Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil, Fly Ash and Plant Analysis
2.3. Chlorophyll a Fluorescence
2.4. Metabolite Analysis
2.4.1. Pigment Content
2.4.2. MDA Content
2.4.3. Phenolic Content
2.4.4. Ascorbic Acid Content
2.4.5. Radical Scavenging Activity
2.5. Statistical Analysis
3. Results
3.1. Chemical Characterization of Soil/Fly Ash and Element Concentration
3.2. Chlorophyll a Fluorescence and Pigments
3.3. Oxidative Stress and Antioxidant Protection
3.4. Relationship between Chemical Properties, As Concentrations, Photosynthetic Parameters, Oxidative Stressand Antioxidative Capacity
4. Discussion
4.1. Chemical Properties of Soil/Fly Ash
4.2. Element Concentrations in Soil/Fly Ash/Plant
4.3. As Concentrations in Soil/Fly Ash/Plant
4.4. Chlorophyll a Fluorescence and Pigments Response to As Stress
4.5. Oxidative Stress and Antioxidant Response to As Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jala, S.; Goyal, D. Fly ash as a soil ameliorant for improving crop production—A review. Bioresour. Technol. 2006, 97, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, L. Disposal, uses and treatments of combustion ashes: A review. Resour. Conserv. Recycl. 2005, 43, 313–336. [Google Scholar] [CrossRef]
- Haynes, R.J. Reclamation and revegetation of fly ash disposal sites—Challenges and research needs. J. Environ. Manag. 2009, 90, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Tsadilas, C.; Tsantila, E.; Stamatiadis, S.; Antoniadis, V.; Samaras, V. Influence of fly ash application on heavy metal forms and their availability. In Trace Elements in the Environment (Biogeochemistry, Biotechnology and Bioremediation); Prasad, M.N.V., Sajwan, K.S., Naidu, R., Eds.; CRC, Taylor and Francis: Boca Raton, FL, USA, 2006; pp. 63–75. [Google Scholar]
- Pilon Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.N.V.; Freitas, H. Metal-Tolerant Plants: Biodiversity prospecting for phytoremediation technology. In Trace Elements in the Environment (Biogeochemistry, Biotechnology and Bioremediation); Prasad, M.N.V., Sajwan, K.S., Naidu, R., Eds.; CRC, Taylor and Francis: Boca Raton, FL, USA, 2006; pp. 483–606. [Google Scholar]
- Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Pavlović, P. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front. Environ. Sci. 2018, 6, 124. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, P.; Mitrović, M.; Djurdjević, L. An ecophysiological study of plants growing on the fly ash deposits from the “Nikola Tesla—A” thermal power station in Serbia. Environ. Manag. 2004, 33, 654–663. [Google Scholar] [CrossRef]
- Mitrović, M.; Pavlović, P.; Lakušić, D.; Stevanović, B.; Djurdjević, L.; Kostić, O.; Gajić, G. The potential of Festuca rubra and Calamagrostis epigejos for the revegetation on fly ash deposits. Sci. Total Environ. 2008, 72, 1090–1101. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, N. Fast green capping on coal fly ash basins through ecological engineering. Ecol. Eng. 2014, 73, 671–675. [Google Scholar] [CrossRef]
- Pandey, V.C.; Prakash, P.; Bajpai, O.; Kumar, A.; Sing, N. Phytodiversity on fly ash deposits: Evaluation of naturally colonized species for sustainable phytorestoration. Environ. Sci. Pollut. Res. 2015, 22, 2776–2787. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bajpai, O.; Sinhg, N. Plant regeneration potential in fly ash ecosystem. Urban For. Urban Gree. 2016, 15, 40–44. [Google Scholar] [CrossRef]
- Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Stevanović, B.; Pavlović, P. Assessment of the phytoremediation potential and an adaptive response of Festuca rubra L. sown on fly ash deposits: Native grass has a pivotal role in ecorestoration management. Ecol. Eng. 2016, 93, 250–261. [Google Scholar] [CrossRef]
- Gajić, G.; Mitrović, M.; Pavlović, P. Ecorestoration of fly ash deposits by native plant species at thermal power stations in Serbia. In Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–177. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, J.S.; Singh, R.P.; Singh, N.; Yunus, M. Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour. Conserv. Recycl. 2011, 55, 819–835. [Google Scholar] [CrossRef]
- Sharma, A.P.; Tripathi, B.D. Magnetic mapping of fly ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environ. Monit. Assess. 2008, 138, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Životić, M.M.; Stojiljković, D.D.; Jovović, A.M.; Čudić, V.V. Potential usage of fly ash and bottom ash from thermal power plant “Nikola Tesla” landfill, Serbia. Chem. Ind. 2012, 66, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Kostić, O.; Jarić, S.; Gajić, G.; Pavlović, D.; Pavlović, M.; Mitrović, M.; Pavlović, P. Pedological properties and ecological implications of substrates derived 3 and 11 years after the revegetation of lignite fly ash disposal sites in Serbia. Catena 2018, 163, 78–88. [Google Scholar] [CrossRef]
- Deonarine, A.; Kolker, A.; Foster, A.K.; Doughten, M.W.; Holland, J.T.; Bailoo, J.D. Arsenic speciation in bituminous coal fly ash anf transformations in response to redox conditions. Environ. Sci. Technol. 2016, 50, 6099–6106. [Google Scholar] [CrossRef]
- ATSDR. Agency for Toxic Substances and Disease Registry; Toxicological Profile for Arsenic (Update); US Department of Public Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007. Available online: https://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=212&tid=3 (accessed on 18 May 2020).
