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Abstract: Research and technology developments on autonomous agents and autonomic computing
promote a vision of artificial systems that are able to resiliently manage themselves and autonomously
deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to
unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk
of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely
decision-making in complex settings (cf. data-centre operations). Beyond the results that individual
autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents
or robots. Emerging macro-paradigms provide an approach to programming whole collectives
towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of
computational fields enabling functional composition of collective behaviours that could be proved,
under certain technical conditions, to be self-stabilising. In this work, we address the concept of
collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a
contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how
the aggregate computing framework relates to both individual and collective autonomy, and show
how it can be used to program collective autonomous behaviour. We exemplify the concepts through
a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.

Keywords: collective autonomy; self-organisation; aggregate computing; multi-agent systems;
coordination

1. Introduction

Research and technology trends promote a vision of artificial systems that are able to
resiliently manage themselves and autonomously deal with issues at runtime in dynamic
environments. Such a vision is mainly investigated by two related research threads. One
is the field of autonomic computing [1] and self-adaptive systems [2], which promote
the development of Information and Communications Technology (ICT) systems able to
self-manage given a set of high-level goals. Indeed, endowing systems with higher degrees
of autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and
autonomous vehicles), from the risk of operating in unknown or perilous environments
(cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-
centre operations). The other is the field of multi-agent systems (MAS) [3], which evolved
from the field of distributed artificial intelligence [4]. An MAS is a system of agents, i.e., a
collection of autonomous entities interacting with their environment [5] and other agents
to satisfy their design objectives. From an engineering point of view, agents and related
abstractions are considered useful tools for the analysis and design of complex software-
based systems. There are two key problems in the use and development of agents: the
design of individual agents (micro level) and the design of a society of agents (macro
level) [3].

Indeed, beyond the results that individual autonomous agents can carry out, a
further opportunity lies in the collaboration of multiple agents or robots. Emerging
macro-paradigms [6,7] provide an approach to programming whole collectives towards
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global goals. Aggregate computing or programming [7,8] is one such paradigm, formally
grounded in a calculus of computational fields [9] (maps from agents to values) enabling
functional specification and composition of collective behaviours. The major benefit of the
aggregate programming approach is that it explicitly addresses collective adaptive behav-
ior, rather than the behavior of individuals (which is addressed indirectly, as a consequence
of the intended global behavior). The idea is to code scripts, conceptually executed by the
collective as a whole, in terms of reusable building blocks of collective tasks [10] capturing
both state, behavior, and interaction, crucially enjoying formal mapping to the behavior
of individuals and often provable convergence properties [7,11]. We argue that this pro-
gramming approach, which originated from the research areas of coordination [12] and
spatial computing [6] (see [7] for a historical note), can be suitable to MAS programming.
Accordingly, in this work, we address the concept of collective autonomy, i.e., the form
of autonomy that applies at the level of a group of individuals. Though this notion has
been investigated in the literature (cf. Section 2), there are mainly preliminary approaches
for practical programming of collective autonomous behavior by a global perspective; so,
in this manuscript, we address this software engineering problem explicitly, and sketch a
roadmap for further research. Therefore:

• we provide a review of literature about autonomy and especially collective autonomy
in MASs (Section 2);

• we analyze the aggregate computing framework by the perspective of autonomy,
by covering its positioning with respect to individual and collective autonomy, and
showing how it can support adjustable autonomy (Section 3);

• we exemplify the discussion through a simulated case study, investigating (i) the
relationship between individual goals/autonomy and collective goals/autonomy;
and (ii) the relationship between structures and collective autonomy (Section 4); and

• we discuss gaps in the literature on programming reliable collective autonomy and
delineate a research roadmap (Section 5).

Finally, we conclude with a wrap-up in Section 6. In summary, in this route, we
cover how to aggregate computing relates to and supports various forms of autonomy,
and propose it as a framework for programming and simulating collective autonomous
behavior, in a way that differs from related works and that opens up various research
directions regarding actionable notions of collective autonomy.

2. Background and Related Work

This section provides the background for our contribution, which is positioned at the
intersection of distributed artificial intelligence and software engineering.

2.1. Autonomy in Software Engineering and Multi-Agent Systems

At a first level, autonomy is used as a general informal notion, a characteristic assumed
to be possessed by some entities during design. Etymologically, autonomy refers to
an entity that follows its own laws, i.e., that is able to self-regulate its behavior. At a
second level, concrete and (semi-)formal notions of autonomy are developed to support
engineering tasks under specific viewpoints—see Table 1 for a summary. For instance,
from a programming language perspective, agents are computationally autonomous in the
sense that they “encapsulate invocation” (i.e., they act as internally defined, e.g., by rules or
goals). Therefore, agents can be thought of as the next step of an evolution from monoliths
to modules (encapsulation of behavior), to objects (encapsulation of state in addition to
behavior), to active objects/actors (decoupling invocation from execution) [13].

Autonomy, together with agency (the ability to act), appears to one of the key defining
and agreed upon characteristics of agents in MAS research [14]. From autonomy and
agency, other features naturally arise. Agents are proactive: they are not only reactive
to external stimuli, but driven towards action by an inner force. Agents are social and
interactive, as autonomy makes sense in a relational context such as a society (MAS). The
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importance of interaction has motivated research on how to effectively rule it to promote
the satisfaction of design goals—the field of coordination [12].

As a relational notion, it is more precise to say that an agent is autonomous (i) from
something and possibly (ii) with respect to something [15]. Accordingly, it is possible to
distinguish between social autonomy (the autonomy of an agent from other agents) and
non-social, environmental autonomy (the autonomy of an agent from the environment).
It is important to remember that autonomy is a gradable notion from the extremes of
no autonomy to full or absolute autonomy. Regarding the object for which autonomy is
considered, researchers typically distinguish between agents that are plan-autonomous
(i.e., are free to determine the course of actions to reach given goals) and agents that are
goal-autonomous (i.e., are free to determine their own goals). These forms are also called
as executive and motivational autonomy [16], respectively. Another common distinction
is between weak and strong agency. In the latter, goals are explicitly represented. An
approach to (strong) agency is to consider agents as intentional entities with mental states
such as epistemic (e.g., percepts, beliefs) and motivational (e.g., desires, intentions) states.
A well-known model in this class is the Belief–Desire–Intention (BDI) control architecture,
which counts several implementations and variants [17].

Table 1. A summary of common notions of autonomy.

