NADH-GOGAT Overexpression Does Not Improve Maize (Zea mays L.) Performance Even When Pyramiding with NAD-IDH, GDH and GS
Abstract
:1. Introduction
2. Results
2.1. Overexpression of NADH-GOGAT and Gene Pyramiding with NAD-IDH, NADH-GDH1 and GS1.3
2.2. Phenotypic Characterization of Transgenic Plants
2.3. Leaf Metabolite Profiles at Two Stages of Plant Development
2.4. Correlations between Leaf Metabolites, Shoot Biomass and Yield-Related Traits
3. Discussion
4. Material and Methods
4.1. Production of Maize Transgenic Lines
4.2. Plant Material and Growth Conditions
4.3. RNA Extraction, RT-Transcription and RT-qPCR Analysis
4.4. Enzyme Activities Measurements
4.5. Metabolite Extraction and Analyses
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Moose, S.; Below, F.E. Biotechnology Approaches to Improving Maize Nitrogen Use Efficiency. In Molecular Genetic Approaches to Maize Improvement; Kriz, A.L., Larkins, B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 63, pp. 65–77. [Google Scholar]
- Hirel, B.; Le Gouis, J.; Bernard, M.; Perez, P.; Falque, M.; Quétier, F.; Joets, J.; Montalent, P.; Rogwoski, P.; Murigneux, A.; et al. Genomics and Plant Breeding: Maize and wheat. In Functional Plant Genomics; Morot-Gaudry, J.F., Lea, P.J., Briat, J.F., Eds.; Science Publishers, Enfield (NH): Jersey/Plymouth, UK, 2007; pp. 614–635. [Google Scholar]
- Beatty, P.H.; Good, A.G. Improving nitrogen use efficiency in crop plants using biotechnology approaches. In Engineering Nitrogen Utilization in Crop Plants; Shrawat, A., Zayed, A., Lightfoot, D.A., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 15–35. [Google Scholar]
- Pathak, R.R.; Lochab, S.; Raghuram, N. Improving nitrogen-use efficiency. Compr. Biotechnol. 2011, 4, 209–218. [Google Scholar]
- Hirel, B.; Gallais, A. Nitrogen use efficiency—Physiological, molecular and genetic investigations towards crop improvement. In Advances in Maize (Essential Reviews in Experimental Biology); Prioul, J.L., Thévenot, C., Molnar, T., Eds.; Society for Experimental Biology: Cambridge, UK, 2011; Volume 3, pp. 285–310. [Google Scholar]
- Hirel, B.; Martin, A.; Tercé-Laforgue, T.; Gonzalez-Moro, M.B.; Estavillo, J.M. Physiology of maize I: A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 2005, 124, 167–177. [Google Scholar] [CrossRef]
- Hirel, B.; Bertin, P.; Quillere, I.; Bourdoncle, W.; Attagnant, C.; Dellay, C.; Gouy, A.; Cadiou, S.; Retailliau, C.; Falque, M.; et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 2001, 125, 1258–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cren, M.; Hirel, B. Glutamine synthetase in higher plants: Regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999, 40, 1187–1193. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, H.C.; Erikson, D.; MØller, I.S.; Schjoerring, J.K. Cytosolic glutamine synthetase: A target for improvement of crop nitrogen use efficiency? Trends Plant Sci. 2014, 19, 656–663. [Google Scholar] [CrossRef]
- Hirel, B.; Lea, P.J. Ammonia Assimilation. In Plant Nitrogen, INRA ed.; Lea, P.J., Morot-Gaudry, J.F., Eds.; Springer: Berlin, Germany, 2001; pp. 79–99. [Google Scholar]
- Lea, P.J.; Miflin, B.J. Nitrogen assimilation and its relevance to crop improvement. In Annual Plant Reviews, Nitrogen Metabolism in Plants in the Post-Genomic Era; Foyer, C.H., Zhang, H., Eds.; Wiley-Blackwell: Chichester, UK, 2011; Volume 42, pp. 1–40. [Google Scholar]
- Plett, D.; Garnett, T.; Okamoto, M. Molecular genetics to discover and improve nitrogen use efficiency in crop plants. In Plant Macronutrient Use Efficiency; Anwar Hossain, M., Kamiya, T., Buritt, D., Phan Tran, L.S., Fujiwara, T., Eds.; Elsevier Inc.: Philadelphia, PA, USA; Academic Press: New York, NY, USA, 2017; pp. 93–122. [Google Scholar]
