Efficiency, Profitability and Carbon Footprint of Different Management Programs under No-Till to Control Herbicide Resistant Papaver rhoeas
Abstract
:1. Introduction
2. Results
2.1. Climatic Data
2.2. Density Changes
2.3. Crop Yields
2.4. Economic Cost of Different Programs
2.5. Carbon Footprint
3. Discussion
3.1. Herbicide Resistance and Integrated Weed Management
3.2. Three-Year Assessment of Different Weed Management Programs
3.3. Yields and Economic Income
3.4. Reconciling Carbon Footprint, Efficiency, and Profitability
4. Material and Methods
4.1. Site Description
4.2. Characterization of the Herbicide Resistance
4.3. Integrated Weed Management Assessments
4.4. Data Collection
4.5. Estimation of Carbon Footprint
- (1)
- Diesel oil: fabrication and combustion of diesel oil (CO2 emissions derived from the diesel combustion by farm operations).
- (2)
- Synthetic and organic fertilizers: fabrication of synthetic fertilizers (N-P-K) plus gas emissions of N2O (direct and indirect emissions deriving from the application of both fertilizer types to the soil).
- (3)
- Plant protection products: fabrication of fungicides, insecticides and herbicides.
- (4)
- Transport of the products and raw materials: transport of farm products from the farm-gate to the store and of raw materials (fertilizers and plant protection products) from the distribution centre to the farm-gate.
- (5)
- Transport and residues management: transport materials (wood or plastic boxes), and packaging plant protection products, are considered residues. Other plastic, wood or iron packaging materials are not included. It is assumed that the transport to the recycling centre or to the dump is made by the farmer himself.
- (6)
- Infrastructure use: the redemption of different materials used for infrastructure (i.e., steel or rubber from fieldwork-related machinery). In these cases, the gasses emitted during the construction or operation of infrastructures should be amortized during the lifespan assigned to each infrastructure.
4.6. Vectors and Conversion Factors
4.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Programs | CO2 Footprint (kg CO2eq kg−1 Product) | Average | CO2 Footprint (kgCO2eq ha−1) | Average | ||||
---|---|---|---|---|---|---|---|---|
2014–2015 | 2015–2016 | 2016–2017 | 2014–2015 | 2015–2016 | 2016–2017 | |||
Program 1 TRAD | ||||||||
CO2 DIESEL OIL field works | 0.1 | 0.0 | 0.1 | 0.1 | 191 | 266 | 182 | 213 |
CO2 FERTILIZERS fabrication | 0.6 | 0.2 | 0.8 | 0.5 | 1742 | 1167 | 1990 | 1633 |
CO2 FERTILIZERS application | 0.2 | 0.1 | 0.3 | 0.2 | 623 | 987 | 745 | 785 |
CO2 AGROCHEMICALS fabrication | 0.0 | 0.0 | 0.0 | 0.0 | 46 | 47 | 46 | 47 |
CO2 transport of product | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 4 | 4 | 4 |
CO2 transport of raw materials | 0.0 | 0.0 | 0.0 | 0.0 | 114 | 78 | 126 | 106 |
CO2 INFRAESTRUCTURE tractor | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 5 | 3 | 4 |
TOTAL | 0.9 | 0.4 | 1.2 | 0.8 | 2725 | 2553 | 3096 | 2791 |
PROGRAM 2 CER | ||||||||
CO2 DIESEL OIL field works | 0.1 | 0.0 | 0.1 | 0.1 | 191 | 266 | 180 | 213 |
CO2 FERTILIZERS fabrication | 0.6 | 0.2 | 0.7 | 0.5 | 1742 | 1167 | 1990 | 1633 |
CO2 FERTILIZERS application | 0.2 | 0.1 | 0.3 | 0.2 | 623 | 987 | 745 | 785 |
CO2 AGROCHEMICALS fabrication | 0.0 | 0.0 | 0.0 | 0.0 | 31 | 52 | 67 | 50 |
CO2 transport of product | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 4 | 4 | 4 |
CO2 transport of raw materials | 0.0 | 0.0 | 0.0 | 0.0 | 114 | 78 | 126 | 106 |
