Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton
Abstract
:1. Introduction
2. Results
2.1. Population Classification and Structure Variations
2.2. Differentiation and Selection Signals between MCl and OCl Group
2.3. Differentiation and Domestication between G. hirsutum Landraces and Cultivar Groups
2.4. GWAS
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. DNA Extraction, Sequencing, Alignment and SNP Detection
4.3. Population Genetic Analyses
4.4. Identification of Selection/Improvement Signals
4.5. GWAS Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolek, Y.; El-Zik, K.M.; Pepper, A.E.; Bell, A.A.; Magill, C.W.; Thaxton, P.M.; Reddy, O.U.K. Mapping of verticillium wilt resistance genes in cotton. Plant Sci. 2005, 168, 1581–1590. [Google Scholar] [CrossRef]
- Tyagi, P.; Gore, M.A.; Bowman, D.T.; Campbell, B.T.; Udall, J.A.; Kuraparthy, V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2014, 127, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Percy, R.G.; McCarty, J.C. Introgression genetics and breeding between Upland and Pima cotton: A review. Euphytica 2014, 198, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 2015, 60, 35–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, S.G. The Wild and Cultivated Cotton of the World; Longmans, Green and Co. London: London, UK, 1907; p. 538. [Google Scholar]
- Watt, G. Gossypium. Bull. Misc. Inf. 1927, 8, 321–356. [Google Scholar] [CrossRef]
- He, S.; Sun, G.; Huang, L.; Yang, D.; Dai, P.; Zhou, D.; Wu, Y.; Ma, X.; Du, X.; Wei, S.; et al. Genomic divergence in cotton germplasm related to maturity and heterosis. J. Integr. Plant. Biol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Fok, M.; Xu, N. State and market interaction: Cotton variety and seed market development in China. In Proceedings of the ISSCRI International Conference “Rationales and evolutions of cotton policies”, Montpellier, France, 13–17 May 2008. [Google Scholar]
- Wendel, J.F.; Brubaker, C.L.; Percival, A.E. Genetic diversity in Gossypium hirsutum and the origin of Upland Cotton. Am. J. Bot. 1992, 79, 1291–1310. [Google Scholar] [CrossRef] [Green Version]
- May, O.L.; Bowman, D.T.; Calhoun, D.S. Genetic Diversity of U.S. Upland Cotton Cultivars Released between 1980 and 1990. Crop Sci. 1995, 35, 1570–1574. [Google Scholar] [CrossRef]
- Esbroeck, G.V.; Bowman, D.T. Cotton GermplasmDiversity and Its Importance to Cultivar Development. J. Cotton Sci. 1998, 2, 121–129. [Google Scholar]
- Yu, J.Z.; Fang, D.D.; Kohel, R.J.; Ulloa, M.; Hinze, L.L.; Percy, R.G.; Zhang, J.; Chee, P.; Scheffler, B.E.; Jones, D.C. Development of a core set of SSR markers for the characterization of Gossypium germplasm. Euphytica 2012, 187, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Kuang, M.; Wei, S.-j.; Wang, Y.-q.; Zhou, D.-y.; Ma, L.; Fang, D.; Yang, W.-H.; Ma, Z.-Y. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J. Integr. Agric. 2016, 15, 954–962. [Google Scholar] [CrossRef]
- Su, J.; Li, L.; Pang, C.; Wei, H.; Wang, C.; Song, M.; Wang, H.; Zhao, S.; Zhang, C.; Mao, G.; et al. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci. Rep. 2016, 6, 38496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Sun, R.; Hou, X.; Zheng, H.; Zhang, F.; Zhang, Y.; Liu, B.; Liang, J.; Zhuang, M.; Liu, Y.; et al. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat. Genet. 2016, 48, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gong, J.; Xiao, X.; Zhang, Z.; Li, J.; Liu, A.; Lu, Q.; Shang, H.; Shi, Y.; Ge, Q.; et al. GWAS Analysis and QTL Identification of Fiber Quality Traits and Yield Components in Upland Cotton Using Enriched High-Density SNP Markers. Front. Plant Sci. 2018, 9, 1067. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; He, S.; Wang, X.; Sun, J.; Zhang, Y.; Zhang, G.; Wu, L.; Li, Z.; Liu, Z.; Sun, G.; et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat. Genet. 2018, 50, 803–813. [Google Scholar] [CrossRef]
