Corn Stunt Disease: An Ideal Insect–Microbial–Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn
Abstract
:1. Introduction
Plant Disease | Spiroplasma Pathogens | Leafhopper Vectors | Host Plant Families | References |
---|---|---|---|---|
Citrus stubborn disease | Spiroplasma citri | Circulifer haematoceps, Scaphytopius nitridus Circulifer tenellus, E Circulifer opacipennis, E Macrosteles fascifrons Fieber, Ricaria japonica | Alliaceae, Apiacceae, Apocynaceae, Amaryllidaceae, Asteraceae, Brassicaceae, Brassicaceae, Crassulaceae, Cucurbitaceae, Plantaginaceae, Rosaceae, Rutaceae, Scrophulariaceae, Violaceae | [57,58,59,60,61,62,63,64,65,66] |
Corn stunt disease | Spiroplasma kunkelii | Dalbulus maidis, Dalbulus elimatus, Dalbulus guevari, E Dalbulus gelbus E Dalbulus quinquenotatus E Dalbulus tripsacoides E Dalbulus longulus E Exitianus exitiosus, E Euscelidius variegatus E Graminella nigrifrons, E Stirellus bicolor, | Poaceae | [21,25,67,68,69] |
Periwinkle yellows disease | Spiroplasma phoeniceum, Spiroplasma citri | E Macrosteles fascifrons, E Cicadulina bipunctella P Phlogotettix Cyclops P Balclutha sp. | Apocynaceae | [56,59,70,71] |
2. Components of Corn Stunt Disease
2.1. Dalbulus Maidis
2.2. Spiroplasma kunkelii
2.3. Zea mays
3. Insect Vector Interactions with Host Plant and Pathogen
3.1. Dalbulus maidis–Spiroplasma kunkelii
3.2. Dalbulus maidis–Zea mays
4. Plant–Pathogen Interaction
4.1. Zea mays–Spiroplasma kunkelii
4.2. Plant Immunity
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hogenhout, S.A.; Ammar el, D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, J.; Wayadande, A. Fastidious vascular-colonizing bacteria. The Plant Health Instructor. Am. Phytopathol. Soc. 2002. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef]
- Hammond, R.W.; Bedendo, I.P. Molecular confirmation of Maize rayado fino virus as the Brazilian corn streak virus. Sci. Agric. 2005, 62, 601–603. [Google Scholar] [CrossRef] [Green Version]
- Tzou, P.; De Gregorio, E.; Lemaitre, B. How Drosophila combats microbial infection: A model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 2002, 5, 102–110. [Google Scholar] [CrossRef]
- Dionne, M.S.; Schneider, D.S. Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis. Model. Mech. 2008, 1, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundstrom, J.O. Mosquito-borne viruses in western Europe: A review. J. Vector Ecol. 1999, 24, 1–39. [Google Scholar] [PubMed]
- Ciota, A.T.; Kramer, L.D. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 2013, 5, 3021–3047. [Google Scholar] [CrossRef] [PubMed]
- Hamel, R.; Liégeois, F.; Wichit, S.; Pompon, J.; Diop, F.; Talignani, L.; Thomas, F.; Desprès, P.; Yssel, H.; Missé, D. Zika virus: Epidemiology, clinical features and host-virus interactions. Microb. Infect. 2016, 18, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Doumayrou, J.; Sheber, M.; Bonning, C.B.; Miller, A.W. Role of Pea enation mosaic virus coat protein in the host plant and aphid Vector. Viruses 2016, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 479–480, 278–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.-L.; Zhu-Salzman, K.; Elzaki, M.E.A.; Huang, Q.-Q.; Chen, S.; Ma, Z.-H.; Liu, S.-W.; Zhang, J.-E. Mikania micrantha wilt virus alters insect vector’s host preference to enhance its own spread. Viruses 2019, 11, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosquée, E.; Yin, R.L.; Bragard, C.; Yong, L.; Chen, J.L.; Francis, F. Transmission efficiency of Cucumber mosaic virus by Myzus persicae according to virus strain and aphid clone from China. Asian J. Plant Pathol. 2016, 10, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, E.; Khelifa, M.; Blanc, S.; Drucker, M. Potyvirus: How the Aphid Activates their Transmission? Végéphyl: Alfortville, France, 2018; pp. 38–46. [Google Scholar]
- Stewart, L.R.; Jarugula, S.; Zhao, Y.; Qu, F.; Marty, D. Identification of a Maize chlorotic dwarf virus silencing suppressor protein. Virology 2017, 504, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Wintermantel, W.M.; Gilbertson, R.L.; McCreight, J.D.; Natwick, E.T. Host-specific relationship between virus titer and whitefly transmission of Cucurbit yellow stunting disorder virus. Plant Dis. 2016, 100, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.C.; Falk, B.W. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. [Google Scholar] [CrossRef]
- Chen, G.; Su, Q.; Shi, X.; Pan, H.; Jiao, X.; Zhang, Y. Persistently transmitted viruses restrict the transmission of other viruses by affecting their vectors. Front. Physiol. 2018, 9, 1261. [Google Scholar] [CrossRef]
- Gussie, J.S.; Fletcher, J.; Claypool, P.L. Movement and multiplication of Spiroplasma kunkelii in corn. Phytopathology 1995, 85, 1093–1098. [Google Scholar] [CrossRef]
- Bradfute, O.E. Corn stunt spiroplasma and viruses associated with a maize disease epidemic in Southern Florida. Plant Dis. 1981, 65, 837–841. [Google Scholar] [CrossRef]
- Tsai, J.; Miller, J. Corn Stunt Spiroplasma; Plant Pathology Circular No. 373; Florida Department of Agriculture and Consumer Services: Tallahassee, FL, USA, 1995.