CO2 INFRAESTRUCTURE tractor | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 5 | 3 | 4 |
TOTAL | 1 | 0.4 | 1.1 | 0.8 | 2710 | 2558 | 3115 | 2794 |
PROGRAM 3 CR | ||||||||
CO2 DIESEL OIL field works | 1.1 | 0.1 | 0.1 | 0.4 | 199 | 273 | 199 | 224 |
CO2 FERTILIZERS fabrication | 9.5 | 0.3 | 0.6 | 3.5 | 1742 | 1167 | 1990 | 1633 |
CO2 FERTILIZERS application | 3.4 | 0.2 | 0.2 | 1.3 | 623 | 987 | 745 | 785 |
CO2 AGROCHEMICALS fabrication | 0.5 | 0.0 | 0.0 | 0.2 | 88 | 73 | 82 | 81 |
CO2 transport of product | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 4 | 4 | 4 |
CO2 transport of raw materials | 0.6 | 0.0 | 0.0 | 0.2 | 114 | 78 | 126 | 106 |
CO2 INFRAESTRUCTURE tractor | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 5 | 4 | 4 |
TOTAL | 15.2 | 0.6 | 0.9 | 5.6 | 2774 | 2586 | 3149 | 2837 |
PROGRAM 4 LI | ||||||||
CO2 DIESEL OIL field works | 0.2 | 0.0 | 0.1 | 0.1 | 203 | 123 | 195 | 174 |
CO2 FERTILIZERS fabrication | 1.8 | 0.0 | 0.5 | 0.8 | 1742 | 0 | 1990 | 1244 |
CO2 FERTILIZERS application | 0.6 | 0.0 | 0.2 | 0.3 | 623 | 0 | 745 | 456 |
CO2 AGROCHEMICALS fabrication | 0.0 | 0.0 | 0.0 | 0.0 | 31 | 57 | 82 | 57 |
CO2 transport of product | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 0 | 4 | 3 |
CO2 transport of raw materials | 0.1 | 0.0 | 0.0 | 0.0 | 114 | 0 | 126 | 80 |
CO2 INFRAESTRUCTURE tractor | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 3 | 4 | 3 |
TOTAL | 2.8 | 0.0 | 0.8 | 1.2 | 2722 | 182 | 3146 | 2016 |
References
- Royo-Esnal, A.; Recasens, J.; Garrido, J.; Torra, J. Rigput brome (Bromus diandrus Roth.) management in a no tilled field in Spain. Agronomy 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Gerhards, R.; Dentler, J.; Gutjahr, C.; Aurburger, S.; Bahrs, E. An approach to investigate the costs of herbicide-resistant Alopecurus myosuroides. Weed Res. 2016, 56, 407–414. [Google Scholar] [CrossRef]
- Gill, G.; Holmes, J.E. Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum. Pestic. Sci. 1997, 51, 352–358. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Sánchez-Girón, V.; Serrano, A.; Suárez, M.; Hernanz, J.L.; Navarrete, L. Economics of reduced tillage for cereal and legume production on rainfed farm enterprises of different sizes in semiarid conditions. Soil Tillage Res. 2007, 95, 149–160. [Google Scholar] [CrossRef]
- Torra, J.; Royo-Esnal, A.; Recasens, J. Management of herbicide-resistant Papaver rhoeas in dry land cereal fields. Agron. Sustain. Dev. 2011, 31, 483–490. [Google Scholar] [CrossRef]
- Dorado, J.; Del Monte, J.P.; López-Fando, C. Weed seedbank response to crop rotation and tillage in semiarid agroecosystems. Weed Sci. 1999, 47, 67–73. [Google Scholar] [CrossRef]
- Dorado, J.; López-Fando, C. The effect of tillage system and use of a paraplow on weed flora in a semiarid soil from central Spain. Weed Res. 2006, 46, 424–431. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Tillage Res. 2016, 161, 135–142. [Google Scholar] [CrossRef]
- Torra, J.; Recasens, J. Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Sci. 2008, 56, 826–833. [Google Scholar] [CrossRef]
- Rey-Caballero, J.; Menéndez, J.; Osuna, M.D.; Salas, M.; Torra, J. Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pestic. Biochem. Physiol. 2017, 138, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirujeda, A.; Recasens, J.; Taberner, A. Effect of ploughing and harrowing on a herbicide resistant corn poppy (Papaver rhoeas) population. Biol. Agric. Hortic. 2003, 21, 231–246. [Google Scholar] [CrossRef]