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press Limited: London, UK, 1995. [Google Scholar]
- Finnegan, P.M.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.A.; Islam, F.; Ali, B.; Najeeb, U.; Mao, B.; Gill, R.A.; Yan, G.; Siddique, K.H.M.; Zhou, W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 2016, 132, 42–52. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health. 2018, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Shin, H.-S.; Dewbre, G.R.; Harrison, M.J. Phosphate transport in Arabidopsis: Ph1;1 and Ph1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J. 2004, 39, 629–642. [Google Scholar] [CrossRef]
- Wu, Z.; Ren, H.; McGrath, S.P.; Wu, P.; Zhao, F.-J. Investigation the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 2011, 157, 498–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castrillo, G.; Sanchez-Bermejo, E.; de Lorenzo, L.; Crevillen, P.; Fraile-Escanciano, A.; Tc, M.; Mouriz, A.; Catarecha, P.; Sobrino-Plata, J.; Olsson, S.; et al. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 2013, 25, 2944–2957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Xu, X.; Tang, Z.; Zhang, W.; Huang, X.-Y.; Zhao, F.-J. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front. Plant Sci. 2018, 9, 1330. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Fu, S.; Yang, L.; Luan, M.; Zhao, F.; Luan, S.; Lan, W. Vacuolar SPX-MSF transporters are essential for phosphate adaptation in plants. Plant Signal. Behav. 2016, 11, e1213474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, M.; Liu, J.; Liu, Y.; Han, X.; Sun, G.; Lan, W.; Luan, S. Vacuolar phosphate transporter 1 (VPT1) affects arsenate tolerance by regulating phosphate homeostasis in Arabidopsis. Plant Cell Physiol. 2018, 59, 1345–1352. [Google Scholar] [CrossRef]
- Tu, C.; Mam, L.Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L., under hydroponic conditions. Environ. Exp. Bot. 2003, 50, 243–251. [Google Scholar] [CrossRef]
- Lou-Hing, D.; Zhang, B.; Price, A.H.; Meharg, A.A. Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environ. Exp. Bot. 2011, 72, 47–52. [Google Scholar] [CrossRef]
- Catarecha, P.; Segura, M.D.; Franco-Zorilla, J.M.; Garcia-Ponce, B.; Leyva, A. A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic-accumulation. Plant Cell 2007, 19, 1123–1133. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef] [Green Version]
- Weber, H.; Chetelat, A.; Reymond, P.; Farmer, E.E. Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J. 2004, 37, 877–888. [Google Scholar] [CrossRef]
- Morales, M.; Munne-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoeva, N.; Berova, M.; Zlatev, Z. Physiological response of maize to arsenic contamination. Biol. Plant. 2003, 47, 449–452. [Google Scholar] [CrossRef]
- Tripathi, P.; Mishra, A.; Dwivedi, S.; Chakrabarty, D.; Trivedi, P.K.; Singh, R.P. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotox. Environ. Safe 2012, 79, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, N.; Bineva, T. Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg. J. Plant Physiol. 2003, 29, 87–95. [Google Scholar]
- Kabata-Pendis, A. Trace Elements in Soils and Plants; CRC Press, Taylor and Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017, 2074. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chakraborty, S.; Hosseinazadeh, P.; Yu, Y.; Tian, S.; Petrik, I.; Bhagi, A.; Lu, Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 2014, 114, 4366–4469. [Google Scholar] [CrossRef]
- Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001, 212, 475–486. [Google Scholar] [CrossRef]
- Ågreen, G.I. Stoichiometry and nutrition of plant growth in natural communities. Ann. Rev. Ecol. Evol. Syst. 2008, 39, 153–170. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobson, J. Plant Nutrient Functions and Defficiency and Toxicity Symptoms. In Nutrient Management Module No.9. A self course from the MSU Extension Service Continuing Education Series; Montana State University Extension: Bozeman, MT, USA, 2009; 16p, Available online: http://landresources.montana.edu/nm/documents/NM9.pdf (accessed on 18 May 2020).
- Ågreen, G.I.; Weih, M. Plant stochiometry at different scales: Element concentration patterns reflect environmental more than genotype. New Phytol. 2012, 194, 944–952. [Google Scholar] [CrossRef]
- Davis, R.D.; Beckett, P.H.T.; Wollan, E. Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil. 1978, 49, 395–408. [Google Scholar] [CrossRef]
- Hall, J.L.; Williams, L.E. Transition metal transporters in plants. J. Exp. Bot. 2003, 54, 2601–2613. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N. Ascorbate, tocopherol and carotenoids: Metabolism, pathway engineering and function. In Antioxidants and Reactive Oxgen Species in Plants; Smirnoff, N., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 54–86. [Google Scholar]
- Rice-Evans, C.A.; Miller, J.M.; Paganga, G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Yamasaki, H.; Sakihama, Y.; Ikehara, N. Flavonoid peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol. 1997, 115, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tattini, M.; Guidi, L.; Morassi-Bonzi, L.; Pinelli, P.; Remorini, D.; Innocenti, E.; Giordano, C.; Massai, R.; Agati, G. On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol. 2005, 167, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Merzlyak, M.N.; Chivkunova, O.B. Light stress induced pigment changes and evidence for anthocyanin photoprotection in apple fruit. J. Photochem. Photobiol. B Biol. 2000, 55, 154–162. [Google Scholar] [CrossRef]
- Queval, G.; Foyer, C. Redox regulation of photosynthetic gene expression. Philos. Trans. R. Soc. B 2012, 367, 3475–3485. [Google Scholar] [CrossRef]
- Hong, J.; Yang, L.; Zhang, D.; Shi, J. Plant metabolomics: An indispensable system biology tool for plant science. Int. J. Mol. Sci. 2016, 17, 767. [Google Scholar] [CrossRef]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, B. Genus Dactylis. In Flora SR Serbia; Josifović, M., Ed.; Serbian Academic of Science and Arts: Belgrade, Serbia, 1973; pp. 383–387. [Google Scholar]
- Hannaway, D.B.; Larson, C.; Myers, D.; Cool, M. Orchardgrass (Dactylis glomerata L.) Forage Information System, Fact Sheet; Oregon State University: Corvallis, OR, USA, 2004; Available online: http://forages.oregonstate.edu/php/fact_sheet_print_grass.php?SpecID=5&use=Forage (accessed on 18 May 2020).