- Fang, L.; Wang, Q.; Hu, Y.; Jia, Y.; Chen, J.; Liu, B.; Zhang, Z.; Guan, X.; Chen, S.; Zhou, B. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 2017, 49, 1089. [Google Scholar] [CrossRef]
- Huang, C.; Nie, X.H.; Shen, C. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol. J. 2017, 15. [Google Scholar] [CrossRef]
- Du, X.; Huang, G.; He, S.; Yang, Z.; Sun, G.; Ma, X.; Li, N.; Zhang, X.; Sun, J.; Liu, M.; et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet. 2018, 50, 796–802. [Google Scholar] [CrossRef]
- Gong, Q.; Yang, Z.; Chen, E.; Sun, G.; He, S.; Butt, H.I.; Zhang, C.; Zhang, X.; Yang, Z.; Du, X.; et al. A Phi-Class Glutathione S-Transferase Gene for Verticillium Wilt Resistance in Gossypium arboreum Identified in a Genome-Wide Association Study. Plant Cell Physiol. 2018, 59, 275–289. [Google Scholar] [CrossRef]
- Shepherd, L.D.; de Lange, P.J.; Cox, S.; McLenachan, P.A.; Roskruge, N.R.; Lockhart, P.J. Evidence of a strong domestication bottleneck in the recently cultivated New Zealand endemic root crop, Arthropodium cirratum (Asparagaceae). PLoS ONE 2016, 11, e0204943. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, W.; Fang, C.; Xu, F.; Liu, Y.; Wang, Z.; Yang, R.; Zhang, M.; Liu, S.; Lu, S. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 2018, 50, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, X.; Shannon, L.M.; Yeh, C.-T.; Wang, M.L.; Bai, G.; Peng, Z.; Li, J.; Trick, H.N.; Clemente, T.E. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 2012, 44, 720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.K.; Rustgi, S.; Kulwal, P.L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol. Biol. 2005, 57, 461–485. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Nielsen, R. Linkage disequilibrium as a signature of selective sweeps. Genetics 2004, 167, 1513–1524. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tu, L.; Lin, M.; Lin, Z.; Wang, P.; Yang, Q.; Ye, Z.; Shen, C.; Li, J.; Zhang, L.; et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 2017, 49, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Guo, W.; Zhu, X. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica 2006, 152. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, Y.; Song, X.; Cao, Z.; Ding, Y.; Liu, B.; Zhu, X.; Wang, S.; Guo, W.; Zhang, T. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor. Appl. Genet. 2012, 124. [Google Scholar] [CrossRef]
- Liu, X.; Teng, Z.; Wang, J.; Wu, T.; Zhang, Z.; Deng, X.; Fang, X.; Tan, Z.; Ali, I.; Liu, D.; et al. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Mol. Genet. Genom. 2017, 292. [Google Scholar] [CrossRef]
- Liu, D.X.; Zhang, J.; Liu, X.Y.; Wang, W.W.; Liu, D.J.; Teng, Z.H.; Fang, X.M.; Tan, Z.Y.; Tang, S.Y.; Yang, J.H.; et al. Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genom. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Teng, Z.; Zhai, T. Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 2015, 201. [Google Scholar] [CrossRef]
- Ding, M.Q.; Ye, W.W.; Lin, L.F. The hairless stem phenotype of cotton (Gossypium barbadense) is linked to a copia-like retrotransposon insertion in a Homeodomain-Leucine Zipper Gene (HD1). Genetics 2015, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, E.L.; Cai, C.P.; Bao, J.H.; Wu, S.; Zhao, L.; Guo, W.Z. Up-regulation of a homeodomain-leucine zipper gene HD-1 contributes to trichome initiation and development in cotton. J. Integr. Agric. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.; Nazir, M.F.; Pan, Z.; Gong, W.; Iqbal, M.S.; He, S.; Du, X. Genotyping by Sequencing Revealed QTL Hotspots for Trichome-Based Plant Defense in Gossypium hirsutum. Genes 2020, 11, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doebley, J.F.; Gaut, B.S.; Smith, B.D. The molecular genetics of crop domestication. Cell 2006, 127, 1309–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Du, X.M. Genetic diversity of source germplasm of upland cotton in China as determined by SSR marker analysis. Acta Genet. Sin. 2006, 33. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y.; et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Saxena, R.K.; Upadhyaya, H.D.; Khan, A.W.; Yu, Y.; Kim, C.; Rathore, A.; Kim, D.; Kim, J.; An, S.; et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat. Genet. 2017, 49, 1082–1088. [Google Scholar] [CrossRef]