- Torra, J.; Cirujeda, A.; Taberner, A.; Recasens, J. Evaluation of herbicides to manage herbicide-resistant corn poppy (Papaver rhoeas) in winter cereals. Crop Prot. 2010, 29, 731–736. [Google Scholar] [CrossRef]
- Rey-Caballero, J.; Royo-Esnal, A.; Recasens, J.; González, I.; Torra, J. Management options for multiple herbicide–resistant corn poppy (Papaver rhoeas) in Spain. Weed Sci. 2017, 65, 295–304. [Google Scholar] [CrossRef]
- Torra, J.; Royo-Esnal, A.; Rey-Caballero, J.; Recasens, J.; Salas, M. Management of Herbicide-Resistant Corn Poppy (Papaver rhoeas) under Different Tillage Systems Does Not Change the Frequency of Resistant Plants. Weed Sci. 2018, 66, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Agricultural activities and the global carbon cycle. Nutr. Cycl. Agroecosyst. 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Liu, C.; Cutforth, H.; Chai, Q.; Gan, Y. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 2016, 36, 69. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Carbon emissions from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Beckie, H.J. Herbicide-resistant weeds: Management tactics and practices. Weed Technol. 2006, 20, 793–814. [Google Scholar] [CrossRef]
- Cirujeda, A.; Recasens, J.; Taberner, A. Dormancy cycle and viability of buried seeds of Papaver rhoeas. Weed Res. 2006, 46, 327–334. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llevellyn, R.S.; Nichols, R.L.; Webster, T.M.; Bradley, K.W.; Frisvold, G.; Powles, S.B.; Burgos, N.R.; et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Cirujeda, A.; Recasens, J.; Torra, J.; Taberner, A. A germination study of herbicide-resistant field poppies in Spain. Agron. Sustain. Dev. 2008, 28, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Torra, J.; Cirujeda, A.; Recasens, J.; Taberner, A.; Powles, S.B. PIM (Poppy Integrated Management): A bio-economic decision support model for the management of Papaver rhoeas in rain-fed cropping systems. Weed Res. 2010, 50, 127–139. [Google Scholar] [CrossRef]
- García, A.L.; Royo-Esnal, A.; Torra, J.; Cantero-Martínez, C.; Recasens, J. Integrated management of Bromus diandrus in dryland cereal fields under no-till. Weed Res. 2014, 54, 408–417. [Google Scholar] [CrossRef]
- Moss, S.R.; Perryman, S.A.M.; Tatnell, L.V. Managing herbicide-resistant blackgrass (Alopecurus myosuroides): Theory and practice. Weed Technol. 2007, 21, 300–309. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Hamei, C.; Cutforth, H.; Wang, H. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron. Sustain. Dev. 2011, 31, 643–656. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H.L., Jr., Chen, Z., Eds.; Contribution of Working Group I to the Fourth Assessment Report for the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; p. 40. [Google Scholar]
- WRI & WBCSD. Greenhouse Gas Protocol. Product Life Cycle Accounting and Reporting Standard. Available online: https://ghgprotocol.org/product-standard (accessed on 24 January 2020).
- BSI. Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services; PAS 2050:2011; Department for Business, Innovation and Skills; British Standards Institution: London, UK, 2011; p. 38.
- ECOINVENT. Ecoinvent 3.0. The Ecoinvent Database. Available online: www.ecoinvent.org (accessed on 12 March 2019).
Months | Mean Temperature (°C) | Precipitation (mm) | ||||
---|---|---|---|---|---|---|