- Heuze, V.; Tran, G. Cocksfoot (Dactylis Glomerata). Feedipedia. A programme by INRA, CIRAD, AFZ and FAO. 2015. Available online: http://www.feedipedia:node/466 (accessed on 18 May 2020).
- Tjurin, I. Agrochemical Methods of Soil Analysis; Nauka: Moscow, Russia, 1965; pp. 75–102. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W. Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nahrstoffzustandes der Boden II. Chemische Extractionmetoden zu Phosphor- und Kaliumbestimmung. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Microwave assisted acid digestion of sediments, sludges and oils. In Test Methods for Evaluating Solid Waste, SW 846—Method 3051; EPA: Washington, DC, USA, 1998. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils (accessed on 18 May 2020).
- U.S. Environmental Protection Agency (USEPA). Microwave assisted acid digestion of siliceous and organically based matrices. In Test Methods for Evaluating Solid Waste, SW 846—Method 3052; EPA: Washington, DC, USA, 1996. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3052-microwave-assisted-acid-digestion-siliceous-and-organically-based (accessed on 18 May 2020).
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc iron, manganese, and copper. Soil. Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and excluders—Strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Krause, H.M.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts: Polyphenoloxidases in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Creasy, L.L. The role of low temperature in anthocyanin synthesis in McIntosh apples. Proc. Am. Soc. Hortic. Sci. 1968, 93, 716–724. [Google Scholar]
- Proctor, J.T.A. Colour stimulation in attached apples with supplementary light. Can. J. Plant Sci. 1974, 54, 499–503. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 180–198. [Google Scholar] [CrossRef]
- Djurdjević, L.; Mitrović, M.; Pavlović, P. Total phenolics and phenolic acids in plants and soils. In Plant Cell Diagnostics: Images, Biophysical and Bichemical Processes in Allelopathy. Section III: Methods of Analytical Biochemistry and Biophysics; Roshchina, V.V., Narwal, S.S., Eds.; Science Publishers: Enfield, CT, USA, 2007; pp. 155–168. [Google Scholar]
- Feldman, A.W.; Hanks, R.W. Phenolic content in the roots and leaves of tolerant and susceptible cultivars attacked by Rodopholus similis. Phytochemistry 1968, 7, 5–12. [Google Scholar] [CrossRef]
- Arya, S.P.; Mahajan, M. Colorimetric determination of ascorbic acid in pharmaceutical preparations and biological samples. Microchim. Acta 1997, 127, 45–49. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bjorkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fuorescence characteristics at 77 K among vascular plant of divers origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Dželetović, Ž.; Filipović, R. Grain characteristics of crops grown on power plant ash and bottom slag deposit. Resour. Conserv. Recycl. 1995, 13, 105–113. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 887–1005. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, J.V.; Walker, P.L. Mineral Matter and Trace Elements in U.S. Coals; U.S. Government Printing Office: Washington, DC, USA, 1972; p. 183.
- Manoharan, V.; Yunusa, I.A.M.; Loganathan, P.; Lawrie, R.; Murray, B.R.; Skilbeck, C.G.; Eamus, D. Boron contents and solubility in Australian fly ashes and its uptake by canola (Brassica napus L.) from the ash-amended soils. Aust. J. Soil Res. 2010. [Google Scholar] [CrossRef] [Green Version]
- Iwashita, A.; Sakaguchi, Y.; Nakajima, T.; Takanashi, H.; Ohki, A.; Kambara, S. Leaching characteristics of boron and selenium for various coal fly ashes. Fuel 2005, 84, 479–485. [Google Scholar] [CrossRef]
- Takano, J.; Miwa, K.; Fujiwara, T. Boron transport mechanisms: Collaboration of channels and transporters. Trends Plant Sci. 2008, 13, 451–457. [Google Scholar] [CrossRef]
- Reid, R. Understanding the boron transport network in plants. Plant Soil. 2014, 385, 1–13. [Google Scholar] [CrossRef]
- Reid, R.; Fitzpatrick, K. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol. 2009, 151, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.R.; French, D.; Jankowski, J. Comparative evaluation of leachability test methods and element mobility for selected Australian fly ash samples. Cooperative Research Centre for Coal in Sustainable Development. Tech. Note 2003, 22. Available online: http://pandora.nla.gov.au/pan/64389/20080828-1328/www.ccsd.biz/publications/694.html (accessed on 18 May 2020).