- James, D.; Borphukan, B.; Fartyal, D.; Achary, V.M.M.; Reddy, M.K. Transgenic manipulation of glutamine synthetase: A target with untapped potential in various aspects of crop improvement. In Biotechnology of Crop Improvement; Gosal, S.S., Wani, S.H., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 367–416. [Google Scholar]
- Martin, A.; Lee, J.; Kichey, T.; Gerentes, D.; Zivy, M.; Tatou, C.; Balliau, T.; Valot, B.; Davanture, M.; Dubois, F.; et al. Two cytosolic glutamine synthetase isoforms of maize (Zea mays L.) are specifically involved in the control of grain production. Plant Cell 2006, 18, 3252–3274. [Google Scholar] [CrossRef] [Green Version]
- Hodges, M. Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J. Exp. Bot. 2002, 53, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Yamaya, T.; Kusano, M. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases. J. Exp. Bot. 2014, 19, 5519–5525. [Google Scholar] [CrossRef] [Green Version]
- Cormier, F.; Foulkes, J.; Hirel, B.; Gouache, D.; Moenne-Loccoz, Y.; Le Gouis, J. Breeding for increased nitrogen use efficiency: A review for wheat (T. Aestivum L.). Plant Breed. 2016, 135, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz-Porzucek, A.; Sulpice, R.; Osorio, S.; Krahnert, I.; Leisse, A.; Urbanczyk-Wochniak, E.; Hodges, M.; Fernie, A.R.; Nunnes-Nesi, A. Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but no impact on growth. Mol. Plant 2010, 1, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, T.; Urbanczyk-Wochniak, E.; Flesh, V.; Bismuth, E.; Fernie, A.R.; Hodges, M. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest that the enzyme is not limiting for nitrogen assimilation. Plant Physiol. 2007, 144, 1546–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Fernie, A.R. On the role of the tricarboxylic acid cycle in plant productivity. J. Integr. Plant Biol. 2018, 60, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.X.; Tercé-Laforgue, T.; Armengaud, P.; Clément, G.; Renou, J.P.; Pelletier, S.; Catterou, M.; Azzopardi, M.; Gibon, Y.; Lea, P.J.; et al. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 2012, 24, 4044–4065. [Google Scholar] [CrossRef] [Green Version]
- Tercé-Laforgue, T.; Bedu, M.; Dargel-Graffin, C.; Dubois, F.; Gibon, Y.; Restivo, F.M.; Hirel, B. Resolving the role of plant glutamate dehydrogenase: II. Physiological Characterization of plants overexpressing individually or simultaneously the two enzyme subunits. Plant Cell Physiol. 2013, 54, 1634–1647. [Google Scholar] [CrossRef] [Green Version]
- Turano, F.J.; Thakkar, S.S.; Fang, T.; Weisemann, J.M. Characterization and expression of NAD (H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol. 1997, 113, 1329–1341. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, D.A.; Mungur, R.; Ameziane, R.; Nolte, S.; Long, L.; Bernhard, K.; Colter, A.; Jones, K.; Iqbal, M.J.; Varsa, E.; et al. Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica 2007, 156, 103–116. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, J.; Zhou, Y.; Yang, Y.; Liu, H.; Zhang, C.; Tang, D.; Zhao, X.; Zhu, Y.; Liu, X. Overexpressing a fungal CeGDH gene improves nitrogen utilization and growth in rice. Crop Sci. 2013, 55, 811–820. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in plants: Metabolism, regulation, and signaling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink metabolism of nitrogen transport and use. New Phytol. 2017, 217, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.M.