Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance
Abstract
:1. Introduction
2. Results
2.1. Plant Identification
2.2. Soil Analysis
2.3. Screening of Endophytic Fungi for Tomato Growth and Health
2.4. Screening of Ampelomyces sp. for Tomato Drought Tolerance
2.5. Screening of P. chrysogenum for Tomato Salt Tolerance
2.6. Plant Dry Weight of Shoots and Roots
2.7. Greenhouse Fruit Production of Plants during Stress Recovery
2.8. Production under Field Conditions
3. Discussion
4. Materials and Methods
4.1. Site Descriptions and Plant Collection
4.2. Isolation of Endophytic Fungi
4.3. Plant and Fungal Molecular Identification
4.4. Soil Analysis
4.5. Tomato Colonization and Greenhouse Testing
4.6. Abiotic Stress Assays
4.7. Field Planting, Location, and Climatic Conditions
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, L.P.; Gill, S.S.; Tuteja, N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal. Behav. 2011, 6, 175–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.; Wanke, U.; Draeger, S.; Aust, H.-J. Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycol. Res. 1993, 97, 1447–1450. [Google Scholar] [CrossRef]
- Presti, L.L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Boil. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008, 59, 1109–1114. [Google Scholar] [CrossRef]
- Feldman, T.S.; Morsy, M.; Roossinck, M.J. Are communities of microbial symbionts more diverse than communities of macrobial hosts? Fungal Boil. 2012, 116, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2001, 105, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
- Ewald, P.W. Transmission Modes and Evolution of the Parasitism-Mutualism Continuum. Ann. N. Y. Acad. Sci. 1987, 503, 295–306. [Google Scholar] [CrossRef]
- Saikkonen, K.; Wäli, P.; Helander, M.; Faeth, S.H. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004, 9, 275–280. [Google Scholar] [CrossRef]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef] [Green Version]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Huckelhoven, R.; Neumann, C.; Von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, R.J.; Redman, R.S.; Henson, J.M. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: Unraveling the complexities of intimacy. In The Fungal Community: Its Organization and Role in the Ecosystem; Dighton, J., White, J.F., Ovdemans, P., Eds.; Taylor Francis CRC Press: Boca Raton, FL, USA, 2005; pp. 683–695. [Google Scholar]
- Barrow, J.R.; Lucero, M.E.; Reyes-Vera, I.; Havstad, K.M. Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun. Integr. Biol. 2008, 1, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Mucciarelli, M.; Scannerini, S.; Bertea, C.; Maffei, M.E. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol. 2003, 158, 579–591. [Google Scholar] [CrossRef]
- Redman, R.S.; Vervoort, V.S.; Beachem, M.A.; Edwards, P.S.; Ladd, S.; Miller, K.E.; De Mollerat, X.; Clarkson, K.; Dupont, B.; Schwartz, C.E.; et al. Thermotolerance Generated by Plant/Fungal Symbiosis. Science 2002, 298, 1581. [Google Scholar] [CrossRef] [PubMed]
- Márquez, L.M.; Redman, R.S.; Rodriguez, R.J.; Roossinck, M.J. A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science 2007, 315, 513–515. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2008, 2, 404–416. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.L.; Hamayun, M.; Kim, Y.; Kang, S.-M.; Lee, S.-U. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem. 2011, 49, 852–861. [Google Scholar] [CrossRef]
- Clay, K. Fungal Endophytes of Grasses: A Defensive Mutualism between Plants and Fungi. Ecology 1988, 69, 10–16. [Google Scholar] [CrossRef]