- Izquierdo, M.; Querol, X. Leaching behavior of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ayuso, E.; Garcia-Sanchez, A. Palygorskite as a feasible amendment to stabilize heavy metals polluted soils. Environ. Pollut. 2003, 125, 337–344. [Google Scholar] [CrossRef]
- Johansson, L.; Xydas, C.; Messios, N.; Stoltz, E.; Greger, M. Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus. Appl. Geochem. 2005, 20, 101–107. [Google Scholar] [CrossRef]
- Lou, L.; Shen, Z.; Li, X. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ. Exp. Bot. 2004, 51, 111–120. [Google Scholar] [CrossRef]
- Pandey, V.C. Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol. Eng. 2013, 57, 336–341. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, R.P.; Singh, B. Naturally growing Saccharum munja L. on the fly ash lagoons: A potential ecological engineer for the revegetation and stabilization. Ecol. Eng. 2012, 40, 95–99. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.H.; Andren, A.W.; Carter, J.A.; Emery, J.F.; Feldman, C.; Fulkerson, W.; Lyon, W.S.; Ogle, J.C.; Talmi, Y.; Hook, R.I.; et al. Pathways of thirty-seven trace elements through coal—Fired power plant. Environ. Sci. Technol. 1975, 9, 973–979. [Google Scholar] [CrossRef]
- Pöykiö, R.; Manskinen, K.; Dahl, O.; Mäkelä, M.; Nurmesniemi, H. Release of Elements in Bottom Ash and Fly Ash from Incineration of Peat—And Wood—Residues using a Sequential Extracttion Procedure. World Acad. Sci. Eng. Technol. 2011, 60, 1417–1421. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risk of Metals; Springer: New York, NY, USA, 2001. [Google Scholar]
- Kukier, U.; Ishak, C.F.; Summer, M.E.; Miller, W.P. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut. 2003, 123, 255–266. [Google Scholar] [CrossRef]
- Doyle, P.; Fletcher, W.K.; Brink, V.C. Trace element content of soils and plants from Selwyn Mountains, yukon and Northwest Territories. Can. J. Bot. 1973, 51, 421. [Google Scholar] [CrossRef]
- Fitzpatrick, K.L.; Tyerman, S.D.; Kaiser, B.N. Molybdate transporter through the plant sulfate transporter SHST1. FEBS Lett. 2008, 582, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Jimenez, M.; Chamiso-Ampudia, A.; Llamas, A.; Galvan, A.; Fernandez, E. Roles of molybdenum in plants and improvement of its acquisition and use efficiency. In Plant Micronutrient Use Efficiency. Molecular and Genomic Perspectives in Crop Plants; Hossain, M.A., Kamiya, T., Burritt, D.J., Phan Tran, L.-S., Fujuwara, T., Eds.; Academic Press, Elsevier: Oxford, UK, 2018; pp. 137–159. [Google Scholar]
- Gutenmann, W.H.; Pakkala, Y.S.; Churey, D.J.; Kelly, W.C.; Lisk, D.J. Arsenic, boron, molybdenum, and selenium in successive cuttings of forage crops field grown on fly ash amended soil. J. Agric. Food Chem. 1979, 27, 1393–1395. [Google Scholar] [CrossRef]
- Nugteren, H.W.; Janssen Jurkovicova, M.; Scarlett, B. Improvement of environmental quality of coal fly ash by applying forced leaching. Fuel 2001, 80, 873–877. [Google Scholar] [CrossRef]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef]
- Terry, N.A.M.; Zayed, M.P.; de Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Ren, J.; Xue, C.; Lin, E. Study on the relationship between soil selenium and plant selenium uptake. Plant Soil. 2005, 277, 197–206. [Google Scholar] [CrossRef]
- Wu, Z.; Bañuelos, G.S.; Lin, Z.Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant Sci. 2015, 6, 136. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Na, G.N.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005, 42, 785–797. [Google Scholar] [CrossRef]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H.; Quinn, C.F. Selenium metabolism in plants. In Cell Biology of Metal and Nutrients; Hell, R., Mendel, R., Eds.; Springer: Berlin, Germany, 2010; pp. 225–241. [Google Scholar]
- Mazej, D.; Osvald, J.; Stibilj, V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 2008, 107, 75–83. [Google Scholar] [CrossRef]
- Chassapis, K.; Roulia, M.; Vrettou, E.; Fili, D.; Zervaki, M. Biofunctional characteristics of lignite fly ash modified by humates: A new soil conditioner. Bioinorg. Chem. Appl. 2010, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Violante, A.; Cozzolino, V.; Perelomonov, L.; Xaporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloides in soil environments. J. Soil Sci. Plant Nut. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Strawn, D. Review of interactions between phosphorus and arsenic in soils from four case studies. Geochem. Trans. 2018, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Munksgaard, N.C.; Lottermoser, B.G.; Blake, K. Prolonged testing of metal mobility in mining-impacted soils amended with phosphate fertilizers. Water Air Soil Pollut. 2012, 223, 2237–2255. [Google Scholar] [CrossRef]