2014–2015 | 2015–2016 | 2016–2017 | 2014–2015 | 2015–2016 | 2016–2017 | |
September | 20.0 | 16.9 | 19.8 | 48.7 | 73.8 | 15.4 |
October | 15.5 | 13.4 | 14.0 | 21.0 | 8.6 | 42.7 |
November | 9.6 | 8.1 | 7.5 | 81.1 | 34.0 | 66.6 |
December | 3.2 | 5.2 | 3.1 | 7.5 | 2.9 | 7.2 |
January | 2.3 | 5.4 | 1.7 | 10.3 | 5.7 | 16.5 |
February | 3.5 | 5.7 | 6.7 | 5.8 | 47.8 | 18.8 |
March | 9.0 | 6.9 | 9.0 | 24.0 | 31.6 | 89.3 |
April | 12.2 | 10.7 | 11.3 | 15.9 | 81.4 | 48.0 |
May | 17.6 | 14.1 | 16.7 | 4.0 | 68.4 | 17.7 |
June | 21.4 | 20.5 | 22.5 | 81.1 | 9.2 | 25.9 |
Mean(°C)/Total (mm) | 11.4 | 10.7 | 11.2 | 299.4 | 363.4 | 348.1 |
Season | 2014–2015 | 2015–2016 | 2016–2017 | 2017 | Change (%) in ID (2014–17) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Program | ID | FD | DR (%) | ID | FD | DR (%) | ID | FD | DR (%) | ID | |
1. TRAD | 218 (a) | 0.75 (ab) | 99.5 | 83 (a) | 0.03 (a) | 99.9 | 4 (a) | 0.78 (a) | 80.5 | 16 (a) | 93 (a) |
2. CER | 162 (a) | 0 (b) | 100 | 96 (a) | 0.05 (a) | 99.9 | 11 (a) | 0.30 (a) | 97.2 | 29 (a) | 82 (a) |
3. CR | 142 (a) | 0.78 (a) | 99.2 | 65 (a) | 0.63 (b) | 99 | 69 (ab) | 1.03 (a) | 98.5 | 34 (a) | 76 (a) |
4. LI | 122 (a) | 0.28 (ab) | 99.2 | 181 (a) | 0 (a) | 100 | 156 (b) | 1.03 (a) | 99.8 | 80 (b) | 35 (b) |
Season | Yield | Gross Income * | |||||
---|---|---|---|---|---|---|---|
2014–2015 | 2015–2016 | 2016–2017 | 2014–2015 | 2015–2016 | 2016–2017 | Total | |
Program | kg ha−1 | kg ha−1 | kg ha−1 | € ha−1 | € ha−1 | € ha−1 | € ha−1 |
TRAD | 2923 ± 541 (a) | 6783 ± 753 (a) | 2631 ± 682 (a) | 522 ± 97 | 1031± 76 | 416 ± 108 | 1969 ± 142 (a) |
CER | 2683 ± 500 (a) | 6723 ± 497 (a) | 2919 ± 1004 (a) | 517 ± 96 | 1022 ± 114 | 481 ± 166 | 2020 ± 292 (a) |
CR | 183 ± 31 (c) | 4343 ± 463 (b) | 3514 ± 704 (a) | 44 ± 7 | 660 ± 70 | 580 ± 116 | 1284 ± 178 (b) |
LI | 989 ± 137 (b) | - | 3891 ± 744 (a) | 177 ± 25 | - | 615 ± 118 | 792 ± 122 (c) |
Season | Cost of Management Programs (€) | |||
---|---|---|---|---|
TRAD | CER | CR | LI | |
2014–2015 | 509.14 | 516.52 | 601.64 | 512.27 |
2015–2016 | 506.52 | 521.52 | 521.52 | 59.87 |
2016–2017 | 524.12 | 571.12 | 571.12 | 547.19 |
Total 3 seasons (€) | 1539.78 | 1609.16 | 1694.28 | 1119.33 |
Kg CO2 eq kg product−1 | Season | Average 1 | Kg CO2 eq ha−1 | Season | Average | ||||
---|---|---|---|---|---|---|---|---|---|
2014–2015 | 2015–2016 | 2016–2017 | 2014–2015 | 2015–2016 | 2016–2017 | ||||
TRAD | 0.9 | 0.4 | 1.2 | 0.8 (a) | TRAD | 2725 | 2553 | 3096 | 2791 |
CER | 1 | 0.4 | 1.1 | 0.8 (a) | CER | 2710 | 2558 | 3115 | 2794 |
CR | 15.2 | 0.6 | 0.9 | 5.6 (b) | CR | 2774 | 2586 | 3149 | 2837 |
LI | 2.8 | n.a* | 0.8 | 1.2 (a) | LI | 2722 | 182 | 3146 | 2016 |
Season 2014–2015 | Season 2015–2016 | Season 2016–2017 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Program | Crop | Var. | Dens. kg ha−1 | DS | Crop | Var. | Dens. kg ha−1 | DS | Crop | Var. | Dens. kg ha−1 | DS |
TRAD | Barley | Cometa | 200 | 31/10 | Barley | Meseta | 200 | 6/11 | Barley | Meseta | 200 | 4/11 |
CER | Wheat | Verdun | 200 | 24/10 | Barley | Graphic | 200 | 12/11 | Wheat | Astur N | 200 | 4/11 |
CR | Pea | Mystic | 200 | 23/01 | Barley | Graphic | 200 | 12/11 | Wheat | Artur N | 200 | 4/11 |
LI | Barley | Cometa | 220 | 13/12 | Fallow | - | - | - | Barley | Graphic | 220 | 2/12 |
Program | Crop | Herb | Cultural Management | Crop | Herb. | Cultural management | Crop | Herb. | Cultural management | |||
TRAD | Barley | Post 1 | - | Barley | Post 4 | - | Barley | Post 7 | - | |||