- Qi, J.; Liu, X.; Shen, D.; Miao, H.; Xie, B.; Li, X.; Zeng, P.; Wang, S.; Shang, Y.; Gu, X.; et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 2013, 45, 1510–1515. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Ge, S.; Jensen, J.D.; Hu, F.; Li, X.; Dong, Y.; Gutenkunst, R.N.; Fang, L.; Huang, L.; et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 2011, 30, 105–111. [Google Scholar] [CrossRef]
- Rana, M.K.; Singh, V.P.; Bhat, K.V. Assessment of Genetic Diversity in Upland Cotton (Gossypium hirsutum L.) Breeding Lines by using Amplified Fragment Length Polymorphism (AFLP) Markers and Morphological Characteristics. Genet. Res. Crop Evol. 2005, 52, 989–997. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Stahl, A.; Hickey, L.T. Q&A: Modern crop breeding for future food security. BMC Biol. 2019, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.-B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant. Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Hufford, M.B.; Xu, X.; Van Heerwaarden, J.; Pyhäjärvi, T.; Chia, J.-M.; Cartwright, R.A.; Elshire, R.J.; Glaubitz, J.C.; Guill, K.E.; Kaeppler, S.M. Comparative population genomics of maize domestication and improvement. Nat. Genet. 2012, 44, 808–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, G.; Huang, X.; Zhi, H.; Zhao, Y.; Zhao, Q.; Li, W.; Chai, Y.; Yang, L.; Liu, K.; Lu, H. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet. 2013, 45, 957–961. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Qu, Y.; Teng, W.; Qiu, L.; Zheng, H.; Wang, Z.; Han, Y.; Li, W. Loci and candidate genes in soybean that confer resistance to Fusarium graminearum. Theor. Appl. Genet. 2019, 132, 431–441. [Google Scholar] [CrossRef]
- Zhai, S.; Liu, J.; Xu, D.; Wen, W.; Yan, J.; Zhang, P.; Wan, Y.; Cao, S.; Hao, Y.; Xia, X.; et al. A Genome-Wide Association Study Reveals a Rich Genetic Architecture of Flour Color-Related Traits in Bread Wheat. Front. Plant Sci. 2018, 9, 1136. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Lee1, T.-H.; Guo, H.; Wang, X.; Kim, C.; Paterson, A.H. SNPhylo, a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom. 2014, 15, 1471–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, F. Evolutionary relationship of DNA sequence in finite populations. Genetics 1983, 105, 437–460. [Google Scholar] [PubMed]
- Kang, H.M. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.X.; Yeung, J.M.Y.; Cherny, S.S.; Sham, P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, M.F.; Jia, Y.; Ahmed, H.; He, S.; Iqbal, M.S.; Sarfraz, Z.; Ali, M.; Feng, C.; Raza, I.; Sun, G.; et al. Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. Plants 2020, 9, 711. https://doi.org/10.3390/plants9060711
Nazir MF, Jia Y, Ahmed H, He S, Iqbal MS, Sarfraz Z, Ali M, Feng C, Raza I, Sun G, et al. Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. Plants. 2020; 9(6):711. https://doi.org/10.3390/plants9060711
Chicago/Turabian StyleNazir, Mian Faisal, Yinhua Jia, Haris Ahmed, Shoupu He, Muhammad Shahid Iqbal, Zareen Sarfraz, Mushtaque Ali, Chenfan Feng, Irum Raza, Gaofei Sun, and et al. 2020. "Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton" Plants 9, no. 6: 711. https://doi.org/10.3390/plants9060711
APA StyleNazir, M. F., Jia, Y., Ahmed, H., He, S., Iqbal, M. S., Sarfraz, Z., Ali, M., Feng, C., Raza, I., Sun, G., Pan, Z., & Du, X. (2020). Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. Plants, 9(6), 711. https://doi.org/10.3390/plants9060711