Dimension Elements/Terms

Reference entity Agent Group of agents

individual autonomy collective autonomy

Autonomy “from” something Other agents Environment

social autonomy non-social/environmental
autonomy

Autonomy “with respect to”
something Goals Plans

motivational autonomy executive autonomy

Autonomy extremes None Full

no autonomy (passivity) absolute autonomy
(freedom)

Autonomy flexibility None Full

fixed autonomy adjustable autonomy

Source of autonomy with respect to
a component of a reference entity Internal External

endogenous autonomy exogenous autonomy

2.2. Collective Autonomy

The notion of collective autonomy emerges when the reference agent is not an atom-
ically individual agent but a whole collective, i.e., a collection of individuals (agents or
other, possibly non-autonomous agents). As autonomy as a concept tends to be related to
the existence (and possibly awareness) of a “self” [18], an autonomous collective tends to
be and work as a “unit”. Working as a unit requires the components of a collective to be
jointly directed towards goals, states of affairs, or values—a concept known as collective
intentionality [19,20]. In [19], an (intentional) collective is defined as a collection of agents
held together by a “plan”, which specifies a “goal” and their “roles”. In [21], a formal
analysis of collective autonomy is provided. A collective (agent) is defined as a collection
of complementary agents sharing a common, collective goal (which, in a sense, reduces
the individual autonomy of the members). As for individuals, autonomy for collectives
is a gradable and relational notion. A collective may be defined as plan-autonomous
(goal-autonomous) if no other entity (internal or external) can change its plans (goals).
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The focus on autonomy, together with a collective stance, can be used to model or engi-
neer complex system behavior. This is the idea of autonomy-oriented computing [22], where
computation is defined in terms of local autonomous entities, spontaneously (inter-)acting
together and with the environment to achieve self-organizing behavior. In the following
section, we cover a state-of-the-art programming model for this paradigm.

2.3. Multi-Agent Systems Programming

A recent survey on agent-based programming is by Mao et al. [23]. They classify agent
programming languages into three families according to the level they address: individual
agent programming (micro-level), agents integration and interaction programming (meso-
level), and multi-agent organisation programming (macro-level). Representatives of these
classes include cognitive-oriented languages such as AgentSpeak(L)/Jason [24], agent
communication and environment modelling languages like KQML [25], CArtAgO [26], and
SARL [27], and organisation-oriented programming such as MOISE [28]. Another recent
survey by Cardoso et al. [29] distinguishes between general-purpose agent programming
languages and languages for agent-based modeling and simulation. In the following,
we cover a programming model arising from research on spatial computing [6,30] and
field-based coordination [7,31], which provides an original approach to MAS programming
that allows driving micro-level activity based on specifications addressing the meso- and
macro-levels of a MAS.

2.3.1. Aggregate Programming

Aggregate programming is an approach to specify the collective adaptive or self-
organising behaviour of a MAS by a global perspective. The individual behavior of the
agents derives from an aggregate program that is conceptually executed by the system
as a whole. The aggregate program provides a way to map the local observations of an
individual agent (i.e., sensing information, current agent state, and inbound messages
from neighbors) to (eventually) globally-coherent local actions (i.e., actuation instructions,
and outbound messages). Therefore, an aggregate program covers the aspects of sensing,
actuation, computation, and communication to define how the MAS should collectively
behave. In particular, we define an aggregate system as a MAS of agents, structurally
connected such that an agent can only interact with a subset of other agents known as
its neighbors, and repeatedly plays an aggregate program against its up-to-date context
(further details about the execution protocol are provided in Section 3.1).

Historically, aggregate programming originated from works drawing inspiration
from nature: whereas the biological inspiration led to swarm intelligent MASs, where
agent indirectly interact by pheromones [32], the physical inspiration led to the idea of
agents acting in environments empowered with potential fields [31]. Recently, aggregate
programming has been formally backed by field calculi [7], which provide a compositional
approach to global behavior specification based on functions from fields to fields. A
(computational) field is a map associating a value to any device of a given domain. So,
for instance, controlling the movement of a swarm of drones can be expressed through a
field of velocity vectors, which maps any drone of the swarm to a corresponding velocity
(speed and direction); the set of low-energy devices can be denoted through a Boolean
field holding true for devices whose local energy level (as perceived by local sensors,
and collectively also denoted as a floating-point field) is under a certain threshold (also
a floating-point field). These fields, then, are generally manipulated through three kinds
of constructs:

1. Stateful evolution: rep(init)(f)—expressing how a field, starting as init, should
evolve round-by-round through unary function f.

2. Neighbour interaction: nbr(e)—used to exchange with neighbours the value obtained
by evaluating field expression e; this locally yields a neighbouring field, i.e., a field
that maps any neighbour to the corresponding evaluation of e.
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3. Domain partitioning: branch(c){ifTrue}{ifFalse}—used to partition the domain
of devices into two parts: the devices for which field c is locally true, which evaluate
expression ifTrue, and those for which c yields false, which evaluate ifFalse.

The idea of aggregate programming is to write programs talking about global behavior
(fields) and let these drive the local activity of every device in the system. Aggregate
programming is embodied by concrete aggregate programming languages [7], such as
ScaFi [33,34], a Domain-Specific Language (DSL) embedded in Scala as well as a toolchain
for aggregate system development and simulation [35]. ScaFi is used for the examples in
this paper and for the experimental evaluation of Section 4.

We adopt ScaFi in this paper mostly for practical reasons: with respect to other ag-
gregate programming languages such as Proto and Protelis, surveyed in [7], ScaFi is a
strongly typed, internal DSL; therefore, it enables straightforward reuse of powerful fea-
tures from the Scala host language (including its type system, type inference, programming
abstractions, libraries) as well as seamless integration with tooling supports for Java Vir-
tual Machine-based languages (including Integrated Development Environments, static
analysis, and debugging tools), at the expense of a more constrained syntax and semantics.
Additionally, ScaFi also represents an agile framework for testing experimental language
features (cf. aggregate processes [34]—referenced in Section 5.1). Hence, among the exist-
ing languages for aggregate programming, we believe ScaFi is the one better fitting rich
scenarios like those addressed in this paper.

A full account of research about aggregate programming, field calculi, and ScaFi is
beyond the scope of this article; the interested reader can refer to [7,34].

Recently, some preliminary work [36] has been carried out to consider the application
of the aggregate approach for MAS programming, along with a strong-agency viewpoint.
There, two main ideas are proposed. One is the notion of a cognitive field (e.g., fields
of beliefs, fields of goals, fields of intentions), which could be used to represent “a kind
of distributed, decentralized, and externalized mental state”. The other is the notion of
an aggregate plan, i.e., a global, collective plan of actions modeling the way in which
a dynamic team of agents cooperates towards a social goal in a self-organizing way. In
particular, aggregate plans can be created by an initiator agent and iteratively spread by
the other agents; any agent has the faculty of choosing to adopt the plan or not; if the
plan is adopted, then the agent will execute the corresponding actions, which in general
will depend on the agent’s position in space and in the team. This mechanism may be
suitable where the behavior to be executed is somehow related to the space/environment,
where the MAS can be clustered in teams of agents exhibiting uniform behavior, or where
the MAS has to embed a decentralized, self-organizing force. A management lifecycle for
aggregate plans involve the following phases: synthesis, spreading, collection, selection,
execution. In this article, we build on this perspective, and rather focus on the notion of
(collective) autonomy.