CER | Wheat | Post 2 | - | Barley | Post 5 | SD | Wheat | Pre 8 + Post 9 | - | |||
CR | Pea | Pre 3 | - | Barley | Post 6 | SD | Wheat | Pre 10 + Post 1 | - | |||
LI | Barley | - | SD/HD/MC | Fallow | - | Shredding | Barley | - | SD/HD/MC |
Product | Active Ingredient | Formulation | Dose |
---|---|---|---|
Touchdown | glyphosate (36%) | SL | 2 L ha−1 |
Image Gold | bromoxynil + mecoprop | EC | 1.75 L ha−1 |
Intensity | aminopyralid + florasulam | WG | 33 g ha−1 |
Mutual | pendimethalin + imazamox | EC | 4 L ha−1 |
Legacy plus | chlortoluron + diflufenican | SC | 2 L ha−1 |
Rokenyl | Isoxaben | SC | 0.2 L ha−1 |
Treatment | Management Program | |||
---|---|---|---|---|
1. TRAD | 2. CER | 3. CR | 4. LI | |
Presowing glyphosate | 20/10/2014 | 20/10/2014 | 12/01/2015 | 11/12/2014 |
Bromoxyil + MCPP | 12/01/2015 | |||
Aminopyralid + florasulam | 12/01/2015 | |||
Pendimenthalin + imazamox | 26/01/2015 | |||
Flexible rod harrow | 18/03/2015 | |||
Shredding | 15/09/2015 | 15/09/2015 | 15/09/2015 | 15/09/2015 |
Presowing glyphosate | 06/10/2015 | 10/12/2015 | 10/12/2015 | 20/01/2016 |
Aminopyralid + florasulam | 28/12/2015 | 19/02/2016 | 19/02/2016 | |
Shredding | 04/06/2016 | |||
Presowing glyphosate | 06/11/2016 | 06/11/2016 | 06/11/2016 | 01/12/2016 |
Isoxaben | 07/11/2016 | 07/11/2016 | ||
Diflufenican + chlortoluron | 12/12/2016 | 12/12/2016 | 12/12/2016 | |
Flexible rod harrow | 01/03/2016 |
VECTOR FAMILY | VECTOR | VECTOR UNITY | CONVERSION FACTOR (kg CO2-eq Vector Unity-1) |
---|---|---|---|
Diesel oil | Diesel oil (fabrication and combustion) | Kg | 3.7243 |
Fertilizers | Nitrogen (fabrication) | Kg | 12.68 |
N2 emissions | Kg | 6.205 (indirect emissions included) | |
Phosphorous o (P2O5)(fabrication) | Kg | 2.2344 | |
Potassium (K2O) (fabrication) | Kg | 2.4099 | |
Herbicides, fungicides and insecticides | Herbicides, fungicides and insecticides | Kg | 10.3087 |
Transport of products and raw materials | Truck (transport, freight, lorry, 7.5-16 metric ton) | t·km | 0.230849 |
Small truck (Lorry3.5-7.5t) | t·km | 0.49305 | |
Van (transport, freight, light commercial vehicle) | t·km | 1.9657 | |
Tractor (transport, tractor and trailer, agricultural (CH)) | t·km | 0.38842 | |
Infrastructure (Field machinery—tractor) | Iron | Kg | 2.54615553 |
Rubber | Kg | 2.874869847 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recasens, J.; Royo-Esnal, A.; Valencia-Gredilla, F.; Torra, J. Efficiency, Profitability and Carbon Footprint of Different Management Programs under No-Till to Control Herbicide Resistant Papaver rhoeas. Plants 2020, 9, 433. https://doi.org/10.3390/plants9040433
Recasens J, Royo-Esnal A, Valencia-Gredilla F, Torra J. Efficiency, Profitability and Carbon Footprint of Different Management Programs under No-Till to Control Herbicide Resistant Papaver rhoeas. Plants. 2020; 9(4):433. https://doi.org/10.3390/plants9040433
Chicago/Turabian StyleRecasens, Jordi, Aritz Royo-Esnal, Francisco Valencia-Gredilla, and Joel Torra. 2020. "Efficiency, Profitability and Carbon Footprint of Different Management Programs under No-Till to Control Herbicide Resistant Papaver rhoeas" Plants 9, no. 4: 433. https://doi.org/10.3390/plants9040433
APA StyleRecasens, J., Royo-Esnal, A., Valencia-Gredilla, F., & Torra, J. (2020). Efficiency, Profitability and Carbon Footprint of Different Management Programs under No-Till to Control Herbicide Resistant Papaver rhoeas. Plants, 9(4), 433. https://doi.org/10.3390/plants9040433