- Hruska, A.J.; Gladstone, S.M.; Obando, R. Epidemic roller coaster: Maize stunt disease in Nicaragua. Am. Entomol. 1996, 42, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Brewbaker, J.L. Diseases of maize in the wet lowland tropics and the collapse of the Classic Maya civilization. Econ. Bot. 1979, 33, 101–118. [Google Scholar] [CrossRef]
- Pérez-López, E.; Olivier, C.Y.; Luna-Rodríguez, M.; Rodríguez, Y.; Iglesias, L.G.; Castro-Luna, A.; Adame-García, J.; Dumonceaux, T.J. Maize bushy stunt phytoplasma affects native corn at high elevations in Southeast Mexico. Eur. J. Plant Pathol. 2016, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Nault, L.R. Evolution of an insect pest: Maize and the corn leafhopper, a case study. Maydica 1990, 35, 165–175. [Google Scholar]
- Summers, C.G.; Newton, A.S., Jr.; Opgenorth, D.C. Overwintering of Corn Leafhopper, Dalbulus maidis (Homoptera: Cicadellidae), and Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) in California’s San Joaquin Valley. Environ. Entomol. 2004, 33, 1644–1651. [Google Scholar] [CrossRef]
- Pérez-López, E.; Wist, T.; Rodríguez, Y.; Luna-Rodríguez, M.; Olivier, C.Y. Maize bushy stunt in native corn: Implications for Mexican “subsistence farmers”. Environ. Dev. Sustain. 2018, 20, 1797–1805. [Google Scholar] [CrossRef]
- Gottems, L. Sales of Insecticides for Corn Leafhopper Control Jump in Brazil. Agro News, 3 May 2018. [Google Scholar]
- Carpane, P.D. Host Resistance and Diversity of Spiroplasma Kunkelii as Components of Corn Stunt Disease. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, December 2007. [Google Scholar]
- Hruska, A.J.; Peralta, M.G. Maize response to corn leafhopper (Homoptera: Cicadellidae) infestation and achaparramiento disease. J. Econ. Entomol. 1997, 90, 604–610. [Google Scholar] [CrossRef]
- Mateos, M.; Castrezana, S.J.; Nankivell, B.J.; Estes, A.M.; Markow, T.A.; Moran, N.A. Heritable endosymbionts of Drosophila. Genetics 2006, 174, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Aquilino, A.; Masiá, M.; López, P.; Galiana, A.J.; Tovar, J.; Andrés, M.; Gutiérrez, F. First human systemic infection caused by Spiroplasma. J. Clin. Microbiol. 2015, 53, 719–721. [Google Scholar] [CrossRef] [Green Version]
- Özbek, E.; Miller, S.A.; Meulia, T.; Hogenhout, S.A. Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. J. Invertebr. Pathol. 2003, 82, 167–175. [Google Scholar] [CrossRef]
- Termonia, A.; Hsiao, T.H.; Pasteels, J.M.; Milinkovitch, M.C. Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc. Natl. Acad. Sci. USA 2001, 98, 3909. [Google Scholar] [CrossRef] [Green Version]
- Giron, D.; Dubreuil, G.; Bennett, A.; Dedeine, F.; Dicke, M.; Dyer, L.A.; Erb, M.; Harris, M.O.; Huguet, E.; Kaloshian, I.; et al. Promises and challenges in insect–plant interactions. Entomol. Exp. Appl. 2018, 166, 319–343. [Google Scholar] [CrossRef] [Green Version]
- Krieger, R.I.; Feeny, P.P.; Wilkinson, C.F. Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defenses? Science 1971, 172, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.G.; Agrawal, A.A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012, 17, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Zvereva, E.L.; Kozlov, M.V. The costs and effectiveness of chemical defenses in herbivorous insects: A meta-analysis. Ecol. Monogr. 2016, 86, 107–124. [Google Scholar] [CrossRef]
- Engler-Chaouat, H.S.; Gilbert, L.E. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 2007, 33, 25–42. [Google Scholar] [CrossRef]
- Bellota, E.; Dávila-Flores, A.; Bernal, J.S. A Bird in the Hand Versus Two in the Bush? The Specialist Leafhopper Dalbulus maidis (Hemiptera: Cicadellidae) Does Not Discriminate Against Sub-optimal Host Plants (Zea spp.). Neotrop. Entomol. 2018, 47, 171–180. [Google Scholar] [CrossRef]
- Ebbert, M.A.; Nault, L.R. Improved overwintering ability in Dalbulus maidis (Homoptera: Cicadellidae) vectors infected with Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae). Environ. Entomol. 1994, 23, 634–644. [Google Scholar] [CrossRef]