- Schardl, C.L. The Epichloae, Symbionts of the Grass Subfamily Poöideae. Ann. Mo. Bot. Gard. 2010, 97, 646–665. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.; Römmert, A.-K.; Dammann, U.; Aust, H.-J.; Strack, D. The endophyte-host interaction: A balanced antagonism? Mycol. Res. 1999, 103, 1275–1283. [Google Scholar] [CrossRef]
- Larran, S.; Simon, M.R.; Moreno, M.V.; Siurana, M.S.; Perelló, A.E. Endophytes from wheat as biocontrol agents against tan spot disease. Boil. Control. 2016, 92, 17–23. [Google Scholar] [CrossRef]
- Rho, H.; Van Epps, V.; Kim, S.-H.; Doty, S.L. Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus pumila). Microorganisms 2020, 8, 699. [Google Scholar] [CrossRef]
- Redman, R.S.; Dunigan, D.D.; Rodriguez, R. Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader? New Phytol. 2001, 151, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.C.; Ravel, C.; Naffaa, W.; Astier, C.; Charmet, G. Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Ann. Appl. Boil. 1997, 130, 227–238. [Google Scholar] [CrossRef]
- Saona, N.M.; Albrectsen, B.R.; Ericson, L.; Bazely, D.R. Environmental stresses mediate endophyte-grass interactions in a boreal archipelago. J. Ecol. 2010, 98, 470–479. [Google Scholar] [CrossRef]
- Gonzalo-Turpin, H.; Barre, P.; Gibert, A.; Grisard, A.; West, C.P.; Hazard, L. Co-occurring patterns of endophyte infection and genetic structure in the alpine grass, Festuca eskia: Implications for seed sourcing in ecological restoration. Conserv. Genet. 2009, 11, 877–887. [Google Scholar] [CrossRef]
- Hereme, R.; Morales-Navarro, S.; Ballesteros, G.; Barrera, A.; Ramos, P.; Gundel, P.E.; Molina-Montenegro, M.A. Fungal Endophytes Exert Positive Effects on Colobanthus quitensis Under Water Stress but Neutral Under a Projected Climate Change Scenario in Antarctica. Front. Microbiol. 2020, 11, 264. [Google Scholar] [CrossRef]
- Freitas, P.P.; Hampton, J.G.; Rolston, M.P.; Glare, T.R.; Miller, P.P.; Card, S.D. A Tale of Two Grass Species: Temperature Affects the Symbiosis of a Mutualistic Epichloë Endophyte in Both Tall Fescue and Perennial Ryegrass. Front. Plant Sci. 2020, 11, 530. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 2004, 50, 9–18. [Google Scholar]
- Cheplick, G.P.; Faeth, S. Ecology and Evolution of the Grass-Endophyte Symbiosis; Oxford University Press (OUP): Oxford, UK, 2009. [Google Scholar]
- Gibert, A.; Volaire, F.; Barre, P.; Hazard, L. A fungal endophyte reinforces population adaptive differentiation in its host grass species. New Phytol. 2012, 194, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial effects of endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef]
- Busby, P.E.; Soman, C.; Wagner, M.R.; Friesen, M.L.; Kremer, J.; Bennett, A.; Morsy, M.; Eisen, J.A.; Leach, J.E.; Dangl, J.L. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Boil. 2017, 15, e2001793. [Google Scholar] [CrossRef]
- Morsy, M. Microbial Symbionts: A Potential Bio-Boom. J. Investig. Genom. 2015, 2, 1–4. [Google Scholar] [CrossRef]
- United States Department of Agriculture; Soil Conservation Service. Soil Survey of Sumter County, AL; Washington DC, USA, 1988. Available online: https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/florida/FL119/0/sumter.pdf (accessed on 10 July 2020).
- Natural Resources Conservation Service. National Water and Climate Center. Available online: http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2114&state=al (accessed on 5 May 2018).
- United States Department of Agriculture; Soil Conservation Service. Soil Survey of Clarke County, AL; Washington DC, USA, 2006. Available online: https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/alabama/AL025/0/Clarke.pdf (accessed on 10 July 2020).