3. Autonomy in Aggregate Computing

In this section, we analyse the notion of autonomy (cf. Section 2.1) by the aggregate
computing and programming perspective (cf. Section 2.3.1). In particular, we propose the
aggregate execution protocol as basis of an agent control architecture (Section 3.1), and then
discuss aggregate programming of individual (Section 3.2) as well as collective autonomy
(Section 3.3).

3.1. Aggregate-Oriented Agent Control Architecture

The field calculus small-step operational semantics [9] provides an abstract aggregate
execution protocol for “driving” aggregate behaviour. The aggregate execution protocol
typically consists of having an agent repeatedly run (e.g., once per second, or upon change
of the local context) a computation round consisting of the following steps:

1. Context evaluation. In this step, the agent looks at its current state, its sensors, and its
message box for new information in order to update the local context.
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2. Aggregate program evaluation. In this step, the agent runs the aggregate program
providing its local context as an input: the evaluation of the program returns an
output data structure that can be used for context update.

3. Context action. Using the output of the program evaluation, the agent must

• update its local state;
• send a message to neighbours;
• trigger actuations (if needed).

Such an abstract aggregate execution protocol can effectively be used to define an agent
control architecture (Figure 1). Variants of such a control architecture can also be envisaged,
e.g., by considering asynchronicity and different rates for context evaluation, computation,
and action. Preliminary work supporting this direction can be found in [37,38], where
partitioning schemas and programmable schedulers are proposed.

This control architecture also provides a basis for integrating the aggregate paradigm
with other agent control architectures, e.g., the cognitive ones based on BDI [17]—which
makes for an interesting future fork.

agent

Computation round

Context
evaluation

Aggregate
program

evaluation

Context
action

Scheduling
policy

Sensors

State

Inbound
Message box

Outbound
Message box

Actuators

neighbours

Aggregate
program

0 1

2

3

Figure 1. Agent control architecture in aggregate programming. Notation: square boxes denote
components; rounded boxes denote activities; dashed rounded boxes denote agents; solid arrows
denote control passing; dashed arrows denote data passing.

3.2. Individual Autonomy in Aggregate Computing

As a running example, consider a crowd detection and steering application [8]
(cf. Figure 2a). When this application is built with the aggregate paradigm, the crowd is rep-
resented as an aggregate system consisting of a large-scale, dense network of smartphone-
or wearable-augmented people—co-located in a spatial region such as a public exhibition
area, a concert, or a stadium. An aggregate program can be continuously played by this
system, providing each agent with an estimation of the local density, a local risk level,
and possibly—if the vicinity to risky areas exceeds a certain threshold—advice for safe
dispersal (in terms of a field of movement directions). In ScaFi, such a program may be
implemented, reusing a library of general-purpose aggregate components [10], as per
Figure 2c. Function crowdTracking (Line 2) runs a collective crowding risk estimation
process, by calling collectiveDensityEstimation (Line 6), and selects the corresponding
output (i.e., a crowding value—NoRisk, Risk, or Danger) only for the devices for which
the perceived local density exceeds threshold value thCrowd; for the others, the output
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is NoRisk. Function collectiveDensityEstimation (whose code is not shown) may, e.g.,
using the building blocks in [10], break the system into multiple areas, compute the mean
local density in each one of them, and share to all the members the area-wide crowding
level (based on whether the average density exceeds threshold thDanger). Then, function
crowdDispersal (Line 10) provides a suggestion for dispersal for all the devices that are
closer than riskRange from any device with crowding level Risk; the suggestion is es-
sentially computed as the opposite of a vector pointing to the center of mass of a close
Overcrowded device group. We remark that, though the aggregate program is unique
(essentially like a shared plan for all the involved agents), its execution is distributed (i.e.,
decentralized) and local (i.e., with agents interacting with neighbor agents only), hence
enabling scalable collective computations.

An aggregate behavior is the result that emerges from the combination of (i) an aggre-
gate program; (ii) a concrete aggregate execution; (iii) an environment—which comprises
the behavior of the agents that is out of the control scope of the aggregate program. For the
crowd example, the aggregate program expresses how the MAS should determine risky
areas and how dispersal processes should be carried out; an aggregate execution may, e.g.,
set the round frequency to match the levels of mobility; the environment entails elements
like spatial distribution and connectivity. Therefore, for an aggregate behavior to actually
work, i.e., to correctly carry out its intended functionality (which can be seen as a “social
benefit”) it is important that the aggregate execution which is tailored to match prefigured
features of the environment, is respected by every device, generally. Indeed, there exist
guarantees regarding (i) self-stabilisation of aggregate computations [11], namely the guar-
antee to eventually converge to a correct state once perturbations cease; and (ii) adaptation
of aggregate behaviours to device distribution (density, topology) [39], namely eventual
consistency of values, whose approximation improves as the discrete network tends to
more densely cover the environment. Under this perspective, an aggregate program may
be interpreted as a representation of a social norm, and the aggregate system as a society,
or even a normative MAS [40]. So, an agent that does not run the aggregate program is a
deviant and not really part of society. On the other hand, playing by the norms implies a
limitation of individual autonomy, which is generally traded for a greater, social good. In
the crowd example, it is clear that the activity of information gathering and broadcasting
is instrumental to achieve good “social” performance in risk detection and dispersal self-
correction; moreover, great damage may result from not following dispersal advice—so, the
crowd program may be interpreted as the reification of a social norm for safe behavior in a
perilous situation. Inspired by normative MAS, deviance can be minimized by leveraging
social enforcement mechanisms such as rewards or sanctions [40]. However, an agent of an
aggregate MAS may reduce, e.g., the frequency at which rounds are executed, because of a
low-energy level, or because its portion of the environment is largely stationary. In other
words, the first element of individual autonomy in aggregate MASs revolves around how
an agent adheres to the aggregate execution protocol for the application at hand.