- Medina, R.F.; Reyna, S.M.; Bernal, J.S. Population genetic structure of a specialist leafhopper on Zea: Likely anthropogenic and ecological determinants of gene flow. Entomol. Exp. Appl. 2012, 142, 223–235. [Google Scholar] [CrossRef]
- Moya-Raygoza, G.; Nault, L.R. Transmission biology of Maize bushy stunt phytoplasma by the corn leafhopper (Homoptera: Cicadellidae). Ann. Entomol. Soc. Am. 1998, 91, 668–676. [Google Scholar] [CrossRef]
- Nault, L.R.; Delong, D.M. Evidence for co-evolution of leafhoppers in the genus Dalbulus (Cicadellidae: Homoptera) with maize and its ancestors. Ann. Entomol. Soc. Am. 1980, 73, 349–353. [Google Scholar] [CrossRef]
- Puschnik, A.S.; Majzoub, K.; Ooi, Y.S.; Carette, J.E. A CRISPR toolbox to study virus-host interactions. Nat. Rev. Microbiol. 2017, 15, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Kanakala, S.; Ghanim, M. RNA interference in insect vectors for plant viruses. Viruses 2016, 8, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badillo-Vargas, I.E.; Rotenberg, D.; Schneweis, B.A.; Whitfield, A.E. RNA interference tools for the western flower thrips, Frankliniella occidentalis. J. Insect Physiol. 2015, 76, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Alphey, N.; Bonsall, M.B. Genetics-based methods for agricultural insect pest management. Agric. For. Entomol. 2018, 20, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey-Samuel, T.; Morrison, N.I.; Walker, A.S.; Marubbi, T.; Yao, J.; Collins, H.L.; Gorman, K.; Davies, T.G.E.; Alphey, N.; Warner, S. Pest control and resistance management through release of insects carrying a male-selecting transgene. BMC Biol. 2015, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Papathanos, P.A.; Bourtzis, K.; Tripet, F.; Bossin, H.; Virginio, J.F.; Capurro, M.L.; Pedrosa, M.C.; Guindo, A.; Sylla, L.; Coulibaly, M.B.; et al. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control. Parasites Vectors 2018, 11, 654. [Google Scholar] [CrossRef]
- Macias, V.; Ohm, J.; Rasgon, J. Gene drive for mosquito control: Where did it come from and where are we headed? Int. J. Environ. Res. Public Health 2017, 14, 1006. [Google Scholar] [CrossRef] [Green Version]
- De Lara Capurro, M.; Coleman, J.; Beerntsen, B.T.; Myles, K.M.; Olson, K.E.; Rocha, E.; Krettli, A.U.; James, A.A. Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am. J. Trop. Med. Hyg. 2000, 62, 427–433. [Google Scholar] [CrossRef]
- Moreira, L.A.; Ito, J.; Ghosh, A.; Devenport, M.; Zieler, H.; Abraham, E.G.; Crisanti, A.; Nolan, T.; Catteruccia, F.; Jacobs-Lorena, M. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J. Biol. Chem. 2002, 277, 40839–40843. [Google Scholar] [CrossRef] [Green Version]
- Abraham, E.G.; Cha, S.-J.; Jacobs-Lorena, M. Towards the genetic control of insect vectors: An overview. Entomol. Res. 2007, 37, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Springer Science & Business Media: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Cacciola, S.O.; Bertaccini, A.; Pane, A.; Furneri, P.M. Spiroplasma spp.: A plant, arthropod, animal and human pathogen. Citrus Pathol. 2017, 31. [Google Scholar] [CrossRef] [Green Version]
- Rossi, V. Scientific Opinion on the pest categorisation of Spiroplasma citri. EFSA J. 2014, 12, 1–29. [Google Scholar]
- Gulua, L. Study of Citrus Stubborn Disease Physico Chemical and Biological Symptoms in Georgian Orange Orchards; Bulletin of the Georgia Academy of Science: Atlanta, GA, USA, 2004. [Google Scholar]
- Nejat, N.; Vadamalai, G.; Sijam, K.; Dickinson, M. First Report of Spiroplasma citri (-Induced) Associated with Periwinkle Lethal Yellows in Southeast Asia. Plant Dis. 2011, 95, 1312. [Google Scholar] [CrossRef] [PubMed]
- Neriya, Y.; Maejima, K.; Nijo, T.; Tomomitsu, T.; Yusa, A.; Himeno, M.; Netsu, O.; Hamamoto, H.; Oshima, K.; Namba, S. Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiol. Lett. 2014, 361, 115–122. [Google Scholar] [CrossRef]
