Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation Conditions
2.2. Spectral Data of Photoreceptors and Light Sources
2.3. Calculating the Light Absorption of Photoreceptors
2.4. Light Quality Treatments
2.5. Development of Light Sources
2.6. Measurement of Growth Parameters and Morphological Characteristics
2.7. Measurement of Photosynthetic Rate
2.8. Statistical Analysis
3. Results
3.1. Light Absorption of Photoreceptors under Light Sources
3.2. Photomorphogenesis of Cucumber Plants
3.3. Leaf Photosynthetic Rate and Plant Dry Mass
4. Discussion
4.1. Photomorphogenesis of Cucumber Plants
4.2. Productivity of Cucumber Plants under Artificial Lighting
4.3. Light Absorption of Photoreceptors and Color Segments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Franklin, K.A.; Quail, P.H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 2009, 61, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, B.L. Spatiotemporal phytochrome signaling during photomorphogenesis: From Physiology to molecular mechanisms and back. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Possart, A.; Fleck, C.; Hiltbrunner, A. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. Plant Sci. 2014, 217–218, 36–46. [Google Scholar] [CrossRef]
- Keuskamp, D.H.; Pollmann, S.; Voesenek, L.A.C.J.; Peeters, A.J.M.; Pierik, R. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl. Acad. Sci. USA 2010, 107, 22740–22744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frechilla, S.; Talbott, L.D.; Bogomolni, R.A.; Zeiger, E. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol. 2000, 41, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Hogewoning, S.W.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Harbinson, J. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 2010, 61, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Ki-Ho, S.; Myung-Min, O. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Hortsci. Horts 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Casal, J.J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 2013, 64, 403–427. [Google Scholar] [CrossRef]
- Vandenbussche, F.; Pierik, R.; Millenaar, F.F.; Voesenek, L.A.; Van Der Straeten, D. Reaching out of the shade. Curr. Opin. Plant Biol. 2005, 8, 462–468. [Google Scholar] [CrossRef]
- BallarÉ, C.L.; SÁNchez, R.A.; Scopel, A.L.; Casal, J.J.; Ghersa, C.M. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 1987, 10, 551–557. [Google Scholar] [CrossRef]
- Gommers, C.M.M.; Visser, E.J.W.; Onge, K.R.S.; Voesenek, L.A.C.J.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef]
- Smith, H.; Holmes, M.G. The fuction of phytochrome in the natural environment—III. Measurement and calculation of phytochrome photoequilibria. Photochem. Photobiol. 1977, 25, 547–550. [Google Scholar] [CrossRef]
- Cary, A.M. Academic research perspective of LEDs for the horticulture industry. Hortsci. Horts 2015, 50, 1293–1296. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, N.; Ishikura, M.; Suzuki, H.; Yamori, W.; Goto, E. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce. Hortscience 2018, 53, 1804–1809. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.K.; Gantait, S.; Jeong, B.R.; Hwang, S.J. Enhanced growth and cardenolides production in digitalis purpurea under the influence of different LED exposures in the plant factory. Sci. Rep. 2018, 8, 18009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, H.I.; Zhang, W.; Son, J.E. Optimal duration of drought stress near harvest for promoting bioactive compounds and antioxidant capacity in kale with or without UV-B radiation in plant factories. Plants 2020, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Trouwborst, G.; Oosterkamp, J.; Hogewoning, S.W.; Harbinson, J.; Van Ieperen, W. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol. Plant 2010, 138, 289–300. [Google Scholar] [CrossRef]
- Pattison, P.; Tsao, J.; Brainard, G.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef]
- Butler, W.; Hendricks, S.; Siegelman, H. Actton spectra of phytochrome in vitro. Photochem. Photobiol. 1964, 3, 521–528. [Google Scholar] [CrossRef]
- Smith, H. Light quality, photoperception, and plant strategy. Annu. Rev. Plant Physiol. 1982, 33, 481–518. [Google Scholar] [CrossRef]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Trans. Asae 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
- Morgan, D.; Smith, H. A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta 1979, 145, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Runkle, E.S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Jin, X.; Albert, R.; Assmann, S.M. Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought. PLoS Comput. Biol. 2014, 10, e1003930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Liu, B.; Liao, J.; Yang, Z.; Lin, C.; Oka, Y. Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. Agronomy 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Schleicher, E.; Meier, S.; Viana, R.M.; Pokorny, R.; Ahmad, M.; Bittl, R.; Batschauer, A. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 2007, 282, 14916–14922. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, M.; Swartz, T.E.; Olney, M.A.; Onodera, A.; Mochizuki, N.; Fukuzawa, H.; Asamizu, E.; Tabata, S.; Kanegae, H.; Takano, M.; et al. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol. 2002, 129, 762–773. [Google Scholar] [CrossRef] [Green Version]