- Phoulivong, S.; Cai, L.; Chen, H.; McKenzie, E.H.C.; A Abd-Elsalam, K.; Chukeatirote, E.; Hyde, K.D. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers. 2010, 44, 33–43. [Google Scholar] [CrossRef]
- Aggarwal, R. Chaetomium globosum: A potential biocontrol agent and its mechanism of action. Phytopathology 2015, 68, 8–24. [Google Scholar]
- Waqas, M.; Khan, A.L.; Hamayun, M.; Shahzad, R.; Kang, S.-M.; Kim, J.-G.; Lee, S.-U.; Muhammad, H. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: An example of Penicillium citrinum and Aspergillus terreus. J. Plant Interact. 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Dubey, M.; Jensen, D.; Karlsson, M. The ABC transporter ABCG29 is involved in H2O2 tolerance and biocontrol traits in the fungus Clonostachys rosea. Mol. Genet. Genom. 2015, 291, 677–686. [Google Scholar] [CrossRef]
- Sundheim, L. Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathol. 1982, 31, 209–214. [Google Scholar] [CrossRef]
- Paulitz, T.C.; Bélanger, R.R. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 2001, 39, 103–133. [Google Scholar] [CrossRef]
- Kiss, L. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag. Sci. 2003, 59, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Edrada, R.; Wray, V.; Müller, W.E.; Kozytska, S.; Hentschel, U.; Proksch, P.; Ebel, R. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 2008, 69, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Sayari, M.; Babaeizad, V.; Fathi, J. First report of Pilidium concavum as the causative agent of tan-brown rot of Prunus domestica fruits. J. Plant Pathol. 2014, 98, 1010. [Google Scholar]
- Junker, C.; Draeger, S.; Schulz, B. A fine line—Endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol. 2012, 5, 657–662. [Google Scholar] [CrossRef]
- Carroll, G. Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology 1988, 69, 2–9. [Google Scholar] [CrossRef]
- Eaton, C.J.; Cox, M.P.; Scott, B. What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci. 2011, 180, 190–195. [Google Scholar] [CrossRef]
- Hyde, K.; Soytong, K. The fungal endophyte dilemma. Fungal Divers. 2008, 33, 163–173. [Google Scholar]
- Arias, M.M.D.; Munkvold, G.P.; Leandro, L.F. First Report of Fusarium proliferatum Causing Root Rot on Soybean (Glycine max) in the United States. Plant Dis. 2011, 95, 1316. [Google Scholar] [CrossRef]
- Photita, W.; Lumyong, S.; Lumyong, P.; McKenzie, E.H.C.; Hyde, K.D. Are some endophytes of Musa acuminata latent pathogens. Fungal Divers. 2004, 16, 131–140. [Google Scholar]
- Naznin, H.A.; Kiyohara, D.; Kimura, M.; Miyazawa, M.; Shimizu, M.; Hyakumachi, M. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana. PLoS ONE 2014, 9, e86882. [Google Scholar] [CrossRef] [Green Version]
- Berg, G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Hamayun, M.; Yoon, H.; Kim, H.-Y.; Suh, S.-J.; Hwang, P.; Kim, J.-M.; Lee, S.-U.; Choo, Y.-S.; Yoon, U.-H.; et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 2008, 8, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.-H. Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay. J. Microbiol. Biotechnol. 2012, 22, 1549–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitão, A.L.; Enguita, F.J. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol. Res. 2016, 183, 8–18. [Google Scholar] [CrossRef]