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, B.D.H. Breeding crop to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Chichkova, S.; Arellano, J.; Vance, C.P.; Hernández, G. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J. Exp. Bot. 2001, 52, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, T.; Obara, M.; Nakajima, H.; Sasaki, S.; Hayakawa, T.; Sato, T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 2002, 53, 917–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizaki, T.; Ohsumi, C.; Totsuka, K.; Ogarashi, D. Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana. Amino Acids 2010, 38, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Arencibia, S.; Castiglione, H.; Yifan, H.; Labra, M.; Savini, C.; Bracale, M.; Pelluci, N. Somaclonal variations in transgenic plants. Acta Hortic. 2000, 530, 411–420. [Google Scholar] [CrossRef]
- Butaye, K.M.J.; Cammue, B.P.A.; Delauré, S.L.; De Bolle, M.F.C. Approaches to minimize variation of transgene expression. Mol. Breed. 2005, 16, 79–91. [Google Scholar] [CrossRef]
- Morot-Gaudry, J.F.; Job, D.; Lea, P.J. Amino acid Metabolism. In Plant Nitrogen, INRA ed.; Lea, P.J., Morot-Gaudry, J.F., Eds.; Springer: Berlin, Germany, 2001; pp. 167–211. [Google Scholar]
- Kotake, T.; Yamanashi, Y.; Imaizumi, C.; Tsumuyura, Y. Metabolism of L-Arabinose in plants. J. Plant Res. 2016, 129, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Pauly, M.; Keegstra, K. Biosynthesis of the plant cell wall matrix polysaccharide xyloclucan. Ann. Rev. Plant Biol. 2016, 67, 235–259. [Google Scholar] [CrossRef]
- Bolouri Loghadam, M.R.; Van den Ende, W. Sugars for plant innate immunity. J. Exp. Bot. 2012, 63, 3989–3998. [Google Scholar] [CrossRef] [Green Version]
- Labboun, S.; Tercé-Laforgue, T.; Roscher, A.; Bedu, M.; Restivo, F.M.; Velanis, C.N.; Skopelitis, D.S.; Moshou, P.N.; Roubelakis-Angelakis, K.A.; Suzuki, A.; et al. Resolving the role of plant glutamate dehydrogenase: I. In vivo real time nuclear magnetic resonance spectroscopy experiments. Plant Cell Physiol. 2009, 50, 1761–1773. [Google Scholar]
- Cukier, C.; Lea, P.J.; Cañas, R.; Marmagne, A.; Limami, A.M.; Hirel, B. Labeling maize (Zea mays L.) leaves with 15NH4+ and monitoring nitrogen incorporation into amino acids by GC/MS analysis. Curr. Protoc. Plant Biol. 2018, e20073. [Google Scholar] [CrossRef] [PubMed]
- Komori, T.; Imayama, T.; Kato, N.; Ishida, Y.; Ueki, J.; Komari, T. Current status of binary vectors and super-binary vectors. Plant Physiol. 2007, 145, 1155–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElroy, D.; Rithenberg, M.; Wu, R. Structural characterization of a rice actin gene. Plant Mol. Biol. 1990, 14, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Saito, H.; Ohta, S.; Hiei, Y.; Komari, T.; Kumashiro, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 1996, 14, 745–750. [Google Scholar] [CrossRef]
- Martin, A.; Belastegui-Macadam, X.; Quilleré, I.; Floriot, M.; Valadier, M.H.; Pommel, B.; Andrieu, B.; Donnison, I.; Hirel, B. Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness. Agronomic, physiological and molecular aspects. New Phytol. 2005, 167, 483–492. [Google Scholar] [CrossRef]
- Bertin, P.; Gallais, A. Physiological and genetic basis of nitrogen use efficiency in maize. I. Agrophysiological results. Maydica 2000, 45, 53–66. [Google Scholar]
- Coïc, Y.; Lesaint, C. Comment assurer une bonne nutrition en eau et en ions minéraux en horticulture. Hortic. Fr. 1971, 8, 11–14. [Google Scholar]
- Verwoerd, T.C.; Dekker, B.N.M.; Hoekema, A. A small-scale procedure for the rapid isolation of plants RNAs. Nucleic Acids Res. 1989, 17, 2362. [Google Scholar] [CrossRef]