- El-Fatah, W.; Egiza, A.; Youssef, S.; Shalaby, A. Isolation and Identification of Spiroplasma citri Associated with Citrus Stubborn Disease in Egypt. Int. J. Adv. Res. Biol. Sci. 2016, 3, 223–231. [Google Scholar]
- Davis, R.E.; Shao, J.; Zhao, Y.; Gasparich, G.E.; Gaynor, B.J.; Donofrio, N. Complete genome sequence of Spiroplasma citri Strain R8-A2(T), causal agent of stubborn disease in citrus species. Genome Announc. 2017, 5, e00206-17. [Google Scholar] [CrossRef] [Green Version]
- Bové, J.M.; Renaudin, J.; Saillard, C.; Foissac, X.; Garnier, M. Spiroplasma citri, a plant pathogenic mollicute: Relationships with its two hosts, the plant and the leafhopper vector. Annu. Rev. Phytopathol. 2003, 41, 483–500. [Google Scholar] [CrossRef]
- Dubrana, M.-P.; Béven, L.; Arricau-Bouvery, N.; Duret, S.; Claverol, S.; Renaudin, J.; Saillard, C. Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts. BMC Microbiol. 2016, 16, 53. [Google Scholar] [CrossRef] [Green Version]
- Nielson, M.W.; Morgan, L.A. Developmental biology of the leafhopper, Scaphytopius nitridus (Homoptera: Cicadellidae), with notes on distribution, hosts, and interspecific breeding. Ann. Entomol. Soc. Am. 1982, 75, 350–352. [Google Scholar] [CrossRef]
- Allen, R.M. Cultivation in vitro of spiroplasmas from six plant hosts and two leafhopper vectors in Arizona. Plant Dis. 1982, 66, 669. [Google Scholar] [CrossRef]
- Carloni, E.; Carpane, P.; Paradell, S.; Laguna, I.; Pecci, M.P. Presence of Dalbulus maidis (Hemiptera: Cicadellidae) and of Spiroplasma kunkelii in the temperate region of Argentina. J. Econ. Entomol. 2013, 106, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.E.; Shao, J.; Dally, E.L.; Zhao, Y.; Gasparich, G.E.; Gaynor, B.J.; Athey, J.C.; Harrison, N.A.; Donofrio, N. Complete genome sequence of Spiroplasma kunkelii Strain CR2–3x, causal agent of corn stunt disease in Zea mays L. Genome Announc. 2015, 3, e01216-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurga, M.; Zwolińska, A. Phytoplasmas in Poaceae species: A threat to the most important cereal crops in Europe. J. Plant Pathol. 2020, 1–11. [Google Scholar] [CrossRef]
- Davis, R.E.; Shao, J.; Zhao, Y.; Wei, W.; Bottner-Parker, K.; Silver, A.; Stump, Z.; Gasparich, G.E.; Donofrio, N. Complete genome sequence of Spiroplasma phoeniceum strain P40T, a plant pathogen isolated from diseased plants of Madagascar periwinkle [Catharanthus roseus (L.) G. Don]. Microbiol. Resour. Announc. 2019, 8, e01612-18. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-Y.; Huang, Y.-C.; Tsai, M.-l.; Lin, C.-P. Detection and identification of a new phytoplasma associated with periwinkle leaf yellowing disease in Taiwan. Australas. Plant Pathol. 2011, 40, 476–483. [Google Scholar] [CrossRef]
- Medina, R.F.; Dickey, A.M.; Harrison, K.; Miller, G.L. Host-associated differentiation in a pecan and water hickory Aphidomorpha community. Entomol. Exp. Appl. 2017, 162, 366–378. [Google Scholar] [CrossRef]
- Dávila-Flores, A.M.; DeWitt, T.J.; Bernal, J.S. Facilitated by nature and agriculture: Performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 2013, 173, 1425–1437. [Google Scholar] [CrossRef]
- Pitre, H.N. Observations on the life cycle of Dalbulus maidis on three plant species. Fla. Entomol. 1970, 33–37. [Google Scholar] [CrossRef]
- Moya-Raygoza, G.; Hogenhout, S.A.; Nault, L.R. Habitat of the corn leafhopper (Hemiptera: Cicadellidae) during the dry (winter) season in Mexico. Environ. Entomol. 2014, 36, 1066–1072. [Google Scholar] [CrossRef]
- Palomera, V.; Bertin, S.; Rodríguez, A.; Bosco, D.; Virla, E.; Moya-Raygoza, G. Is There any Genetic Variation among Native Mexican and Argentinian Populations of Dalbulus maidis (Hemiptera: Cicadellidae)? Fla. Entomol. 2012, 95, 150–155. [Google Scholar] [CrossRef]
- Wilson, M.R. A handbook of leafhopper and planthopper vectors of plant disease. Bull. Insectol. 2007, 60, 175. [Google Scholar]
- Tsai, J.H. Corn Leafhopper, Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae). In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1072–1074. [Google Scholar]