- Tripathi, R.D.; Srivastava, S.; Mishra, S.; Singh, N.; Tuli, R.; Gupta, D.K.; Maathius, F.J.M. Arsenic hazards: Strategies for tolerance and remediation by plants. Trends Biotechnol. 2007, 25, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Baroni, F.; Boscagli, A.; Di Lella, L.A.; Protano, G.; Riccobono, F. Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J. Geochm. Explor. 2004, 81, 1–14. [Google Scholar] [CrossRef]
- Mattusch, J.; Wennrich, R.; Schmidt, A.-C.; Reisser, W. Determination of arsenic species in water, soils and plants. J. Anal. Chem. 2000, 366, 200–203. [Google Scholar] [CrossRef]
- Shri, M.; Singh, P.K.; Kidwai, M.; Gautam, N.; Dubey, S.; Verma, G.; Chakrabarty, D. Recent advances in arsenic metabolism in plants: Current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in raice. Metallomics 2019, 11, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-Z.; Chen, M.-X.; Yu, L.-J.; Xie, L.-J.; Yuan, L.-B.; Qi, H.; Xiao, M.; Guo, W.; Chen, Z.; Yi, K.; et al. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front. Plant Sci. 2017, 8, 1868. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.K.; Chen, Y.; Che, J.; Konishi, N.; Thang, Z.; Miller, A.J.; Ma, J.F.; Zhao, J. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disuption arsenite radial transport in roots. New Phytol. 2018, 219, 641–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, G.L.; Hu, Y.; Schneider, J.; McDermott, J.; Chen, J.; Sauer, N.; Rosen, B.P.; Daus, B.; Liu, Z.; Zhu, Y.-G. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat. Plants 2016, 2, 15202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Hua, C.Y.; Jia, M.R.; Fu, J.W.; Liu, X.; Han, Y.H.; Liu, Y.; Rathinasabapathi, B.; Cao, Y.; Ma, Q. Heterologus expression of Pteris vittata Arsenite Antiporter PvACR3; 1 reduces arsenic accumulation in plant shoots. Environ. Sci. Technol. 2017, 51, 10387–10395. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Yamaki, T.; Yamaji, N.; Ko, D.; Jung, K.H.; Fujii-Kashino, M.; An, G.; Martinoia, E.; Lee, Y.; Ma, J.F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc. Natl. Acad. Sci. USA 2014, 111, 15699–15704. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Pandey, V.C.; Rai, U.N. Feasibility of fern Thelypteris dentata for revegetation of coal fly ash landfills. J. Geochm. Explor. 2013, 128, 147–152. [Google Scholar] [CrossRef]
- Vurayai, R.; Nkoane, B.; Moseki, B.; Chaturvedi, P. Phytoremediation potential of Jatropha curcas and Pennisetum clandestinum grown in polluted soil with and without coal fly ash: A case of BCL Cu/Ni mine. Selibe-Phikwe, Botswana. J. Biodivers. Environ. Sci. 2017, 10, 193–206. Available online: https://innspub.net/jbes/phytoremediation-potential-jatropha-curcas-pennisetum-clandestinum-grown-polluted-soil-without-coal-fly-ash-case-bcl-cuni-mine-selibe-phikwe-botswana/ (accessed on 18 May 2020).
- Swarnakar, A.; Mukherji, S. Amelioration of arsenic toxicity by phosphate salts in mungbean seedlings. J. Environ. Biol. 2005, 26, 551–555. [Google Scholar] [PubMed]
- Srivastava, S.; Sharma, Y.K. Arsenic induced changes in growth and metabolism of black gram seedlings (Vigna mungo L.) and the role of phosphate as an ameliorating agent. Environ. Process. 2014, 1, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Pigna, M.; Cozzalino, V.; Violnte, A.; Meharg, A.A. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Poll. 2009, 197, 371–380. [Google Scholar] [CrossRef]
- Gajić, G.; Pavlović, P.; Kostić, O.; Jarić, S.; Djurdjević, L.; Pavlović, D.; Mitrović, M. Ecophysiological and biochemical traits of three herbaceous plants growing of the disposed coal combustion fly ash of different weathering stage. Arch. Biol. Sci. 2013, 65, 1651–1667. [Google Scholar] [CrossRef] [Green Version]
- Kostić, O.; Mitrović, M.; Knežević, M.; Jarić, S.; Gajić, G.; Djurdjević, L.; Pavlović, P. The potential of four woody species for the revegetation of fly ash deposits from the ‘Nikola Tesla—A’ thermoelectric plant (Obenovac, Serbia). Arch. Biol. Sci. 2012, 64, 145–158. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K.; Singh, B.; Suprasana, P.; D’souza, S.F. The effect of arsenic on pigment composition, and photosynthesis in Hydrilla verticillata. Biol. Plantarum 2013, 57, 385–389. [Google Scholar] [CrossRef]
