Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population
Abstract
:1. Introduction
2. Results
2.1. Phenotype Analysis
2.2. Linkage Map
2.3. QTL Mapping
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Trials and Phenotyping
4.3. Trial Analysis
4.4. Genotyping
4.5. Genetic Linkage Map Formation and QTL Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamini, F.; Özkan, H.; Brandolini, A.; Schäfer-Pregl, R.; Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 2002, 3, 429–441. [Google Scholar] [CrossRef]
- Nevo, E.; Korol, A.B.; Beiles, A.; Fahima, T. Evolution of Wild Emmer and Wheat Improvement; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-642-07512-4. [Google Scholar]
- Cox, T.S. Deepening the Wheat Gene Pool. J. Crop. Prod. 1997, 1, 1–25. [Google Scholar] [CrossRef]
- McFadden, E.S.; Sears, E.R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 1946, 37, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Petersen, G.; Seberg, O.; Yde, M.; Berthelsen, K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 2006, 39, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Skovmand, B.; Reynolds, M.P.; Delacy, I.H. Searching Genetic Resources for Physiological Traits with Potential for Increasing Yield. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A., Eds.; CIMMYT: Mexico City, Mexico, 2001; pp. 17–28. [Google Scholar]
- Xie, W.; Nevo, E. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement. Euphytica 2008, 164, 603–614. [Google Scholar] [CrossRef]
- McFadden, E.S. A Successful Transfer of Emmer Characters to Vulgare Wheat. Agron. J. 1930, 22, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Ergen, N.Z.; Thimmapuram, J.; Bohnert, H.J.; Budak, H. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct. Integr. Genomics 2009, 9, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Bramley, H.; Daetwyler, H.; He, S.; Mahmood, T.; Thistlethwaite, R.; Trethowan, R. Genetic contribution of emmer wheat (Triticum dicoccon Schrank) to heat tolerance of bread wheat. Front. Plant Sci. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Summers, R.W.; Brown, J.K.M. Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathol. 2013, 62, 115–121. [Google Scholar] [CrossRef]
- Haggard, J.E.; Johnson, E.B.; St Clair, D.A. Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites. G3 Genes Genom. Genet. 2013, 3, 2131–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Hospital, F.; Charcosset, A. Marker-assisted introgression of quantitative trait loci. Genetics 1997, 147, 1469–1485. [Google Scholar] [PubMed]
- Merchuk-Ovnat, L.; Fahima, T.; Krugman, T.; Saranga, Y. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat. Plant Sci. 2016, 251, 23–34. [Google Scholar] [CrossRef]
- Nevo, E.; Chen, G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010, 33, 670–685. [Google Scholar] [CrossRef] [PubMed]
- Rasmusson, D.C. A plant breeder’s experience with ideotype breeding. Field Crop. Res. 1991, 26, 191–200. [Google Scholar] [CrossRef]
- Donald, C.M. The breeding of crop ideotypes. Euphytica 1968, 17, 385–403. [Google Scholar] [CrossRef]
- Hospital, F.; Moreau, L.; Lacoudre, F.; Charcosset, A.; Gallais, A. More on the efficiency of marker-assisted selection. Theor. Appl. Genet. 1997, 95, 1181–1189. [Google Scholar] [CrossRef]
- Austin, R.B.; Morgan, C.L.; Ford, M.A.; Bhagwat, S.G. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Ann. Bot. 1982, 49, 177–189. [Google Scholar] [CrossRef]
- Konvalina, P.; Moudrý, J.; Dotlačil, L.; Stehno, Z.; Moudrý, J. Drought tolerance of land races of emmer wheat in comparison to soft wheat. Cereal Res. Commun. 2010, 38, 429–439. [Google Scholar] [CrossRef]
- Thorne, G.N. Physiology of Grain Yield of Wheat and Barley. Rothamsted Exp. Stn. Rep. 1973 1974, 2, 5–25. [Google Scholar] [CrossRef]
- Sanchez-Bragado, R.; Elazab, A.; Zhou, B.; Serret, M.D.; Bort, J.; Nieto-Taladriz, M.T.; Araus, J.L. Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon isotope signature: Genotypic and growing conditions effects. J. Integr. Plant Biol. 2014, 56, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Mwadzingeni, L.; Shimelis, H.; Dube, E.; Laing, M.D.; Tsilo, T.J. Breeding wheat for drought tolerance: Progress and technologies. J. Integr. Agric. 2016, 15, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.; Hepworth, C.; Dutton, C.; Dunn, J.A.; Hunt, L.; Stephens, J.; Waugh, R.; Cameron, D.D.; Gray, J.E. Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield. Plant Physiol. 2017, 174, 776–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condon, A.G.; Richards, R.A.; Farquhar, G.D. Carbon Isotope Discrimination is Positively Correlated with Grain Yield and Dry Matter Production in Field-Grown Wheat. Crop. Sci. 1987, 27, 996–1001. [Google Scholar] [CrossRef]
- Hameed, M.; Mansoor, U.; Ashraf, M.; Rao, A.U.R. Variation in Leaf Anatomy in Wheat Germplasm from Varying Drought-Hit Habitats. Int. J. Agric. Biol. 2002, 4, 12–16. [Google Scholar]
- Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; de Groot, S.; Soole, K.; Langridge, P. Early Flowering as a Drought Escape Mechanism in Plants: How Can It Aid Wheat Production? Front. Plant Sci. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Snape, J.W.; Butterworth, K.; Whitechurch, E.; Worland, A.J. Waiting for fine times: Genetics of flowering time in wheat. Euphytica 2001, 119, 185–190. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix 2017. Available online: https://github.com/taiyun/corrplot (accessed on 8 June 2020).
