 | 1,4-dimethyl-7-(1-methylethyl)-azulen-2-ol | 1936 | 1934 | OS | nd | 0.22 ± 0.01 a | - * |
Total | 99.91 | 99.90 | 1.00 ns | ||||
Sesquiterpene hydrocarbons | 13.71 | 8.77 | 0.64 * | ||||
Oxygenated sesquiterpenes | 74.11 | 87.24 | 1.18 * | ||||
Phenylpropanoids | 0.19 | 0.21 | 1.11 * | ||||
Others | 11.90 | 3.68 | 0.31 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarić-Krsmanović, M.; Dragumilo, A.; Gajić Umiljendić, J.; Radivojević, L.; Šantrić, L.; Đurović-Pejčev, R. Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile. Plants 2020, 9, 1286. https://doi.org/10.3390/plants9101286
Sarić-Krsmanović M, Dragumilo A, Gajić Umiljendić J, Radivojević L, Šantrić L, Đurović-Pejčev R. Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile. Plants. 2020; 9(10):1286. https://doi.org/10.3390/plants9101286
Chicago/Turabian StyleSarić-Krsmanović, Marija, Ana Dragumilo, Jelena Gajić Umiljendić, Ljiljana Radivojević, Ljiljana Šantrić, and Rada Đurović-Pejčev. 2020. "Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile" Plants 9, no. 10: 1286. https://doi.org/10.3390/plants9101286
APA StyleSarić-Krsmanović, M., Dragumilo, A., Gajić Umiljendić, J., Radivojević, L., Šantrić, L., & Đurović-Pejčev, R. (2020). Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile. Plants, 9(10), 1286. https://doi.org/10.3390/plants9101286