- Patel, A.; Tiwari, S.; Prasad, S.M. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a, fluorescence and antioxidant machinery in Nostoc muscorum. Ecotox. Environ. Safe. 2018, 157, 369–379. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Hasegawa, H.; Rahman, M.M.; Islam, M.N.; Miah, M.A.M.; Tasmen, A. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 2007, 67, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Lokhande, V.; Gor, B.; Desai, N.; Nikam, T.; Suprasanna, P. Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agron. Sustain. Dev. 2013, 33, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Farnese, F.S.; Oliviera, J.A.; Farnese, M.S.; Gusman, G.S.; Silveira, N.M.; Siman, L.I. Uptake arsenic by plants: Effects on mineral nutrition, growth and antioxidant capacity. IDESIA 2014, 32, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Leaõ, G.A.; de Oliveira, J.A.; Felipe, R.T.A.; Farnese, F.S.; Gusman, G.S. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. J. Plant Interact. 2014, 9, 143–151. [Google Scholar] [CrossRef]
- Gusman, G.S.; Oliviera, J.A.; Farnese, F.S.; Cambria, J. Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol. Biochem. 2013, 71, 307–314. [Google Scholar] [CrossRef]
- Stevanović, B.; Janković, M. Plant Ecology with Basis in Plant Ecophysiology; NNK International: Belgrade, Serbia, 2001. [Google Scholar]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis; Blackwell Science Publushers Ltd.: Oxford, UK, 2002. [Google Scholar]
- Jain, M.; Gadre, R.P. Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. J. Plant Physiol. 2004, 161, 251–255. [Google Scholar] [CrossRef]
- Janik, E.; Maksymiec, W.; Mazur, R.; Garstka, M.; Gruszecki, W.I. Structural and Functional Modifications of the Major Light-Harvesting Complex II in Cadmium- or Copper-Treated Secale cereale. Plant Cell Physiol. 2010, 51, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA Bioenerg. 2012, 1817, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimares, F.P.; Aguiar, R.; Oliveira, J.A.; Silva, J.A.A.; Karam, D. Potential of Macrophyte for Removing Arsenite from Aqueous Solution. Planta Daninha 2012, 30, 683–696. [Google Scholar] [CrossRef]
- Das, P.K.; Geul, B.; Choi, S.-B.; Yoo, S.-D.; Park, Y. Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis. Plant Signal. Behav. 2011, 6, 23–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, A.; Schrader, A.; Kokkelink, L.; Falke, C.; Welter, B.; Iniesto, E.; Rubio, V.; Uhrig, J.F.; Hulskamp, M.; Hoecker, U. Light and the E3 ubiquitin ligase COP1/SPA control of protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J. 2013, 74, 638–651. [Google Scholar] [CrossRef]
- Meng, L.-S.; Liu, A. Light signaling induces anthocyanin biosynthesis via AN3 mediated COP1 expression. Plant Signal. Behav. 2015, 10, e1001223. [Google Scholar] [CrossRef] [Green Version]
- Quina, F.H.; Moreira, P.F.; Vautier-Giongo, C.; Rettori, D.; Rodrigues, R.F.; Freitas, A.A.; Silva, P.F.; Macanita, A.L. Photochemistry of anthocyanins and their biological role in plant tissues. Pure Appl. Chem. 2009, 81, 1687–1694. [Google Scholar] [CrossRef]
- Singh, N.; Raj, A.; Khare, P.B.; Tripathi, R.D.; Jamil, S. Arsenic accumulation pattern in 12 Indian ferns and assesing the potencial of Adiantum capillus-veneris in comparation to Pteris vittata, as arsenic hyperaccumulator. Bioresour. Technol. 2010, 101, 8960–8968. [Google Scholar] [CrossRef]
- Miteva, E.; Merakchiyska, M. Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in oil. Bulg. J. Agric. Sci. 2002, 8, 151–156. [Google Scholar]
- Mene-Saffrane, L.; Davoine, C.; Stolz, S.; Majcherczyk, P.; Farmer, E.E. Genetic removal of tri-unsaturated fatty acid suppresses developmental and molecular phenotypes of an Arabidopsis tocopherol-deficient mutant. Biol. Chem. 2007, 282, 35749–35756. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Siegert, E.; Loscos, J.; Farmer, E.E. Inducible Malondialdehyde Pools i Zones of Cell Proliferation and Developing Tissues in Arabidopsis. J. Biol. Chem. 2012, 287, 8954–8962. [Google Scholar] [CrossRef] [Green Version]
- Chandronitha, C.; Ananthi, S.; Ramakrishnan, G.; Lakshmisundaram, R.; Gayathri, V.; Vasanthi, H.R. Protective role of tannin-rich fraction of Camellia sinensis in tissue arsenic burden in Sprague Dawley rats. Hum. Exp. Toxicol. 2010, 29, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.C. Phenolics as antioxidants. In Antioxidants and Reactive Oxgen Species in Plants; Smirnoff, N., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 141–168. [Google Scholar]