- Chang, W. Extrafont: Tools for Using Fonts. 2014. Available online: https://github.com/wch/extrafont (accessed on 8 June 2020).
- Taylor, J.; Butler, D. R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. J. Stat. Softw. 2017, 79, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; Poland, J.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broman, K.W.; Sen, S. A Guide to QTL Mapping with R/qtl; Statistics for Biology and Health; Springer: New York, NY, USA, 2009; ISBN 978-0-387-92124-2. [Google Scholar]
- Ouellette, L.A.; Reid, R.W.; Blanchard, S.G.; Brouwer, C.R. LinkageMapView-rendering high-resolution linkage and QTL maps. Bioinformatics 2018, 34, 306–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, M.; Iehisa, J.C.M.; Ohno, R.; Kimura, T.; Enoki, H.; Nishimura, S.; Nasuda, S.; Takumi, S. Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape and length. PLoS ONE 2017, 12, e176148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockram, J.; Jones, H.; Leigh, F.J.; O’Sullivan, D.; Powell, W.; Laurie, D.A.; Greenland, A.J. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. J. Exp. Bot. 2007, 58, 1231–1244. [Google Scholar] [CrossRef]
- Tanksley, S.D. Mapping Polygenes. Annu. Rev. Genet. 1993, 27, 205–233. [Google Scholar] [CrossRef]
- Rawson, H. Spikelet Number, Its Control and Relation to Yield Per Ear in Wheat. Aust. J. Biol. Sci. 1970, 23, 1–15. [Google Scholar] [CrossRef]
- Voldeng, H.D.; Simpson, G.M. The relationship between photosynthetic area and grain yield per plant in wheat. Can. J. Plant Sci. 1967, 47, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.V.P. Telocentric mapping of the awn inhibitor gene Hd on chromosome 4B of common wheat. Cereal Res. Commun. 1981, 9, 335–337. [Google Scholar]
- Sourdille, P.; Cadalen, T.; Gay, G.; Gill, B.; Bernard, M. Molecular and physical mapping of genes affecting awning in wheat. Plant Breed. 2002, 121, 320–324. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Huber, K.; Heckmann, J.; Steiner, B.; Nelson, J.C.; Buerstmayr, H. Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor. Appl. Genet. 2012, 125, 1751–1765. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.Q.; Khan, S.H.; Khan, A.S.; Kazi, A.M.; Basra, S.M.A. Identification of QTLs for drought tolerance traits on wheat chromosome 2A using association mapping. Int. J. Agric. Biol. 2014, 16, 862–870. [Google Scholar]
- Zhang, C.L.; Jian, J.T.; Feng, J.; Cui, Z.X.; Xu, X.W.; Sun, D.J. QTL Identification for Awn Length Based on 90K Array Mapping in Wheat. Sci. Agric. Sin. 2018, 51, 17–25. [Google Scholar] [CrossRef]
- Würschum, T.; Rapp, M.; Miedaner, T.; Longin, C.F.H.; Leiser, W.L. Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat. BMC Genet. 2019, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Langer, S.M.; Longin, C.F.H.; Würschum, T. Flowering time control in European winter wheat. Front. Plant Sci. 2014, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Muterko, A.; Kalendar, R.; Salina, E. Allelic variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 genes in cultivars of Triticum durum Desf. Planta 2016, 244, 1253–1263. [Google Scholar] [CrossRef]