- Nault, L.R.; Bradfute, O.E. “Corn Stunt: Involvement of a Complex of Leafhopper-Borne Pathogens” Corn Stunt: Involvement of a Complex of Leafhopper-Borne Pathogens; Academic Press: Cambridge, MA, USA, 1979; pp. 561–586. [Google Scholar]
- Bai, X.; Hogenhout, S.A. A genome sequence survey of the mollicute corn stunt spiroplasma Spiroplasma kunkelii. FEMS Microbiol. Lett. 2002, 210, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Dally, E.L.; Barros, T.S.L.; Zhao, Y.; Lin, S.; Roe, B.A.; Davis, R.E. Physical and genetic map of the Spiroplasma kunkelii CR2–3x chromosome. Can. J. Microbiol. 2006, 52, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.-S.; Chen, L.-L.; Chung, W.-C.; Gasparich, G.E.; Kuo, C.-H. Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genom. 2013, 14, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, C.; Lo, W.-S.; Chen, L.-L.; Kuo, C.-H. Complete genomes of two dipteran-associated spiroplasmas provided insights into the origin, dynamics, and impacts of viral invasion in spiroplasma. Genom. Biol. Evol. 2013, 5, 1151–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparich, G.E.; Whitcomb, R.F.; Dodge, D.; French, F.E.; Glass, J.; Williamson, D.L. The genus Spiroplasma and its non-helical descendants: Phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int. J. Syst. Evol. Microbiol. 2004, 54, 893–918. [Google Scholar] [CrossRef] [Green Version]
- Ammar, E.-D.; Gasparich, G.E.; Hall, D.G.; Hogenhout, S.A. Spiroplasma-like organisms closely associated with the gut in five leafhopper species (Hemiptera: Cicadellidae). Arch. Microbiol. 2011, 193, 35–44. [Google Scholar] [CrossRef]
- Nault, L.R. “Evolutionary Relationships between Maize Leafhoppers and Their Host Plants” The Leafhoppers and Planthoppers; Wiley: New York, NY, USA, 1985; pp. 309–330. [Google Scholar]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O.; Carrillo, E.P. Food uses of whole corn and dry-milled fractions. In Corn; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–467. [Google Scholar]
- Yang, N.; Liu, J.; Gao, Q.; Gui, S.; Chen, L.; Yang, L.; Huang, J.; Deng, T.; Luo, J.; He, L. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 2019, 51, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Whitcomb, R.F.; Chen, T.A.; Williamson, D.L.; Liao, C.; Tully, J.G.; Bové, J.M.; Mouches, C.; Rose, D.L.; Coan, M.E.; Clark, T.B. Spiroplasma kunkelii sp. nov.: Characterization of the etiological agent of corn stunt disease. Int. J. Syst. Evol. Microbiol. 1986, 36, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, H.; Hammond, R.W.; Jomantiene, R.; Liu, Q.; Lin, S.; Roe, B.A.; Davis, R.E. Predicted ATP-binding cassette systems in the phytopathogenic mollicute Spiroplasma kunkelii. Mol. Genet. Genom. 2004, 271, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Labroussaa, F.; Dubrana, M.-P.; Arricau-Bouvery, N.; Beven, L.; Saillard, C. Involvement of a minimal actin-binding region of Spiroplasma citri phosphoglycerate kinase in spiroplasma transmission by its leafhopper vector. PLoS ONE 2011, 6, e17357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.-O.; Wayadande, A.C.; Fletcher, J. Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus. Phytopathology 1999, 89, 1144–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rottem, S. Interaction of mycoplasmas with host cells. Physiol. Rev. 2003, 83, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Killiny, N.; Batailler, B.; Foissac, X.; Saillard, C. Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology 2006, 152, 1221–1230. [Google Scholar] [CrossRef] [Green Version]
- Breton, M.; Duret, S.; Arricau-Bouvery, N.; Beven, L.; Renaudin, J. Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. Microbiology 2008, 154, 3232–3244. [Google Scholar] [CrossRef] [Green Version]