- ASTM. Standard Tables for Reference Solar Spectral Irradiances: Direct normal and hemispherical on 37° tilted surface. In G173-03; American Society for Testing and Materials: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Kozuka, T.; Horiguchi, G.; Kim, G.-T.; Ohgishi, M.; Sakai, T.; Tsukaya, H. The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar. Plant Cell Physiol. 2005, 46, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.A. Shade avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef]
- Keuskamp, D.H.; Sasidharan, R.; Vos, I.; Peeters, A.J.; Voesenek, L.A.; Pierik, R. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J. 2011, 67, 208–217. [Google Scholar] [CrossRef]
- Snowden, M.C.; Cope, K.R.; Bugbee, B. Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLoS ONE 2016, 11, e0163121. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Allen, T.; Whitelam, G.C. Phytochrome A is an irradiance-dependent red light sensor. Plant J. 2007, 50, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Bugbee, B. Toward an optimal spectral quality for plant growth and development: The importance of radiation capture. In Proceedings of the VIII International Symposium on Light in Horticulture, East Lansing, MI, USA, 22–26 May 2016; pp. 1–12. [Google Scholar]
- Evans, L.T. Crop evolution, Adaptation and Yield; Cambridge University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Krizek, D.T.; Mirecki, R.M.; Bailey, W.A. Uniformity of photosynthetic photon flux and growth of poin-sett’ cucumber plants under metal halide and microwave-powered Solar-1000 Lamps. Hortscience 1998, 33, 550e-550. [Google Scholar] [CrossRef]
- Meng, Q.; Runkle, E.S. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Sci. Hort. 2019, 255, 269–280. [Google Scholar] [CrossRef]
- Wassink, E.; Stolwijk, J. Effects of light quality on plant growth. Annu. Rev. Plant Physiol. 1956, 7, 373–400. [Google Scholar] [CrossRef]
- Takahashi, N.; Ling, P.P.; Frantz, J.M. Considerations for accurate whole plant photosynthesis measurement. Environ. Control Biol. 2008, 46, 91–101. [Google Scholar] [CrossRef]
- Nishio, J.N. Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ. 2000, 23, 539–548. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef] [Green Version]
Treatment | Absorption of Photoreceptors (Arbitrary Unit) | ||||
---|---|---|---|---|---|
σCry1 | σPhot2 | σPr3 | σPfr4 | σPr/σPtotal5 | |
AS | 0.423 | 0.416 | 0.520 | 0.484 | 0.518 |
HPS0 | 0.173 | 0.154 | 0.604 | 0.220 | 0.733 |
FL0 | 0.397 | 0.401 | 0.440 | 0.159 | 0.735 |
RB0 | 0.652 | 0.606 | 1.835 | 0.719 | 0.718 |
HPSm | 0.509 | 0.507 | 0.536 | 0.476 | 0.530 |
FLm | 0.525 | 0.514 | 0.527 | 0.471 | 0.528 |
RBm | 0.566 | 0.580 | 0.567 | 0.493 | 0.535 |
Light Source | Absorption of Photoreceptors (Arbitrary Unit) | ||||
---|---|---|---|---|---|
σCry1 | σPhot2 | σPr3 | σPfr4 | σPr/σPtotal5 | |
Standard solar spectrum 6 | 0.500 | 0.500 | 0.526 | 0.474 | 0.526 |
Sulfur plasma lamp | 0.611 | 0.613 | 0.468 | 0.310 | 0.601 |
Red LED (660 nm 7) | 0.023 | 0.020 | 2.277 | 0.861 | 0.726 |
Red LED (630 nm) | 0.053 | 0.046 | 1.230 | 0.414 | 0.748 |
Green LED (530 nm) | 0.085 | 0.056 | 0.106 | 0.033 | 0.763 |
Green LED (525 nm) | 0.216 | 0.153 | 0.162 | 0.061 | 0.725 |
Blue LED (450 nm) | 2.935 | 3.178 | 0.066 | 0.154 | 0.300 |
Far-red LED (730 nm) | 0.133 | 0.120 | 0.159 | 1.236 | 0.114 |
White LED (6000 K 8) | 0.777 | 0.855 | 0.464 | 0.229 | 0.690 |
White LED (3000 K) | 0.289 | 0.301 | 0.774 | 0.343 | 0.693 |
Incandescent lamp | 0.082 | 0.081 | 0.516 | 0.640 | 0.447 |
Infrared incandescent lamp | 0.000 | 0.000 | 0.356 | 0.772 | 0.315 |
Treatment | Number of Leaves | Total Leaf Area (cm2) | Projected Area Ratio (%) 1 | Petiole Length (cm) | Internode Length (cm) |
---|---|---|---|---|---|
AS | 6.0 a | 632.6 a,2 | 78.3 a | 6.6 a | 4.1 a |
HPS0 | 6.0 a | 670.1 a | 57.9 b | 3.5 b | 1.5 b |
FL0 | 6.3 a | 688.2 a | 57.5 b | 3.0 b | 1.8 b |
RB0 | 6.7 a | 656.0 a | 43.1 c | 3.3 b | 1.9 b |
HPSm | 6.3 a | 709.2 a | 77.8 a | 7.2 a | 4.6 a |
FLm | 5.7 a | 758.3 a | 79.2 a | 6.3 a | 4.2 a |
RBm | 7.0 a | 712.9 a | 71.7 a | 6.9 a | 4.1 a |
Treatment | In Situ Photosynthetic Rate (μmolCO2 m−2 s−1) | Dry Mass (g) |
---|---|---|
AS | 2.84 d,1 | 3.40 a,b |
HPS0 | 3.16 c | 2.35 c |
FL0 | 4.30 b | 2.29 c |
RB0 | 5.12 a | 2.58 c |
HPSm | 2.13 e | 3.83 a |
FLm | 2.02 e | 2.97 b,c |
RBm | 2.17 e | 3.44 a,b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.H.; Kim, J.; Yoon, H.I.; Son, J.E. Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors. Plants 2020, 9, 556. https://doi.org/10.3390/plants9050556
Kang WH, Kim J, Yoon HI, Son JE. Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors. Plants. 2020; 9(5):556. https://doi.org/10.3390/plants9050556
Chicago/Turabian StyleKang, Woo Hyun, Jaewoo Kim, Hyo In Yoon, and Jung Eek Son. 2020. "Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors" Plants 9, no. 5: 556. https://doi.org/10.3390/plants9050556
APA StyleKang, W. H., Kim, J., Yoon, H. I., & Son, J. E. (2020). Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors. Plants, 9(5), 556. https://doi.org/10.3390/plants9050556