- Muterko, A.; Salina, E. Divergence of VRN-B3 alleles during the evolution of domesticated wheat. Mol. Genet. Genom. 2019, 294, 263–275. [Google Scholar] [CrossRef]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef] [Green Version]
- Bogard, M.; Jourdan, M.; Allard, V.; Martre, P.; Perretant, M.R.; Ravel, C.; Heumez, E.; Orford, S.; Snape, J.; Griffiths, S.; et al. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J. Exp. Bot. 2011, 62, 3621–3636. [Google Scholar] [CrossRef] [Green Version]
- Hussain, W.; Stephen Baenziger, P.; Belamkar, V.; Guttieri, M.J.; Venegas, J.P.; Easterly, A.; Sallam, A.; Poland, J. Genotyping-by-Sequencing Derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Liu, K.; Xu, H.; Liu, G.; Guan, P.; Zhou, X.; Peng, H.; Yao, Y.; Ni, Z.; Sun, Q.; Du, J. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2018, 131, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Liu, Y.; Cheng, H.; Chang, L.; Chen, J.; Chai, S.; Li, M. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016, 17, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, F.J.; Mackay, I.; Oliveira, H.R.; Gosman, N.E.; Horsnell, R.A.; Jones, H.; White, J.; Powell, W.; Brown, T.A. Using diversity of the chloroplast genome to examine evolutionary history of wheat species. Genet. Resour. Crop. Evol. 2013, 60, 1831–1842. [Google Scholar] [CrossRef]
- Leigh, F.J.; Oliveira, H.R.; Mackay, I.; Jones, H.; Smith, L.; Wolters, P.; Charles, M.; Jones, M.; Powell, W.; Brown, T.A.; et al. Remnant genetic diversity detected in an ancient crop: Triticum dicoccon Schrank landraces from Asturias, Spain. Genet. Resour. Crop. Evol. 2013, 60, 355–365. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Velazco, J.G.; Rodríguez-Álvarez, M.X.; Boer, M.P.; Jordan, D.R.; Eilers, P.H.C.; Malosetti, M.; van Eeuwijk, F.A. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Theor. Appl. Genet. 2017, 130, 1375–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Oakey, H.; Verbyla, A.; Pitchford, W.; Cullis, B.; Kuchel, H. Joint modeling of additive and non-additive genetic line effects in single field trials. Theor. Appl. Genet. 2006, 113, 809–819. [Google Scholar] [CrossRef] [PubMed]
- VSN International. Genstat for Windows, 19th ed.; VSN International: Hemel Hempstead, UK, 2017; Available online: www.Genstat.co.uk (accessed on 15 November 2018).
- Cullis, B.R.; Smith, A.B.; Coombes, N.E. On the design of early generation variety trials with correlated data. J. Agric. Biol. Environ. Stat. 2006, 11, 381–393. [Google Scholar] [CrossRef]
- Fulton, T.; Chunwongse, J.; Tanksley, S. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant. Mol. Biol. 1995, 13, 207–209. [Google Scholar] [CrossRef]
- Allen, A.M.; Winfield, M.O.; Burridge, A.J.; Downie, R.C.; Benbow, H.R.; Barker, G.L.A.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; et al. Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 2017, 15, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lucas, S.J.; Salantur, A.; Yazar, S.; Budak, H. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct. Integr. Genom. 2017, 17, 667–685. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 2 April 2020).
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2016; Available online: http://www.rstudio.com/ (accessed on 14 May 2020).