The other elements of individual autonomy are those provided by and undergone by
the aggregate program. Indeed, an aggregate program may be used to control individual
behavior, through local functions containing no aggregate constructs for global coordina-
tion. We call this endogenous or delegated autonomy, as it is delegated from the (inside
of the) program itself. For instance, the crowd example may be extended to leave some
individual autonomy when following the dispersal advice:

localDispersalDecision(crowdDispersal(...))

where localDispersalDecision can be a function potentially different from agent to agent,
able to affect the local socially-enforced dispersal direction. This mechanism may also
be used to program adjustable autonomy, i.e., the form supporting “agents with graded
autonomy properties” [41].
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(a) A simulation snapshot of the crowd
detection and steering example. Red
nodes are devices in an overcrowded area;
cyan nodes are nodes at risk since close
to overcrowded devices; black nodes are
in a safe location. Solid lines denote
connectivity links (the longer links are
those between infrastructural nodes).

crowd dispersalcrowd tracking

local density estimation

recently higher than
threshold

collective density estimation

  c  

no risk

distance to "c >= Risk"

yes no

lower than threshold

vector from
"c==Overcrowded"

current
position

yes

no

(b) Diagram corresponding to the ScaFi application code below.
Boxes denote computational field expressions; solid arrows denote
input/output relationships; dashed arrows are a shorthand to denote
conditional selection (when initially separated—for mux, where the
“then” and ”else” expressions are both evaluated, but only one
is returned) and conditional evaluation (when initially joined—for
branch, where only one between the “then” and “else” expression is
evaluated and returned).

1 /* Shared plans (see also [8]) */
2 def crowdTracking(p: Double, r: Double, w: Double, t: Double,
3 thCrowd: Double, thDanger: Double): Crowding = {
4 val localDensity = localDensityEstimation(p, r)
5 mux(recentlyTrue(localDensity > thCrowd, t)){
6 collectiveDensityEstimation(p, r, thDanger)
7 } { NoRisk }
8 }
9

10 def crowdDispersal(c: Crowding, r: Double): TargetPosition =
11 // if a device is closer than r to any device with crowding level = Risk or higher
12 // then compute a movement vector to move away from the Overcrowded area, or do not move
13 branch(distanceTo(c >= Risk) < r){ vectorFrom(c == Overcrowded) }{ currentPosition() }
14
15 /* Shared beliefs: see [8] for motivation of the specific values */
16 val p = 0.005 // proportion of people with a corresponding device (agent)
17 val r = 30 // range in metres for local crowding estimation
18 val w = 0.25 // fraction of walkable space
19 val t = 60.0 // timeframe (in seconds) for risk monitoring
20 val thCrowd = 1.08 // relevant crowding threshold
21 val thDanger = 2.17 // dangerous crowding threshold
22 val riskRange = 50 // distance to risk for triggering alert
23
24 /* Aggregate program: main logic */
25 val crowdingLevel = crowdTracking(p, r, w, thCrowd, thDanger, t)
26 crowdDispersal(crowdingLevel, riskRange) // dispersal advice

(c) Aggregate program as implemented in ScaFi.

Figure 2. Crowd detection and steering example: snapshot, architecture and program.

(c)

Figure 2. Crowd detection and steering example: snapshot, architecture and program. (a) A simulation snapshot of the
crowd detection and steering example. Red nodes are devices in an overcrowded area; cyan nodes are nodes at risk since
close to overcrowded devices; black nodes are in a safe location. Solid lines denote connectivity links (the longer links
are those between infrastructural nodes); (b) diagram corresponding to the ScaFi application code below. Boxes denote
computational field expressions; solid arrows denote input/output relationships; dashed arrows are a shorthand to denote
conditional selection (when initially separated—for mux, where the “then” and “else” expressions are both evaluated, but
only one is returned) and conditional evaluation (when initially joined—for branch, where only one between the “then”
and “else” expression is evaluated and returned). (c) Aggregate program as implemented in ScaFi.

On the other hand, an aggregate program may abstract over or depend on certain
elements of agent autonomy. For instance, in the crowd monitoring and control example,
the people—and hence the corresponding digital twins (agents)—maintain autonomy
regarding mobility (which may also be affected by the crowd itself), since they may choose
to follow the dispersal advice or not. We call this exogenous autonomy, as it comes from
the outside, beyond the control of the aggregate program. This also includes the influence
that an agent may exert on the aggregate program by manipulating its inputs (i.e., state,
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sensors, and messages). Aggregate programs are typically developed to expressively deal
with exogenous autonomous behavior, with strategies that the whole aggregate MAS can
follow to adapt and overcome corresponding perturbations to the collectively desired
state-of-affairs. Table 2 synthesises the various sources and forms of individual autonomy
in aggregate computing.

Table 2. Individual autonomy in aggregate computing.

Individual Autonomy Element Range (Less–More)

Adherence to the aggregate execution protocol Fully autonomous (uncooperative)—Completely
adherent (control-driven)

Endogenous autonomy (provided by the AC program) Uncontrolled–Controlled

Exogenous autonomy (undergone by the AC program) Controlled–Uncontrolled

3.3. Collective Autonomy in Aggregate Computing

As discussed in Section 2.2, collective autonomy is the form of autonomy exhibited by
a collective, i.e., a MAS as a whole. Such a concept can be framed around two notions. One
is the notion, introduced in this manuscript, of intentional collective stance, which extends
the intentional stance [42] to collectives: we may not really know whether the MAS is an
intentional collective and what makes it so, but we may still treat it like it was so, e.g., to
support reasoning and design activities. For instance, in the crowd example,

val crowdingLevel = crowdTracking(p, r, w, thCrowd, thDanger, t)
crowdDispersal(crowdingLevel, riskRange) // dispersal advice

the aggregate MAS may be considered as a collective with intentions, i.e., a single
distributed entity whose intentions include leaving its internal components free to move at
first but also monitoring and ensuring that they do not gather excessively—as a form of
(self-)protection.

The second notion is that of joint intentionality [43]. Indeed, collective intentionality
requires agents to be jointly directed towards shared activities (plans) or goals. In aggregate
computing, the shared goal and the corresponding shared plan to achieve it are reified
into an aggregate program (cf. Figure 2c), namely a program that is meant to be played
by the whole MAS. Notice that often, like in the crowd example, the individual goal (e.g.,
moving to a point of interest in the city) may conflict with the collective goal (e.g., moving
in the opposite direction to ensure safe dispersal). Therefore, collective autonomy—as
the expression of the goals and intentions of an entire collective—potentially reduces
individual autonomy, and vice versa (cf. the notion of endogenous or delegated autonomy
in the previous section).

Interestingly, an aggregate program does not just embed the collective goals, but also
the collective process leading to the selection of collective intentions. For instance, in the
crowd example, dispersal is activated once a group of devices determines that the level of
danger is sufficiently high (cf. Line 13 in Figure 2c).

As we said, collective autonomy, as a notion, is relational and gradable. The autonomy
of a collective can be related to

• the autonomy of the members of the collective—as discussed;
• the environment—namely the extent to which activity depends on environmental

situations and events.