- Shokal, U.; Yadav, S.; Atri, J.; Accetta, J.; Kenney, E.; Banks, K.; Katakam, A.; Jaenike, J.; Eleftherianos, I. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiol. 2016, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Guidolin, A.S.; Cônsoli, F.L. No fitness costs are induced by Spiroplasma infections of Aphis citricidus reared on two different host plants. Braz. J. Biol. 2019, 1678–4375. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.T.; Perlman, S.J. Host defense via symbiosis in Drosophila. PLoS Pathog. 2013, 9, e1003808. [Google Scholar] [CrossRef]
- Yoshida, K.; Sanada-Morimura, S.; Huang, S.-H.; Tokuda, M. Influences of two coexisting endosymbionts, CI-inducing Wolbachia and male-killing Spiroplasma, on the performance of their host Laodelphax striatellus (Hemiptera: Delphacidae). Ecol. Evol. 2019, 9, 8214–8224. [Google Scholar] [CrossRef]
- Herren, J.K.; Paredes, J.C.; Schüpfer, F.; Lemaitre, B. Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. MBio 2013, 4, e00532-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, M.; Watanabe, M.; Yukuhiro, F.; Nomura, M.; Kageyama, D. A nightmare for males? A maternally transmitted male-killing bacterium and strong female bias in a green lacewing population. PLoS ONE 2016, 11, e0155794. [Google Scholar] [CrossRef]
- Tinsley, M.C.; Majerus, M.E.N. A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta Novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology 2006, 132, 757–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, Y.; Vigouroux, Y.; Goodman, M.M.; Sanchez, J.; Buckler, E.; Doebley, J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 2002, 99, 6080–6084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya-Raygoza, G.; Garcia-Medina, C. Comparison of fecundity and body size of Mexican and Argentinian populations of Dalbulus maidis (Hemiptera: Cicadellidae). Ann. Entomol. Soc. Am. 2010, 103, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.M.; Lopes, J.R.S.; Nault, L.R. Survival strategies of Dalbulus maidis during maize off-season in Brazil. Entomol. Exp. Appl. 2013, 147, 141–153. [Google Scholar] [CrossRef]
- Bellota, E.; Medina, R.F.; Bernal, J.S. Physical leaf defenses—altered by Zealife-history evolution, domestication, and breeding - mediate oviposition preference of a specialist leafhopper. Entomol. Exp. Appl. 2013, 149, 185–195. [Google Scholar] [CrossRef]
- Aráoz, M.V.C.; Jacobi, V.G.; Fernandez, P.C.; Albarracin, E.L.; Virla, E.G.; Hill, J.G.; Catalán, C.A.N. Volatiles mediate host-selection in the corn hoppers Dalbulus maidis (Hemiptera: Cicadellidae) and Peregrinus maidis (Hemiptera: Delphacidae). Bull. Entomol. Res. 2019, 109, 633–642. [Google Scholar] [CrossRef]
- Chinchilla-Ramírez, M.; Borrego, E.J.; DeWitt, T.J.; Kolomiets, M.V.; Bernal, J.S. Maize seedling morphology and defence hormone profiles, but not herbivory tolerance, were mediated by domestication and modern breeding. Ann. Appl. Biol. 2017, 170, 315–332. [Google Scholar] [CrossRef]
- Moya-Raygoza, G.; Cuevas-Guzmán, R.; Pinedo-Escatel, J.A.; Morales-Arias, J.G. Comparison of leafhopper (Hemiptera: Cicadellidae) diversity in maize and its wild ancestor teosinte, and plant diversity in the teosinte habitat. Ann. Entomol. Soc. Am. 2018, 112, 99–106. [Google Scholar] [CrossRef]
- Carpane, P.; Laguna, I.G.; Virla, E.G.; Paradell, S.; Murúa, L.; Giménez-Pecci, M.D.L.P. Experimental transmission of corn stunt spiroplasma present in different regions of Argentina. Maydica 2006, 51, 461–468. [Google Scholar]
- Bajet, N.B.; Renfro, B.L. Occurrence of corn stunt spiroplasma at different elevations in Mexico. Plant Dis. 1989, 73, 926–930. [Google Scholar] [CrossRef]
- Raju, B.C.; Nyland, G. Enzyme-linked immunosorbent assay for the detection of corn stunt spiroplasma in plant and insect tissues. Curr. Microbiol. 1981, 5, 101–104. [Google Scholar] [CrossRef]
- Barros, T.S.L.; Davis, R.E.; Resende, R.O.; Dally, E.L. Design of a polymerase chain reaction for specific detection of Corn stunt spiroplasma. Plant Dis. 2001, 85, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Opgenorth, D.C.; Davis, R.E.; Chang, C.-J.; Summers, C.G.; Zhao, Y. Characterization of a novel adhesin-like gene and design of a real-time PCR for rapid, sensitive, and specific detection of Spiroplasma kunkelii. Plant Dis. 2006, 90, 1233–1238. [Google Scholar] [CrossRef]