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in {R}. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Broman, K.W. Genetic Map Construction with R/qtl; Technical Report #214; Department of Biostatistics and Medical Informatics, University of Wisconsin: Madison, WI, USA, 2010. [Google Scholar]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
2017 Field Trial | 2019 Pot Trial | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait | Tios | dic12b | PS1 ind | H2 | Trait | Tios | dic12b | PS1 ind | H2 |
AL ** | 5.3 | 8.7 | 6.7 | 0.95 | AL ** | 5.6 | 7.5 | 5.9 | 0.90 |
FT ** | 87.5 | 81.4 | 85.6 | 0.70 | FT ** | 89.8 | 77.5 | 83.8 | 0.77 |
FLL | 24.1 | 25.6 | 24.0 | - | FLL ** | 18.1 | 25.8 | 20.4 | 0.64 |
FLW ** | 1.9 | 1.4 | 1.6 | 0.36 | FLW * | 1.6 | 1.5 | 1.5 | 0.59 |
SD ** | 65.5 | 74.2 | 68.0 | 0.69 | SD | 72.4 | 67.2 | 75.9 | 0.36 |
TD ** | 1.0 | 145.1 | 43.9 | 0.90 | TD ** | 0.3 | 121.9 | 26.6 | 0.72 |
QTL Name * | Chrom | cM | LOD | Interval (cM) | % var | Additive ** | 5% Alpha | 10% Alpha |
---|---|---|---|---|---|---|---|---|
Q1_TD_19+ | 1B | 117.0 | 4.4 | 113.6–126.7 | 17.0 | 0.162+ | 4.34 | 4.01 |
Q2_FLW_17 | 2B | 148.0 | 5.0 | 142.7–156.2 | 15.8 | −0.098 | 4.40 | 4.04 |
Q3_AL_17 | 2B | 183.9 | 5.0 | 69.0–193.5 | 12.3 | 0.860 | 4.31 | 3.98 |
Q4_AL_19 | 4A | 11.0 | 11.6 | 7.3–23.8 | 39.0 | 1.394 | 4.37 | 3.99 |
Q5_AL_17 | 4A | 15.1 | 12.2 | 9.3–28.4 | 35.1 | 1.539 | 4.31 | 3.98 |
Q6_FLW_19 | 5B | 206.7 | 4.5 | 201.2–215.4 | 17.4 | 0.090 | 4.31 | 3.98 |
Q7_FLW_17 | 5B | 226.5 | 6.1 | 222.5–229.7 | 19.7 | 0.045 | 4.40 | 4.04 |
Q8_FLL_17++ | 6A | 81.0 | 4.4 | 50.0–87.0 | 16.9 | −1.75 | 4.34 | 3.98 |
Q9_FT_17++ | 7B | 13.0 | 7.1 | 4.0–23.0 | 25.7 | −1.476 | 4.31 | 3.95 |
Q10_FT_19 | 7B | 20.0 | 4.7 | 4.0–27.3 | 18.2 | −1.579 | 4.34 | 3.97 |
QTL Name | Peak SNP | Chromosome | G Position (cM) | P Position (Mb) | Interval Start (Mb) | Interval Stop (Mb) |
---|---|---|---|---|---|---|
Q1_TD_19 | AX-94642880 | 1B | 117.92 | 615.02 | 603.30 | 625.91 |
Q2_FLW_17 | AX-95247693 | 2B | 147.31 | 558.04 | 539.81 | 576.09 |
Q3_AL_17 | AX-94664270 | 2B | 183.91 | 680.41 | 58.85 | 711.72 |
Q4_AL_19 | AX-94933660 | 4A | 10.51 | 47.14 | 40.44 | 102.62 |
Q5_AL_17 | AX-94941084 | 4A | 15.13 | 79.05 | 47.11 | 109.84 |
Q6_FLw_19 | AX-94503623 | 5B | 206.72 | 619.14 | 603.88 | 658.74 |
Q7_FLw_17 | AX-94402018 | 5B | 226.49 | 671.30 | 662.65 | NA |
Q8_FLL_17 | AX-94416466 | 6A | 82.53 | 518.79 | 74.50 | 535.89 |
Q9_FT_17 | AX-94622790 | 7B | 17.05 | 13.83 | 6.15 | 23.44 |
Q10_FT_19 | AX-94622790 | 7B | 17.05 | 13.83 | 6.15 | 29.31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, T.I.C.; Burnett, A.C.; Griffiths, H.; Kadner, M.; Powell, J.S.; Oliveira, H.R.; Leigh, F.J. Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population. Plants 2020, 9, 829. https://doi.org/10.3390/plants9070829
Wright TIC, Burnett AC, Griffiths H, Kadner M, Powell JS, Oliveira HR, Leigh FJ. Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population. Plants. 2020; 9(7):829. https://doi.org/10.3390/plants9070829
Chicago/Turabian StyleWright, Tally I.C., Angela C. Burnett, Howard Griffiths, Maxime Kadner, James S. Powell, Hugo R. Oliveira, and Fiona J. Leigh. 2020. "Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population" Plants 9, no. 7: 829. https://doi.org/10.3390/plants9070829
APA StyleWright, T. I. C., Burnett, A. C., Griffiths, H., Kadner, M., Powell, J. S., Oliveira, H. R., & Leigh, F. J. (2020). Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population. Plants, 9(7), 829. https://doi.org/10.3390/plants9070829