Notice that an aggregate MAS can be collectively autonomous even if its overall
behavior is highly determined by the deliberation of few individuals—if those individuals
have been delegated for decision-making by the collective. Consider the Self-organising
Coordination Regions (SCR) pattern [44], which is also exploited in Section 4; a general
encoding in ScaFi is as follows:
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val leaders = S(grain) // sparse-choice: elect leaders at mean distance of grain
val potential = distanceTo(leaders) // gradient field from leaders
val regions = broadcast(potential, mid()) // multi-hop propagation of IDs of leaders
val collectedData = C(potential, membersData()) // collect info towards leaders
val decisions = broadcast(potential, leaderDecision(collectedData)) // propagate leader choices
localAction(decisions)

The leader agents (i.e., those for which the leaders Boolean field holds true) are
responsible for making decisions about how the members of the corresponding areas are to
behave, but those leaders are elected through a collective process represented by function
S [45] (where “S” is a contraction of “sparse-choice”, i.e., typically a spatially uniform
selection of nodes in a situated network). Function S aims at selecting leaders at a mean
distance of grain among them. For the pattern to work, further collaboration is needed
among the agents to propagate information. Function distanceTo(s) is used to compute
a self-healing gradient field [46], i.e., a self-stabilising [11] computational field of minimum
distances from any node in the system to the node(s) where s is true, which is also able
to correct the individual estimations by reacting to changes of sources, neighbours, and
corresponding positions. Such a gradient field can effectively act as a “potential field”,
namely as a kind of force providing a direction and intensity with respect to a reference
point, e.g., for moving information or agents [47]. Indeed, function broadcast(p,v) is used
to implement a multi-hop information stream of the value v at nodes of null potential (i.e.,
where p is 0) outwards by “ascending” the potential field p. Dually, function C(p,v) (for
“collection”) provides an information stream converging towards nodes at null potential
(i.e., where p is 0); sometimes, an operator is provided to specify how the information
should be aggregated along the path (e.g., when collecting sets of data, the set union
operator may be used to aggregate all the data elements).

We also stress that the collective behavior is not merely the sum of the individual
behaviors but the emergent result of repeated individual behaviors involved in a complex
network of interactions among related agents (neighbors) and with the environment as
well. In other words, an aggregate program provides a schema for self-organizing, self-
adaptive behavior that is instantiated once a proper dynamic (defined in terms of a concrete
aggregate execution and environmental evolution) is injected over it.

3.4. Summary and Comparison with Related Work

To recap, aggregate programming provides computational mechanisms for supporting
various levels of autonomy. Examples include:

• collective autonomy: by cooperative execution of the aggregate program, or in terms
of collective structures constraining individual behavior;

• (endogenous) individual autonomy: by calling local functions (as a sort of delegation);
• adjustable autonomy: by using structures or branching mechanisms to regulate the

relationship between individuals and collective autonomy, or by controlling the
amount of endogenous vs. exogenous autonomy (cf. Table 2).

The discussion in this section is substantiated by the experiments of Section 4 and
extended in Section 5 with further considerations on research gaps and potential directions
for future investigations.

The proposed approach differs from other works (such as those reviewed in Section 2)
in crucial ways. Prominently, it takes a global (“aggregate”) perspective on MAS design
and programming. Other approaches, such as AgentSpeak(L)/Jason [24], define a MAS
by focussing on the behavior of the individual agents, expressed in terms of a number
of plans describing how individual goals are to be achieved. However, a Jason program
does not directly model collective decision-making or collective action. Note that such
perspectives are not alternative but complementary: the support for reasoning available
in Jason, based on the BDI architecture, for determining what individual autonomous
behavior has to be enacted is not built into aggregate programming. As discussed in
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Section 5, the combination of cognitive architectures with collective adaptive systems is
a theme still to be investigated. The proposed architecture (cf. Figure 1) is simpler than
cognitive architectures: it is inspired by self-organising systems [48], and fosters emergence
of collective behaviour rather than reasoning.

Works that also consider MASs by a global perspective include organization-oriented
programming approaches such as MOISE [28]. MOISE is a very articulated approach for
describing agent organisations (i.e., dynamic groups of agents comprising roles, properties,
and interaction protocols) and how agents and organisations interact (e.g., participation to
organisations, evolution of organisations, and organisational effects on agents). It is a very
rich and flexible model, but it is also quite complex, requiring explicit definitions for the
structural, functional, and normative dimensions. By contrast, the aggregate computing
approach expresses collective behavior through relatively small scripts (cf. the example in
Figure 2c) obtained by composing functions of other collective behavior together. That is,
whereas MOISE builds on an explicit representation of organizations, with agents knowing
and reasoning about them, aggregate computing favors a more implicit representation of
group structures, more typical in the swarm intelligence and self-organisation tradition. As
aggregate computing builds on the main abstraction, the computational field, and neighbor-
oriented communication, there is low conceptual overhead, with the functional abstraction
enabling fine-grained problem decomposition. On the other hand, other approaches
of autonomous ensembles programming, such as SCEL [49], do not achieve the same
levels of declarativity of aggregate programming languages such as ScaFi. Arguably,
the investigation of notions like collective autonomy could take advantage of “simple”,
compact models which are however able to represent emergent, collective phenomena.

4. Case Study

To showcase the ability of aggregate computing to orchestrate collective behavior
comprising both individual and collective autonomy, in this section we present a case
study, evaluated by simulation. We conduct the experiments using Alchemist [50], a bio-
inspired large-scale multi-agent simulator supporting the ScaFi aggregate programming
language [35], which is used to write aggregate programs in our experiments.

Our basic requirements for a simulator include the ability of simulating large-scale
networks of mobile devices as well as the ability of defining a dynamics suitable to express
the aggregate execution protocol discussed in Section 3.1, which consists of asynchronous
rounds of execution with neighborhood-based communication. Therefore, Alchemist rep-
resents a first choice as it ships already with a module providing ScaFi support. Moreover,
Alchemist is solid and flexible: in the literature, it has been used extensively to simulate
multi-agent and aggregate computing systems, in scenarios including crowd simulation [8],
drone swarms [34], edge computing [51], and people rescue [36].

The simulations are open-sourced and accessible from the following public repository
https://github.com/cric96/mdpi-jsan-2020-simulation, accessed on 1 April 2021.

We consider wildlife monitoring as target application domain, which nowadays starts
to take advantages of Internet-of-Things (IoT) infrastructure, unmanned ground (UGVs)
or aerial (UAVs) vehicles [52], as well as wearables for animals (such as smart collars) or
operators [53]. In this scenario, developers could use MAS programming approaches, such
as aggregate computing, to coordinate multiple nodes and agents in performing collective
activities such as rescuing animals in danger, geofencing, and detecting/tracking poachers.
In these experiments, our emphasis is on the specification of autonomous behavior, as well
as the emergent relationship between local and collective autonomy. Bridging with realistic
environments and data is left as future work.