- Bigeard, J.; Colcombet, J.; Hirt, H. Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Mol. Plant 2015, 8, 521–539. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-S.; Ryu, C.-M. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation. Plant Signal. Behav. 2016, 11, e0143879. [Google Scholar] [CrossRef] [Green Version]
- Pieterse, C.M.J.; Dicke, M. Plant interactions with microbes and insects: From molecular mechanisms to ecology. Trends Plant Sci. 2007, 12, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Zhang, Z.; Friesen, T.L.; Raats, D.; Fahima, T.; Brueggeman, R.S.; Lu, S.; Trick, H.N.; Liu, Z.; Chao, W. The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2016, 2, e1600822. [Google Scholar] [CrossRef] [Green Version]
- Fougère, L.; Chartier, A.; Rhino, B.; Destandau, E.; Elfakir, C. Analysis of elicitors in different varieties of corn silk. Planta Med. 2016, 82, 109. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, W.; Pottinger, S.; Baldwin, I.T. Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC Plant Biol. 2015, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Malik, N.A.; Kumar, I.S.; Nadarajah, K. Elicitor and receptor molecules: Orchestrators of plant defense and immunity. Int. J. Mol. Sci. 2020, 21, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesano, M.; Brader, G.; Palva, E.T. Pathogen derived elicitors: Searching for receptors in plants. Mol. Plant Pathol. 2003, 4, 73–79. [Google Scholar] [CrossRef]
- Toruño, T.Y.; Stergiopoulos, I.; Coaker, G. Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 2016, 54, 419–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- War, A.R.; Taggar, G.K.; Hussain, B.; Taggar, M.S.; Nair, R.M.; Sharma, H.C. Plant defence against herbivory and insect adaptations. AoB Plants 2018, 10, ply037. [Google Scholar]
- Henry, G.; Thonart, P.; Ongena, M. PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors. Biotechnol. Agron. Soc. Environ. 2012, 16, 257–268. [Google Scholar]
- Zipfel, C.; Robatzek, S. Pathogen-associated molecular pattern-triggered immunity: Veni, vidi...? Plant Physiol. 2010, 154, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Huffaker, A. Endogenous peptide elicitors in higher plants. Curr. Opin. Plant Biol. 2011, 14, 351–357. [Google Scholar] [CrossRef]
- Maffei, M.E.; Arimura, G.-I.; Mithöfer, A. Natural elicitors, effectors and modulators of plant responses. Nat. Prod. Rep. 2012, 29, 1288–1303. [Google Scholar] [CrossRef]
- Dangl, J.L.; McDowell, J.M. Two modes of pathogen recognition by plants. Proc. Natl. Acad. Sci. USA 2006, 103, 8575–8576. [Google Scholar] [CrossRef] [Green Version]
- Deller, S.; Hammond-Kosack, K.E.; Rudd, J.J. The complex interactions between host immunity and non-biotrophic fungal pathogens of wheat leaves. J. Plant Physiol. 2011, 168, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Crabill, E.; Joe, A.; Block, A.; Van Rooyen, J.M.; Alfano, J.R. Plant immunity directly or indirectly restricts the injection of type III effectors by the Pseudomonas syringae type III secretion system. Plant Physiol. 2010, 154, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlovskis, Z.; Canale, M.C.; Haryono, M.; Lopes, J.R.S.; Kuo, C.-H.; Hogenhout, S.A. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Ann. Bot. 2017, 119, 869–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Lu, H.; Li, X.; Li, Y.; Cui, H.; Wen, C.K.; Tang, X.; Su, Z.; Zhou, J.M. Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae. Mol. Plant. Microbe Interact. 2010, 23, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-J.; Li, X.; Zhao, P.-F.; Li, N.; Wu, L.; He, Y.; Wang, S.-C. Comparative transcriptome profiling of two maize near-isogenic lines differing in the allelic state for bacterial brown spot disease resistance. J. Integr. Agric. 2015, 14, 610–621. [Google Scholar] [CrossRef]
- Zhang, X.; Valdés-López, O.; Arellano, C.; Stacey, G.; Balint-Kurti, P. Genetic dissection of the maize (Zea mays L.) MAMP response. Theor. Appl. Genet. 2017, 130, 1155–1168. [Google Scholar]