- Murphy, B.R.; Doohan, F.M.; Hodkinson, T.R. Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 2015, 65, 1–7. [Google Scholar] [CrossRef]
- Fouda, A.H.; Hassan, S.E.-D.; Eid, A.; Ewais, E.E.-D. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann. Agric. Sci. 2015, 60, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.L.; Waqas, M.; Khan, A.R.; Hussain, J.; Kang, S.-M.; Gilani, S.A.; Hamayun, M.; Shin, J.-H.; Kamran, M.; Al-Harrasi, A.; et al. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J. Microbiol. Biotechnol. 2013, 29, 2133–2144. [Google Scholar] [CrossRef]
- Khan, A.L.; Lee, S.-U. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Boil. 2013, 13, 86. [Google Scholar] [CrossRef] [Green Version]
- Whitelaw, M. Growth Promotion of Plants Inoculated with Phosphate-Solubilizing Fungi. Adv. Agron. 1999, 69, 99–151. [Google Scholar]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.R.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- Abro, M.A.; Sun, X.; Li, X.; Jatoi, G.H.; Guo, L.-D. Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber. Plant Pathol. J. 2019, 35, 598–608. [Google Scholar] [PubMed]
- Ahlholm, J.U.; Helander, M.; Lehtimäki, S.; Wäli, P.R.; Saikkonen, K. Vertically transmitted fungal endophytes: Different responses of host-parasite systems to environmental conditions. Oikos 2002, 99, 173–183. [Google Scholar] [CrossRef]
- Morse, L.; Day, T.A.; Faeth, S. Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ. Exp. Bot. 2002, 48, 257–268. [Google Scholar] [CrossRef]
- Rudgers, J.A.; Swafford, A.L. Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl. Ecol. 2009, 10, 43–51. [Google Scholar] [CrossRef]
- Morsy, M.; Oswald, J.; He, J.; Tang, Y.; Roossinck, M.J. Teasing apart a three-way symbiosis: Transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem. Biophys. Res. Commun. 2010, 401, 225–230. [Google Scholar] [CrossRef]
- Sherameti, I.; Tripathi, S.; Varma, A.; Oelmüller, R. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol. Plant-Microbe Interact. 2008, 21, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, M.D.; Chapman, G.W.; Hoveland, C.S.; Bacon, C.W. Sugar Alcohols in Endophyte-Infected Tall Fescue Under Drought. Crop Sci. 1992, 32, 1060–1061. [Google Scholar] [CrossRef]
- Rodriguez, R.; Redman, R. Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. USA 2005, 102, 3175–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.; Torres, M.S. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol. Plant. 2010, 138, 440–446. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, C.-L.; Lin, F.-C. Role of Diverse Non-Systemic Fungal Endophytes in Plant Performance and Response to Stress: Progress and Approaches. J. Plant Growth Regul. 2010, 29, 116–126. [Google Scholar] [CrossRef]
- Richardson, M.D.; Hoveland, C.S.; Bacon, C.W. Photosynthesis and Stomatal Conductance of Symbiotic and Nonsymbiotic Tall Fescue. Crop Sci. 1993, 33, 145–149. [Google Scholar] [CrossRef]
- Bayat, F.; Mirlohi, A.; Khodambashi, M. Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ. J. Plant Physiol. 2009, 56, 510–516. [Google Scholar] [CrossRef]