4.1. Experiment Setup

The collective goal is to find animals in danger and rescue them. The environment
consists of a continuous two-dimensional space with an area of 2500 m × 2500 m. There
are three types of nodes:

https://github.com/cric96/mdpi-jsan-2020-simulation
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• Animal: an agent that needs to be rescued if it is in danger. The danger status changes
are domain-specific dynamic. In this simulation, the animals change their status
randomly at a constant rate (one animal every two seconds). It could be a sort of
“smart collar”.

• Mobile node: an agent that moves around the world and could have the capability to
heal an animal.

• Station: a fixed node that works as a gateway for mobile nodes.

In this experiment, Mobile nodes can perform tasks, namely problems to be solved. Our
characterization of this concept is a lightweight version of the definition in [54]: each task
has a goal, a set of capabilities needed to accomplish it, and spatial constraints (e.g., on the
location of the agent or the task). We do not consider the deadline and priority concepts. The
tasks that are created collectively (e.g., by the leader on the basis of data collected from other
agents) are called Collective tasks. Local tasks are those crafted by the agents themselves
based on local perceptions and intentions. We have identified two types of tasks:

• ExploreAreaTask: leads agents to explore an established portion of the space.
• HealTask: for which a set of agents must rescue a defined animal (and must correspond-

ingly have “rescue capabilities”).

At runtime, the program identifies agent roles (healer, explorer, stationary) according
to the local behaviour sensed. There are 80 mobile nodes (40 explorers and 40 healers),
20 stations and 100 animals. Only healers can rescue animals. The animals are divided into
five independent groups. Each group moves according to the random waypoint logic [55].
An animal in danger needs a variable number of healers near to him to be rescued. The
program follows the Self-organising Coordination Regions (SCR) pattern [44]:

1. leader election is made in the stationary nodes (via S);
2. mobile nodes sense animals in danger and send the local information to the leader

(via C);
3. the leader chooses what is the animal that needs to be rescued;
4. the leader shares its choice (via broadcast);
5. the slaves act according to the leader choice.

To be more specific, the program first tries to detect nodes’ role checking how much
each node has moved in a defined time window:

val movementWindow = 6 // a domain-specific parameter
val movementThr = 1.0 // another domain-specific parameter
val trajectory = recentValues(movementWindow, currentPosition())
val lastPointInTrajectory = trajectory.reverse.head
val distanceApprox = trajectory.head.distanceTo(lastPointInTrajectory)
mux (distanceApprox <= movementThr) "stationary" else "explorer"

After, the collective chooses leaders using block S that is executed only where
isStationary is true (using branch). At this point, mobile nodes check if there is an
animal in danger in their neighborhood (i.e., they check the status of a special sensor called
danger). To do this, we use the operator foldhood(init)(acc)(expr) to aggregate values
over neighborhoods with operator acc and initial/null value init; the values that are ag-
gregated are the results of the neighbors’ evaluations of expr (where the neighbor-specific
parts are defined through operator nbr). Then the information is sent to leaders through
the C construct. This block aggregates and moves the data toward a potential field. In this
case, the potential field is centered where the leader value is true. Leaders then receive a
map specifying the approximate location of animals in danger and their ID. So they peek an
animal with a local policy (e.g., choosing the nearest node) and then they create a HealTask
that has the goal of directing healers to a chosen animal to rescue it. Besides, leaders
share tasks that lead the explorers to stay in the leader’s area of influence (i.e., creating
an ExploreAreaTask). At this point, tasks are shared across the zones with the broadcast
function. Finally, the slaves, who receive the various tasks created, choose which one

to execute according to their role and local intentions (e.g., a node may not listen to the
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collective’s decision and act by its own). With ScaFi, this behavior can be synthesized as
described in Figure 3b.
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(a) Diagram corresponding to the code below. This figure uses the same notation of Figure 2b. In addition, we use
a same colour to denote multiple references to the same functional block.

val leader = branch(isStationary) { S(grain) } { false } //(1.) leader election
//.. (2.) sense animals in danger ..
val noAnimal : Map[ID, P] = Map.empty
val animalsInDanger = {

foldhood(noAnimal)(combineDangerMap){
mux(nbr(isDanger)) {

Map(nbr(mid() -> currentPosition()))
} { noAnimal }

}
}
val potential = distanceTo(leader)
//(2.) send information to the leader
val animalDangerInArea = C(potential, combineDangerMap, animalsInDanger, noAnimal)
//(3.) leader chooses an animal to rescue
val leaderHealTask = animalDangerInArea.toSeq.sortBy {

case (_, p) => p.distance(currentPosition()) //choosing policy
}.headOption.map {

case (id, p) => HealTask(mid(), id, p)
}
val exploreArea = ExploreTask(mid(), currentPosition(), grain) //for explorers
//(4.) and share its choice via broadcast
val healTaskForSlave = broadcast(leader, leaderHealTask)
val exploreAreaToSlave = broadcast(leader, exploreArea)
//(5.) slave choose the task according its role, intentions and leader choice
val collectiveTasks = Seq(healTaskForSlave, exploreAreaToSlave)
val localTask = Planner.eval(collectiveTasks) //the task choice is encapsulated here..
val actuation = localTask.call(this) // produces data in order to achieve the task chosen

(b) The ScaFi code snippet for the wildlife program behaviour.
Figure 3. Wildlife monitoring and rescue example: architecture and program.

(b)

Figure 3. Wildlife monitoring and rescue example: architecture and program. (a) Diagram corresponding to the code below.
This figure uses the same notation of Figure 2b. In addition, we use a same colour to denote multiple references to the same
functional block. (b) The ScaFi code snippet for the wildlife program behaviour.
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Next, we briefly link different behaviors with different levels/types of autonomy.
From the local perspective, each agent: (i) moves around the environment; (ii) executes
tasks. Each behavior has an endogenous and exogenous aspect: with this program, we can
specify how agents should behave (endogenous) but we have not total control over them
because they maintain a certain level of exogenous autonomy. For example, when an agent
receives the task to rescue an animal, he might decide to rescue another animal because
he finds another one closer or because in that direction, there are obstacles. Moreover, the
endogenous/exogenous autonomy level depends on the agent type. Indeed, we cannot
control animal movements via the smart collar, so they maintain a total level of exogenous
autonomy with respect to the program. From a collective perspective, the MAS performs:
(i) multileader election, (ii) animal dangers sensing, and (iii) task selection to reduce the
animal in danger in zones. With ScaFi the overall behaviour is intentionally described as:

val targets = animalsInDanger()
branch(isAnimal){doNothing} {rescue(targets)}

where rescue(targets) performs the code above and animalsInDager executes the neigh-
bourhood perception danger sensor.

What we want to enforce in this experiment is that individual autonomy influences
collective autonomy. For example, the leader election happens on stationary nodes. How-
ever, the node stationary rule depends on the local agent activity (mainly how they move),
which is an exogenous behavior. So, what we expect is that most the system is locally
autonomous less the collective autonomy influences the overall behavior.