- Pan, J.; Zhang, M.; Kong, X.; Xing, X.; Liu, Y.; Zhou, Y.; Liu, Y.; Sun, L.; Li, D. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta 2012, 235, 661–676. [Google Scholar] [CrossRef]
- Kong, X.; Pan, J.; Zhang, M.; Xing, X.I.N.; Zhou, Y.A.N.; Liu, Y.; Li, D.; Li, D. ZmMKK4, a novel group C mitogen—Activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ. 2011, 34, 1291–1303. [Google Scholar] [CrossRef]
- Kong, X.; Lv, W.; Zhang, D.; Jiang, S.; Zhang, S.; Li, D. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase. PLoS ONE 2013, 8, e57714. [Google Scholar] [CrossRef]
- Zou, H.; Wu, Z.; Yang, Q.; Zhang, X.; Cao, M.; Jia, W.; Huang, C.; Xiao, X. Gene expression analyses of ZmPti1, encoding a maize Pti-like kinase, suggest a role in stress signaling. Plant Sci. 2006, 171, 99–105. [Google Scholar] [CrossRef]
- Hurni, S.; Scheuermann, D.; Krattinger, S.G.; Kessel, B.; Wicker, T.; Herren, G.; Fitze, M.N.; Breen, J.; Presterl, T.; Ouzunova, M.; et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl. Acad. Sci. USA 2015, 112, 8780–8785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Wang, B.; Li, X.; Wei, J.; Chen, L.; Zhang, D.; Zhang, W.; Li, R. Identification of immune related LRR-containing genes in maize (Zea mays L.) by genome-wide sequence analysis. Int. J. Genom. 2015, 2015, 231358. [Google Scholar]
- Böhm, H.; Albert, I.; Fan, L.; Reinhard, A.; Nürnberger, T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 2014, 20, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; He, Y.; Kabahuma, M.; Chaya, T.; Kelly, A.; Borrego, E.; Bian, Y.; El Kasmi, F.; Yang, L.; Teixeira, P. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat. Genet. 2017, 49, 1364. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Garcia, E.; Deising, H.B. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola. Plant J. 2016, 87, 355–375. [Google Scholar] [CrossRef]
- Levy, J.G.; Gross, R.; Mendoza-Herrera, A.; Tang, X.; Babilonia, K.; Shan, L.; Kuhl, J.C.; Dibble, M.S.; Xiao, F.; Tamborindeguy, C. Lso-HPE1, an Effector of ‘Candidatus Liberibacter solanacearum’, Can Repress Plant Immune Response. Phytopathology 2020, 110, 648–655. [Google Scholar] [CrossRef]
- Mandadi, K.K.; Scholthof, K.-B.G. Plant immune responses against viruses: How does a virus cause disease? Plant Cell 2013, 25, 1489–1505. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Bent, A.; Charkowski, A. Underexplored niches in research on plant pathogenic bacteria. Plant Physiol. 2009, 150, 1631–1637. [Google Scholar] [CrossRef] [Green Version]
- Bektaş, A.; Hardwick, K.M.; Waterman, K.; Kristof, J. Occurrence of Hop latent viroid in Cannabis sativa with symptoms of cannabis stunting disease in California. Plant Dis. 2019, 103, 2699. [Google Scholar] [CrossRef]
- Hoy, J.W. “Turning a blind eye to ratoon stunting disease of sugarcane in Australia” may be putting it too strongly without a lot more evidence. Plant Dis. 2019, 103, 790. [Google Scholar] [CrossRef]
- Davis, M.J.; Augustin, B.J. Occurrence in Florida of the bacterium that causes bermudagrass stunting disease. Plant Dis. 1984, 68, 1095–1097. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, T.-k.L.; Medina, R.F. Corn Stunt Disease: An Ideal Insect–Microbial–Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. Plants 2020, 9, 747. https://doi.org/10.3390/plants9060747
Jones T-kL, Medina RF. Corn Stunt Disease: An Ideal Insect–Microbial–Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. Plants. 2020; 9(6):747. https://doi.org/10.3390/plants9060747
Chicago/Turabian StyleJones, Tara-kay L., and Raul F. Medina. 2020. "Corn Stunt Disease: An Ideal Insect–Microbial–Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn" Plants 9, no. 6: 747. https://doi.org/10.3390/plants9060747
APA StyleJones, T. -k. L., & Medina, R. F. (2020). Corn Stunt Disease: An Ideal Insect–Microbial–Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. Plants, 9(6), 747. https://doi.org/10.3390/plants9060747