- Morsy, M.; Jouve, L.; Hausman, J.-F.; Hoffmann, L.; Stewart, J.M. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol. 2007, 164, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; APS Press: St. Paul, MN, USA, 1998. [Google Scholar]
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Boil. 1991, 17, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
Plant Code | Scientific Name | Family | Identity (%) | Infected Explants | Isolated Fungi | Accession No. | Identity |
---|---|---|---|---|---|---|---|
SC1 | Plantago lanceolata | Plantaginaceae | 96 | 6 | Glomerella cingulata | JX844157.1 | 100 |
5 | Colletotrichum gloeosporioides | AY266378.1 | 99.5 | ||||
5 | Gibberella avenacea | GU934531.1 | 99 | ||||
5 | Leptosphaeria sp. | KJ173535.1 | 99.73 | ||||
SC2 | Plantago lanceolata | Plantaginaceae | 99 | 7 | Pilidium sp. | KF367478.1 | 98.93 |
6 | Leptosphaerulina chartarum | GQ254687.1 | 98.37 | ||||
5 | Pyrenochaeta sp. | KJ207418.1 | 93.52 | ||||
SC3 | Solidago canadensis | Asteraceae | 99 | 4 | Pilidium sp. | KF367478.1 | 98.29 |
3 | Neopestalotiopsis mesopotamica | KM199361.1 | 99.05 | ||||
2 | Plectosphaerella sp. | DQ993622.1 | 94 | ||||
SC4 | Solidago canadensis | Asteraceae | 98 | 6 | Colletotrichum gloeosporioides | AY266378.1 | 99.44 |
5 | Neosartorya fischeri | LC011422.1 | 99.26 | ||||
5 | Plectosphaerella sp. | DQ993622.1 | 97.87 | ||||
3 | Nigrospora sphaerica | MT576586.1 | 100 | ||||
SC5 | Antennaria neglecta | Asteraceae | 100 | 6 | Pestalotiopsis clavispora | KM402033.1 | 100 |
5 | Nigrospora sp. | KF128850.1 | 99.82 | ||||
SC6 | Antennaria neglecta | Asteraceae | 99 | 7 | Purpureocillium lilacinum | KC157755.1 | 99.8 |
6 | Pestalotiopsis sp. | JX436803.1 | 98.75 | ||||
6 | Phoma sp. | KY484799.1 | 98.05 | ||||
5 | Plectosphaerella sp. | DQ993622.1 | 98.9 | ||||
SC7 | Plantago lanceolata | Plantaginaceae | 98 | 7 | Colletotrichum gloeosporioides | AY266378.1 | 99.8 |
7 | Polyporales sp. | JQ312208.1 | 99.28 | ||||
7 | Purpureocillium lilacinum | KP068975.1 | 98.78 | ||||
6 | Pestalotiopsis clavispora | EU030329.1 | 100 | ||||
SC8 | Pyrrhopappus carolinianus | Asteraceae | 99 | 14 | Ampelomyces sp. | AY513943.1 | 100 |
2 | Alternaria sp. | MH029119.1 | 99.8 | ||||
SC9 | Plantago lanceolata | Plantaginaceae | 97 | 6 | Stagonospora sp. | KF800186.1 | 96.37 |
6 | Trichoderma harzianum | KJ000326.1 | 99.8 | ||||
6 | Zopfiella longicaudata | KY316385.1 | 99.13 | ||||
SC10 | Solidago canadensis | Asteraceae | 96 | 8 | Plectosphaerella sp. | DQ993622.1 | 100 |
5 | Sordariomycetes sp. | JX244023.1 | 100 | ||||
4 | Pestalotiopsis mangiferae | KX778664.1 | 99.27 | ||||
2 | Fusarium solani | JN983014.1 | 100 |
Plant Code | Scientific Name | Family | Identity (%) | Infected Explants | Isolated Fungi | Accession No. | Identity (%) |
---|---|---|---|---|---|---|---|
CC1 | Celtis laevigata | Cannabaceae | 99 | 4 | Bionectria ochroleuca | GU934503.1 | 99 |
4 | Fusarium acuminatum | JQ693398.1 | 100 | ||||
3 | Ceratobasidium sp. | DQ102399.1 | 100 | ||||
3 | Alternaria alternata | KF881759.1 | 100 | ||||
3 | Aspergillus terreus | JX863370.1 | 97.45 | ||||
CC2 | Acer negundo | Aceraceae | 99 | 12 | Penicillium chrysogenum | KP068959.1 | 100 |
6 | Penicillium glabrum | JQ863239.1 | 99 | ||||
3 | Fusarium solani | EU029589.1 | 99 | ||||
CC3 | Halesia diptera | Styracaceae | 99 | 7 | Clonostachys rosea | KM519669.1 | 96 |