4.2. Performance Metrics and Parameters

In simulation evaluation, we consider whether functional and non-functional aspects.
The main functional metric is the rescue count, which describes how many animals are
rescued during the simulation. Another condition that will be evaluated is the number of
leaders without healers necessary to heal an animal. A non-functional value verified is the
average distance to the leader. Ideally, agents might be arranged to cover a zone uniformly.

We also introduce a metric that represents the general performance of a simulation
run. Given a period t expressed in seconds, we sample the experiment at each second. For
each sample, we evaluate two parameters, events and healed count. Given a sample t, events
measure how many animals turn on danger during the simulation until the t. Indeed, the
healed count tells how many animals were rescued by the collective. Hypothetically, if the
system is completely reactive, healed count and events should have the same value. Hence,
the greater is the distance between these two values, the worse system perform. So, as
comprehensive system performance, we decide to use Root Mean Squared Error (RMSE):

Error =

√√√√1
t
∗

t

∑
i=1

(eventsi − healedcounti)2

What we expect from these simulations is that selfish settings bring worse performance.
Indeed, here we need a collective choice to rescue an animal. We test the application varying
these parameters:

• p: is the probability to follow the collective choice, 1 − p is the probability to act
selfishly; the bigger is p the lesser the agent is autonomous with respect to the
collective goals.

• healer count: the nodes needed to rescue an animal. A higher value of healer
count needs greater control on local agent behaviour in order to accomplish the
collective task

4.3. Results and Discussion

We now present the key results produced by the different simulation runs we con-
ducted. In Figure 4 there is a graphical result obtained in Alchemist. We had varied p by
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four values (0, 0.25, 0.5, 0.75 and 1) and healer count by four values (2, 4, 6, 8). For each
p and healer count combination, 50 simulation runs are performed. The data reported
in Figure 5 contains the average behavior of those simulations. In Figure 6, the average
error is reported for each combination of healer count and p. Each run has lasts 300 s.
Furthermore, after 100 s, no other animals turn their status in danger. It helps us to see
how what system is faster to return into a stable configuration.

Figure 4. Wildlife monitoring simulation screenshot. The “wi-fi” like symbol represents a Station node. Each Station has an
influence area (displayed with a colored circle). Mobile nodes are represented with a triangle. Healers have a half-moon on
the shorter side. When healers have an animal target, a green cross appears. Animals are drawn as a half-circle. Each group
has a uniform color. When they turn in danger, a half red circle comes out.

In general, the results confirm our thesis: the more agents act autonomously, the worse
the system behaves. However, the performance depends upon the application domain.
Indeed, when healer count is little, the overall behaviors aren’t so different. Because even
if agents do not collaborate, there is a high probability that two Mobile nodes are near
to the same animal in danger. We see the benefits of collective choice with higher healer
count values (Figure 6). For example, when healer count is 8 the system at p = 1 performs
better than all other configurations. We want to emphasize how the difference w.r.t. the
other p values grows as healer count increases. The difference instead becomes marked
when healer count is 8, since the task has a greater need for collective choice and even
small local selfish choices lead to worse performance. Outside of the functional aspects, we
can clearly see that the higher the p value the more the system follows joint intentionality:
agents arrange themselves equally in each area (having a higher average) and they cover
the zones uniformly. This was an expected result, but it also makes us understand that
even if the system loses some level of collectivity, it still manages to perform well (for
example, if 25% of the time agents act independently, namely when p is 0.75, the overall
performance is practically equal to when the agents always follow the collective choice). In
general, however, we can observe that even if the system control is not total, the emerging
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behavior is comparable with others. It is because all agents must adapt to the aggregate
protocol, losing some of their autonomy.
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Figure 5. Experiment results. In each plot, the color identifies the p parameter. The first column shows how many animals
are rescued during the simulation. The plots in the second column show the average distance from the leader. The plots in
the last column point out how many zones have not enough healers to rescue an animal.
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Figure 6. Average error (RMSE) for each combination of p and healer count. Horizontal lines mark the performance of p = 1.0.

4.4. Final Remarks

In this experiment, we deliberately did not consider the following aspects (even if they
could affect the system performance), which are abstracted away: how the system detects
animals in danger; the physical/hardware details of system nodes; how specific capabilities
provided by the different node roles are implemented as concrete actions. Defining when
an animal is in danger is a complex task per se and is strongly domain-dependent. In [56],
the authors use UAVs to verify the presence of poachers. Concerning geofencing, in [57]
the authors use a collar equipped with GPS to verify when animals escape from a boundary
and mark them in danger. Animal immobility is another alarm signal used in [58]. Roles
are introduced in this paper, though they are not present in other works (to the best of
our knowledge), as they are functional to divide the work between nodes. In general, we
expect that nodes could either be humans (cf., healers), UAVs (cf., explorers), or installed
gateways. In the survey [59], some interesting work such as [60] does not require human
intervention to rescue animals (cf., healer role). Finally, we want to underline that our
approach is on a higher level of abstraction, focussing on coordination and execution of
collective autonomous behavior. Environmental aspects are perceived through sensors that
can be as simple (e.g., temperature sensor) or as complex as desired (e.g., a scheduler to
choose tasks).

5. Research Roadmap

In the following, we identify a roadmap of two research directions to unveil the full
potential of aggregate programming for collective autonomy: they comprise expressing
collective autonomous behavior (Section 5.1) and achieving reliable collective autonomy
(Section 5.2).

5.1. Expressing Collective Autonomous Behaviour

Addressing problems at a suitable level of abstraction is key in modeling and program-
ming. In this section, we cover two interesting research directions related to specifying col-
lective autonomy, and point out a few starting points in aggregate programming research.

5.1.1. Cognitive Collectives

Notions like distributed cognition and group minds are often leveraged in sociology
and cognitive sciences to explain collective processes. In some works, such as in [61], a
dynamical systems approach is used to model and understand the emergence of collective
behavior and collective forms of consciousness. There, formal arguments are provided
to explain how groups exert downward causation on their components. In the aggregate
approach, groups or collectives are the target of programming, and the downward causa-
tion is a straightforward consequence of being part of the aggregate. However, collective
cognitive states are not explicitly represented, but rather mixed in the aggregate programs,
which can be seen as shared plans. Indeed, it would be interesting to investigate, along the
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lines of [36], whether more explicit representations of collective cognition might help to
drive group and individual behavior.

5.1.2. Collective Autonomy and Structural Organisation

One of the first works analyzing the relationship between organizational structure
and autonomy is by Schillo [62]. Schillo proposes a framework based on the notion of
delegation, draws a link between self-organization and adjustable autonomy, and defines a
spectrum of seven organizational forms of increasing coupling between agents in a MAS:
single-agent system, task delegation, virtual enterprise, cooperation, strategic network,
group, cooperation. In [63], Horling et al. provide a survey of MAS organizational
paradigms. They identify ten kinds of organizational structures: adhocracies, hierarchies,
holarchies, coalitions, teams, congregations, societies, federations, markets, and matrix-
like organizations. We believe that more work is needed for better understanding and
specifying the inter-dependencies between structures and collective autonomous behavior.