- Daniel-Vedele, F.; Caboche, M. A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. Mol. Gen. Genet. 1993, 240, 365–373. [Google Scholar] [CrossRef]
- Singh, R.P.; Srivastava, H.S. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol. Plant. 1986, 66, 413–416. [Google Scholar] [CrossRef]
- Turano, F.J.; Dashner, R.; Upadhayaya, A.; Caldwell, C.R. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiol. 1996, 112, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tercé-Laforgue, T.; Dubois, F.; Ferrario-Mery, S.; Pou de Crecenzo, M.A.; Sangwan, R.; Hirel, B. Glutamate dehydrogenase of tobacco (Nicotiana tabacum L.) is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration. Plant Physiol. 2004, 136, 4308–4317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neal, D.; Joy, K.D. Glutamine synthetase of pea leaves. I. Purification, stabilisation and pH optima. Arch. Biochem. Biophys. 1973, 159, 113–122. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolite profiling in Arabidopsis. In Methods in Molecular Biology, Arabidopsis Protocols, 2nd ed.; Salinas, J., Sanchez-Serrano, J.J., Eds.; Humana Press: Totowa, NJ, USA, 2006; pp. 439–447. [Google Scholar]
- Tcherkez, G.; Mahé, A.; Gauthier, P.; Mauve, C.; Gout, E.; Bligny, R.; Cornic, G.; Hodges, M. In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in illuminated leaves. Plant Physiol. 2009, 151, 620–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
Trangenic Line | T02291 | T 02289 | T 02308 | T 02312 |
---|---|---|---|---|
Gene Overexpression | GOGAT | GOGAT/IDH | GOGAT/IDH | GOGAT/IDH/GDH/GS |
2-Oxoglutarate | 1.31 | 1.23 | ||
L-Arabinose | −1.30 | −1.21 | −1.12 | −1.14 |
D-Xylose | −1.00 | −0.95 | −1.01 | −0.98 |
D-Tagatose | −1.78 | −1.79 | −1.72 | −1.40 |
D-Psicose | −1.75 | −1.83 | −1.69 | −1.40 |
Glucose-6-P | −0.72 | −0.75 | −0.59 | |
Fructose-6-P | −0.77 | −0.83 | −0.55 | |
L-Leucine | 2.17 | 1.89 | 2.29 | 1.64 |
L-Valine | 1.24 | 1.06 | 1.24 | 0.75 |
L-Serine | 1.99 | 1.97 | 2.29 | |
L-Threonine | 0.98 | 1.31 | 1.39 | |
β-Alanine | 1.47 | 2.14 | 2.22 | |
L-Isoleucine | 1.68 | 1.23 | 1.71 | |
L-Proline | 1.52 | 1.43 | ||
L-Tryptophan | 1.42 | 1.58 | ||
L-Aspartate | 1.11 | |||
L-Lysine | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañas, R.A.; Yesbergenova-Cuny, Z.; Belanger, L.; Rouster, J.; Brulé, L.; Gilard, F.; Quilleré, I.; Sallaud, C.; Hirel, B. NADH-GOGAT Overexpression Does Not Improve Maize (Zea mays L.) Performance Even When Pyramiding with NAD-IDH, GDH and GS. Plants 2020, 9, 130. https://doi.org/10.3390/plants9020130
Cañas RA, Yesbergenova-Cuny Z, Belanger L, Rouster J, Brulé L, Gilard F, Quilleré I, Sallaud C, Hirel B. NADH-GOGAT Overexpression Does Not Improve Maize (Zea mays L.) Performance Even When Pyramiding with NAD-IDH, GDH and GS. Plants. 2020; 9(2):130. https://doi.org/10.3390/plants9020130
Chicago/Turabian StyleCañas, Rafael A., Zhazira Yesbergenova-Cuny, Léo Belanger, Jacques Rouster, Lenaïg Brulé, Françoise Gilard, Isabelle Quilleré, Christophe Sallaud, and Bertrand Hirel. 2020. "NADH-GOGAT Overexpression Does Not Improve Maize (Zea mays L.) Performance Even When Pyramiding with NAD-IDH, GDH and GS" Plants 9, no. 2: 130. https://doi.org/10.3390/plants9020130
APA StyleCañas, R. A., Yesbergenova-Cuny, Z., Belanger, L., Rouster, J., Brulé, L., Gilard, F., Quilleré, I., Sallaud, C., & Hirel, B. (2020). NADH-GOGAT Overexpression Does Not Improve Maize (Zea mays L.) Performance Even When Pyramiding with NAD-IDH, GDH and GS. Plants, 9(2), 130. https://doi.org/10.3390/plants9020130