4 | Ceratobasidium sp. | JN648710.1 | 99 | ||||
4 | Fusarium avenaceum | KF010838.1 | 99 | ||||
2 | Fusarium sp. | JX914477.1 | 99 | ||||
CC4 | Cerastium glomeratum | Caryophyllaceae | 99 | 6 | Ceratobasidium sp. | DQ102399.1 | 100 |
6 | Cladosporium cladosporioides | KC692219.1 | 99 | ||||
4 | Fusarium equiseti | KP068925.1 | 99 | ||||
CC5 | Acer negundo | Sapindaceae | 7 | Cladosporium cladosporioides | GQ458030.1 | 98 | |
7 | Colletotrichum gloeosporioides | AY266378.1 | 99 | ||||
7 | Fusarium phaseoli | MH855640.1 | 98.9 | ||||
4 | Ceratobasidium sp. | KJ471494.1 | 95 | ||||
CC6 | Antennaria parvifolia | Asteraceae | 99 | 8 | Chaetomium globosum | KM873624.1 | 91 |
6 | Ceratobasidium sp. | KR259886.1 | 99 | ||||
5 | Cladosporium sp. | GU797141.1 | 99 | ||||
5 | Fusarium oxysporum | KJ854902.1 | 99 | ||||
CC7 | Erigeron glabellus | Asteraceae | 100 | 7 | Ceratobasidium sp. | KC782943.1 | 98 |
6 | Colletotrichum gloeosporioides | KJ957791.1 | 99 | ||||
6 | Exserohilum sp. | HQ909080.1 | 97 | ||||
6 | Fusarium oxysporum | KJ562372.1 | 99 | ||||
CC8 | Oxydendrum arboreum | Ericaceae | 100 | 9 | Didymella sp. | DQ092504.1 | 90 |
7 | Fusarium oxysporum | KJ562372.1 | 98 | ||||
6 | Cryptococcus rajasthanensis | FR870473.1 | 99 | ||||
CC9 | Illicium floridanum | Schisandraceae | 100 | 4 | Fusarium oxysporum | KJ854902.1 | 99 |
CC10 | Undetermined | Undetermined | N/A | 8 | Penicillium chrysogenum | MK881028.1.1 | 93.37 |
3 | Penicillium sp. | HQ130685.1 | 99 | ||||
3 | Colletotrichum sp. | HM535385.1 | 93 |
Plant Sample | N | P | K | pH | TDS (PPT) |
---|---|---|---|---|---|
Sumter County plant samples | |||||
SC 1 | Low | High | High | 8.20 | 40.9 |
SC 2 | Low | Low | High | 8.57 | 43.5 |
SC 3 | Low | Low | High | 8.63 | 40.0 |
SC 4 | Low | Low | High | 8.76 | 36.6 |
SC 5 | Low | Medium | High | 8.58 | 44.4 |
SC 6 | Low | Low | High | 8.30 | 45.9 |
SC 7 | Low | High | High | 8.19 | 89.9 |
SC 8 | Low | Medium | High | 7.86 | 107.5 |
SC 9 | Low | Medium | High | 8.00 | 55.3 |
SC 10 | Low | Medium | High | 8.45 | 43.1 |
Clarke County plant samples | |||||
CC 1 | Low | High | High | 6.93 | 428.7 |
CC 2 | Low | High | High | 7.97 | 568.3 |
CC 3 | Low | Medium | High | 6.87 | 666.8 |
CC 4 | Low | Medium | High | 6.87 | 403.7 |
CC 5 | Low | Low | High | 6.58 | 712.4 |
CC 6 | Low | Low | High | 6.84 | 96.2 |
CC 7 | Low | Low | Medium | 6.74 | 15.4 |
CC 8 | Low | Low | High | 6.84 | 87.1 |
CC 9 | Low | High | High | 6.87 | 51.6 |
CC 10 | Low | Medium | High | 6.45 | 55.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morsy, M.; Cleckler, B.; Armuelles-Millican, H. Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance. Plants 2020, 9, 877. https://doi.org/10.3390/plants9070877
Morsy M, Cleckler B, Armuelles-Millican H. Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance. Plants. 2020; 9(7):877. https://doi.org/10.3390/plants9070877
Chicago/Turabian StyleMorsy, Mustafa, Blake Cleckler, and Hayden Armuelles-Millican. 2020. "Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance" Plants 9, no. 7: 877. https://doi.org/10.3390/plants9070877
APA StyleMorsy, M., Cleckler, B., & Armuelles-Millican, H. (2020). Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance. Plants, 9(7), 877. https://doi.org/10.3390/plants9070877