For instance, approaches to MAS programming based on the notion of a team (i.e., a
sub-collective) have been proposed in the past [64–66]. In the context of aggregate com-
puting, the aggregate process abstraction—modeling a concurrent, dynamically scoped
aggregate computation—has been recently introduced to extend the practical expressive-
ness of the paradigm. Aggregate processes, by defining concurrent activities with a dy-
namic and possibly overlapping scope, would support the specification of the autonomous
behavior of multiple collectives. In this respect, it would be interesting to investigate the
relationships between the autonomies of different collectives, as well as the interaction
between the autonomies of a collective and its sub-collectives. Approaches inspired by
holonic MASs [48], such as SARL [27], may prove useful or insights when considering
multiple levels of autonomy and hierarchical organizations.

5.2. Reliable Collective Autonomy

Related to the ability of expressing collective autonomous behavior is the extent
to which specifications lead to properties for dependable system operation that can be
promoted, verified, and formally guaranteed.

5.2.1. Safety and Guarantees

Currently, few results are available for programming reliable collective adaptive
behaviors. In the context of aggregate programming, major formal results include self-
stabilisation [11] and eventual consistency to device distribution [39]. These results, how-
ever, are typically valid for restricted fragments of the field calculus. Moreover, self-
stabilization does not say much about the speed of convergence, nor the ability of an
algorithm to withstand continuous change. Therefore, typical validation approaches also
include simulation [67] as a key step. Distributed runtime verification may also prove
useful [68]. In general, more work is needed towards methods, both formal and lightweight,
to verify the correctness and provide guarantees about global results in a certain range of
environments and conditions.

5.2.2. Norms and Trust

Among the notions studied in literature to promote good cooperation between agents
there are norms and trust. Through norms, and corresponding mechanisms for enforcing
them (such as sanctions, rewards, and institutions), it is possible to regulate individual
and then collective activity for social benefits. The problem is to make the MAS determine
what deviant behavior is, detect it, and take corresponding countermeasures. Norms
may be determined collectively, through processes of agreement or conflict resolution [69].
However, few results are available on conflicts among multiple norms and steering of their
emergent effects at the collective level [69].

Trust can also be used as a way to reduce cooperation inefficiency and issues. An
excess of individual autonomy may lead to deviance. In large-scale MASs, even few cases
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of deviance may result in serious emergent effects at the collective level [70]. Preliminary
work in aggregate programming research has been carried out to exclude non-trusted
devices from the collective computation [71], leveraging a notion of trust field mapping
any agent of the MAS to a trust score that is computed collectively. We believe further work
is required on these topics to promote reliable (collective) autonomy.

5.3. Applications

Multi-agent systems and technologies span various application domains [72] includ-
ing e-commerce [73], health care [74], logistics [75], robotics [76], manufacturing [77] and
energy [78,79]: they are potential application areas for the approach to aggregate pro-
gramming presented in this paper. The survey by Müller et al. [72] provides an overview
of the impact of deployed MAS-based applications, showing that MAS technology has
already been successful in various sectors. It is expected that MASs would be increasingly
significant in the future, as more and more devices get deployed in our environments (cf.
IoT, CPS, and related trends) and visions like autonomic computing continue to develop,
fostering a pervasive embedding of computational autonomy at various levels. This is also
plausible for collective autonomy, as applications involving (cyber–physical) collectives
of (variously autonomous) actors seeking global goals emerge—cf. applications in smart
city [80], swarm robotics [81], mobile social crowdsensing [82,83], and smart infrastruc-
tures contexts [51,84]. In particular, programmable approaches to collective autonomy
could contribute to research and applications of computational collective intelligence [85],
namely the field studying groups and their ability to implement effective decision-making,
coordinated action, and cooperative problem-solving. However, we also remark that
approaches to designing and programming MASs at the collective level should not be
considered as omni-comprehensive approaches that deal with every aspect of a system;
instead, they represent a tool that can be used to address certain problems (i.e., promoting
global behavior and properties) at a suitable abstraction level. In this sense, a further
challenge to be addressed in the future is the integration of collective-level approaches with
individual-level approaches and traditional paradigms, promoting the vision of system
development through integration of multiple perspectives and viewpoints [86].

6. Conclusions

In this paper, we consider the problem of programming the collective autonomous
behavior of multi-agent systems. We consider the aggregate programming paradigm, a
framework founded on a calculus of computational fields originally introduced to express
the coordination and self-organisation logic of spatially situated systems. We analyze the
support provided by aggregate computing by a MAS perspective, and, as a contribution,
(i) interpret its execution protocol as an agent control architecture; and (ii) analyze ag-
gregate programs by the point of view of individual and collective autonomy. Finally,
we provide some simulation-based experiments, to show how the framework supports
analysis of autonomy-related aspects, and discuss research gaps, pointing out opportunities
for new research.

The various goals described in the introduction have been addressed as follows.
The literature review in Section 2 provides a variegated view of autonomy in software
engineering and MAS, with emphasis on actionable notions and programming. This
helped us to position the contribution of Section 3 on aggregate computing, where multiple
autonomy-related notions are supported (also enabling adjustable autonomy) but implicit,
and had never been unveiled in previous publications. Explicit mechanisms and extensions
for (adjustable) autonomy could be considered in the future. Moreover, the contribution
of the view of the aggregate execution model as an agent control architecture represents
a step towards comparison and integration with other architectures—which is left as
interesting future work. The case study of Section 4 shows how the discussed framework
enables functional specification of MASs exhibiting a form of collective autonomy as well
as parameterized behaviors where individual and collective autonomy can be adjusted
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off-line. Qualitatively, it shows that the approach is feasible and may scale with complexity.
Self-organizing algorithms and patterns for on-line autonomy adjustment in aggregate
systems as well as more quantitative analysis of trade-offs can be considered in future
research. Finally, the discussion in Section 5 highlights significant research directions and
application domains which complement the above discussion.

We argue that it is important to directly address the collective dimension of MASs,
rather than programming individual agents and then verifying that local behaviors lead
to the intended, but not explicitly captured, global behavior. It is a matter of abstraction
and addressing concerns from a proper perspective. As discussed, specifications of collec-
tive autonomous behavior, such as aggregate programs written in ScaFi, provide natural
support for adjustable autonomy, and this could pave the way to the integration with
traditional agent control architectures. However, more work is needed to ensure that the
collective specifications result in acceptable emergent behaviors, and hence in reliable
forms of collective autonomy.
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