- Czech, V.; Czövek, P.; Fodor, J.; Bóka, K.; Fodor, F.; Cseh, E. Investigation of arsenate phytotoxicity in cucumber plants. Acta Biol. Szeged. 2008, 52, 79–80. Available online: http://www.sci.u-szeged.hu/ABS (accessed on 18 May 2020).
- Pandey, P.; Tripathi, A.K. Effect of Heavy Metals on Morphological and Biochemical characteristics of Albizia procera (Roxb.) Benth. Seedlings. Int. J. Environ. Sci. 2011, 1, 1009–1018. Available online: https://www.semanticscholar:paper/Effect-of-Heavy-metals-on-Morphological-and-of-Pandey-Tripathi/0cd00d7b30c2189f9cf1dc9ca949653d19c00a65 (accessed on 18 May 2020).
- Pandey, P.P.; Tripathi, A.K.; Dwivedi, V. Effect of Heavy Metals on Some Biochemical Parameters of Sal (Shorea robusta) Seedlings at Nursery Level, Doon Valley, India. J. Agric. Sci. 2011, 2, 45–51. [Google Scholar] [CrossRef]
- Tóth, S.Z.; Nagy, V.; Puthur, J.T.; Kovacs, L.; Garab, G. The Physiological Role of Ascorbate as Photosystem II Electron Donor: Protection against Photoinactivation in Heat-Stressed Leaves. Plant Physiol. 2011, 156, 382–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.; Sultana, N.; Paszkiewicz, K.; Florance, H.; Smirnoff, N. The influence of ascorbate on anthocyanin accumulation during high light in Arabidopsis thaliana: Further evidence for redox control of anthocyanin synthesis. Plant Cell Environ. 2012, 35, 388–404. [Google Scholar] [CrossRef] [PubMed]
Parameters | CS | L3 | a Range | ||
---|---|---|---|---|---|
M (SD) | Min.–Max. | M (SD) | Min.–Max. | ||
pH (H2O) | 7.59 (0.039) | 7.54–7.68 | 7.92 (0.117) *** | 7.78–8.12 | |
Org. matter (%) | 5.83 (1.193) *** | 4.11–7.02 | 3.13 (0.269) | 2.75–3.59 | |
P2O5 (mg/100 g) | 13.47 (4.853) | 6.74–19.3 | 20.44 (2.256) *** | 18.22–25.32 | |
As Tot (μg/g) | 7.28 (0.375) | 6.26–8.08 | 20.13 (3.065) *** | 16.41–23.98 | 4.4–9.3 |
B Tot (μg/g) | 4.51 (1.401) | 2.91–6.99 | 49.54 (9.265) *** | 33.97–60.74 | 22.0–45.0 |
Cu Tot (μg/g) | 15.78 (2.398) | 13.25–18.50 | 49.99 (4.008) *** | 40.41–53.98 | 13.0–24.0 |
Mo Tot (μg/g) | 1.12 (0.087) | 0.92–1.23 | 1.82 (0.157) ** | 1.45–1.98 | 0.7–1.5 |
Se Tot (μg/g) | 0.25 (0.055) | 0.14–0.33 | 2.32 (0.631) *** | 1.82–3.75 | 0.25–0.34 |
As avail. (μg/g) | 0.153 (0.029) | 0.117–0.189 | 0.346 (0.139) *** | 0.222–0.621 | |
B avail. (μg/g) | 0.333 (0.110) | 0.220–0.450 | 1.458 (0.269) *** | 1.160–1.794 | |
Cu avail. (μg/g) | 1.274 (0.413) ** | 0.867–1.700 | 0.893 (0.049) | 0.818–0.975 | |
Mo avail. (μg/g) | 0.008 (0.001) | 0.007–0.011 | 0.024 (0.005) *** | 0.018–0.032 | |
Se avail. (μg/g) | 0.019 (0.004) | 0.012–0.025 | 0.033 (0.012) ** | 0.014–0.050 | |
As root (μg/g) | 4.44 (0.539) | 3.25–5.00 | 8.08 (0.881) *** | 6.75–9.51 | |
B root (μg/g) | 5.13 (1.718) | 3.25–6.88 | 16.15 (2.492) *** | 12.89–19.65 | |
Cu root (μg/g) | 6.45 (0.271) | 6.12–6.75 | 10.37 (1.383) *** | 8.25–12.39 | |
Mo root (μg/g) | 0.77 (0.038) | 0.74–0.85 | 0.95 (0.120) *** | 0.75–1.12 | |
Se root (μg/g) | 2.45 (0.584) | 1.25–3.50 | 5.53 (1.563) *** | 2.87–7.38 | |
As leaf (μg/g) | 3.37 (0.243) | 3.00–3.75 | 6.85 (0.209) *** | 6.38–7.13 | 1.0–1.7 (O); 5.0–20.0 (T) |
B leaf (μg/g) | 3.50 (0.281) | 3.12–4.12 | 43.61 (5.399) *** | 35.25–50.40 | 10–100 (O); 50–200 (T) |
Cu leaf (μg/g) | 8.54 (0.909) *** | 7.50–10.45 | 6.22 (0.912) | 5.00–7.37 | 5–30 (O); 20–100 (T) |
Mo leaf (μg/g) | 2.73 (0.336) | 2.37–3.12 | 3.22 (0.455) ** | 2.75–3.75 | 0.2–5.0 (O); 10–50 (T) |
Se leaf (μg/g) | 1.63 (0.689) | 0.62–2.62 | 3.49 (0.315) *** | 3.00–3.87 | 0.01–2.0 (O); 5–30 (T) |
As (BCF) | 0.86 (0.088) *** | 0.74–1.03 | 0.41 (0.086) | 0.27–0.51 | |
B (BCF) | 1.13 (0.106) *** | 0.98–1.27 | 0.34 (0.122) | 0.21–0.57 | |
Cu (BCF) | 0.41 (0.066) | 0.33–0.49 | 0.68 (0.186) *** | 0.46–0.88 | |
Mo (BCF) | 0.68 (0.085) *** | 0.60–0.88 | 0.52 (0.085) | 0.40–0.65 | |
Se (BCF) | 10.65 (5.334) *** | 4.89–24.09 | 2.42 (0.696) | 1.57–4.01 | |
As (TF) | 0.77 (0.131) ** | 0.63–1.07 | 0.61 (0.074) | 0.47–0.71 | |
B (TF) | 0.74 (0.220) | 0.49–1.07 | 2.71 (0.241) *** | 2.37–3.01 | |
Cu (TF) | 1.32 (0.133) *** | 1.18–1.54 | 0.62 (0.166) | 0.43–0.84 | |
Mo (TF) | 3.57 (0.548)ns | 2.77–4.17 | 3.47 (0.840) | 2.44–4.83 | |
Se (TF) | 0.74 (0.465)ns | 0.17–1.69 | 0.67 (0.198) | 0.46–1.04 |
Parameters | CS | L3 | ||
---|---|---|---|---|
M (SD) | Min.–Max. | M (SD) | Min.–Max. | |
Chl a fluorescence | ||||
Fo | 0.21 (0.259) ns | 0.17–0.25 | 0.22 (0.014) | 0.21–0.25 |
Fm | 1.07 (0.305) * | 0.30–1.32 | 0.77 (0.370) | 0.39–1.20 |
Fv | 0.95 (0.128) ** | 0.74–1.08 | 0.55 (0.371 | 0.19–0.97 |
t1/2 | 118.00 (17.770) | 83.00–139.00 | 144.70 (12.11) *** | 125.00–166.00 |
Fv/Fm | 0.814 (0.009) *** | 0.804–0.833 | 0.633 (0.179) | 0.450–0.815 |
Fm/Fo | 5.04 (1.378) * | 1.20–6.10 | 3.50 (1.733) | 1.80–5.36 |
Pigments | ||||
Chl a | 6.49 (1.291) *** | 4.36–8.59 | 4.30 (0.940) | 2.54–5.62 |
Chl b | 2.09 (0.308) *** | 2.09–0.30 | 1.12 (0.229) | 0.66–1.39 |
Chl a+b | 8.58 (1.346) *** | 6.73–10.85 | 5.42 (1.147) | 3.21–6.92 |
Chl a/b | 3.81 (0.175) ** | 1.61–3.84 | 3.14 (0.619) | 3.52–4.14 |
Tot Carot | 1.77 (0.217) *** | 1.27–1.99 | 1.33 (0.242) | 0.88–1.61 |
Anthocyanins | 1.270 (0.177) ** | 0.990–1.620 | 0.905 (0.269) | 0.555–1.250 |
Oxidative stress (L) | ||||
MDA | 0.71 (0.108) | 0.44–1.14 | 0.82 (0.128) * | 0.66–1.00 |
Antioxidants (L) | ||||
Free Phenolics | 13.56 (5.779) | 6.0–25.2 | 18.16 (5.468) * | 7.30–36.60 |
Bound Phenolics | 11.45 (2.623) | 7.1–15.0 | 16.04 (3.380) ** | 12.90–22.00 |
Tot Phenolics | 25.01 (10.073) | 13.2–39.4 | 34.20 (14.560) * | 20.40–57.30 |
AsA | 0.49 (0.051) | 0.43–0.57 | 1.07 (0.606) ** | 0.41–1.70 |
DPPH | 24.22 (6.807) *** | 14.32–30.46 | 14.75 (3.114) | 10.85–19.58 |
Oxidative stress (R) | ||||
MDA | 0.42 (0.033) ns | 0.37–0.47 | 0.44 (0.195) | 0.22–0.73 |
Antioxidants (R) | ||||
Free Phenolics | 0.81 (0.078) | 0.72–0.96 | 1.59 (0.353) *** | 1.06–2.04 |
Bound Phenolics | 0.91 (0.065) | 0.82–0.99 | 2.76 (0.811) *** | 1.52–3.75 |
Tot Phenolics | 1.72 (0.140) | 1.54–1.95 | 4.35 (1.163) *** | 2.58–5.80 |
AsA | 0.22 (0.068) | 0.14–0.31 | 0.63 (0.192) *** | 0.40–0.98 |
DPPH | 37.58 (4.011) | 30.45–43.67 | 44.15 (7.244) ** | 32.76–52.98 |
FA/FA | r | FA/Plant | r | Plant/Plant | r |
pH/As tot | 0.91 | pH/As root | 0.96 | As root/As leaf | 0.92 |
pH/As avail | 0.95 | pH/As leaf | 0.88 | ||
Org.mat./As tot | 0.95 | Org.mat./As root | 0.98 | ||
Org.mat./As avail. | 0.96 | Org.mat./As leaf | 0.90 | ||
P2O5 /As tot | −0.84 | P2O5/As root | −0.92 | ||
P2O5 /As avail. | −0.76 | P2O5/As leaf | −0.93 | ||
As tot/As avail. | 0.95 | P2O5/BCF | −0.74 | ||
P2O5/TF | −0.85 | ||||
As tot/As root | 0.93 | ||||
As tot/As leaf | 0.80 | ||||
As avail./As root | 0.94 | ||||
As avail./As leaf | 0.78 | ||||
CS/CS | r | CS/Plant | r | Plant/Plant | r |
pH/As tot | −0.06 | pH/As root | −0.05 | As root/As leaf | −0.13 |
pH/As avail. | −0.69 | pH/As leaf | 0.24 | ||
Org.mat./As tot | 0.19 | Org.mat./As root | 0.33 | ||
Org.mat./As avail. | −0.75 | Org.mat./As leaf | −0.08 | ||
P2O5/As tot | 0.03 | P2O5/As root | 0.21 | ||
P2O5/As avail. | −0.22 | P2O5/As leaf | 0.01 | ||
As tot/As avail. | 0.26 | P2O5/BCF | 0.21 | ||
P2O5/TF | −0.20 | ||||
As tot/As root | 0.28 | ||||
As tot/As leaf | 0.22 | ||||
As avail./As root | −0.14 | ||||
As avail./As leaf | 0.23 |
Leaves | FA | CS | Roots | FA | CS |
r | r | r | r | ||
As/Fv/Fm | −0.71 | −0.17 | As/MDA | −0.80 | −0.01 |
As/Fm | −0.75 | −0.08 | As/Free Ph | 0.96 | 0.08 |
As/Fv | −0.73 | −0.16 | As/Bound Ph | 0.96 | 0.02 |
As/Fo | 0.52 | −0.15 | As/Tot Ph | 0.97 | 0.06 |
As/t1/2 | 0.90 | −0.10 | As/AsA | 0.52 | −0.35 |
As/Fm/Fo | 0.71 | −0.02 | As/DPPH | 0.92 | −0.13 |
As/Chl a | 0.88 | −0.31 | |||
As/Chl b | 0.85 | 0.45 | |||
As/Chl a+b | 0.87 | −0.18 | |||
As/Chl a/b | 0.95 | −0.53 | |||
As/Tot Carot | −0.84 | −0.14 | |||
As/Anthocy | −0.77 | −0.21 | |||
As/MDA | 0.95 | −0.44 | |||
As/Free Ph | 0.66 | −0.10 | |||
As/Bound Ph | 0.76 | −0.06 | |||
As/Tot Ph | 0.66 | −0.14 | |||
As/AsA | 0.72 | 0.45 | |||
As/DPPH | −0.86 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Stevanović, B.; Mitrović, M.; Pavlović, P. Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits. Plants 2020, 9, 657. https://doi.org/10.3390/plants9050657
Gajić G, Djurdjević L, Kostić O, Jarić S, Stevanović B, Mitrović M, Pavlović P. Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits. Plants. 2020; 9(5):657. https://doi.org/10.3390/plants9050657
Chicago/Turabian StyleGajić, Gordana, Lola Djurdjević, Olga Kostić, Snežana Jarić, Branka Stevanović, Miroslava Mitrović, and Pavle Pavlović. 2020. "Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits" Plants 9, no. 5: 657. https://doi.org/10.3390/plants9050657
APA StyleGajić, G., Djurdjević, L., Kostić, O., Jarić, S., Stevanović, B., Mitrović, M., & Pavlović, P. (2020). Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits. Plants, 9(5), 657. https://doi.org/10.3390/plants9050657