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Abstract: Due to the emergence of the Internet of Things, the need for effective identification and
traceability has increased. Radio-frequency identification (RFID), a simple and cheap approach for
gathering information, has therefore drawn the attention of research communities. However, this
system suffers from problems caused by high density, such as collisions and duplication. Thus, the
deployment of RFID is more effective in a dense environment where it may improve overage and
delays. A wide range of solutions have been proposed; however, the majority of these are based on
the application context. In this paper, we propose a general MAC layer protocol FTSMAC (Frequency
Time Scheme MAC) in which the spectrum frequency is efficiently used by dividing the signal into
different time slots via a messaging mechanism used by RFID readers. This limits the collisions in
high-density RFID deployment that affect the performance of the system. Thus, our solution allows
the communication system to converge to a stable state within a convenient time.

Keywords: RFID system; reader collision problem; reader-to-reader interference; reader-to-tag
interference; distributed systems; MAC layer; resource allocation

1. Introduction

Radio-frequency identification (RFID) is a technology that automatically identifies
objects, and is based on the principle of tagging objects, humans, or animals to facilitate
their integration in computing or data systems [1]. The main components of this tech-
nology are tags and readers, and, due to its simplicity, the future of RFID is promising.
Furthermore, many applications have adopted RFID technology as a base for identifica-
tion and tracking [2]. RFID technology has been applied in a number of fields, including
smart warehouses [3], healthcare [4], indoor localization [5], supply chain management [6],
brain-research experiments [7], and modern agriculture [8].

Supply chain management is one of the main application fields for RFID technology.
RFID has been used to improve the efficiency of the supply chain by allowing supervisors
to control and track product information. However, despite the growing demand, the
performance of RFID technology can be reduced by numerous factors, and particularly
due to collisions between nodes [9–13].

Tags [14] are small components that consist of integrated circuits connected to an
antenna and a small amount of memory to store data. In practice, problems of collisions
and interference are mainly related to the deployment of the tags and readers [15].

Therefore, readers must have suitable resources to manage the communication process
efficiently, by controlling access to the shared channel. They must also be strategically
deployed to provide coverage of a large space to read the maximum number of tags. As
shown in Figure 1, the reader uses radio waves to feed the tags. When activated, tags
answer to the reader.
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Figure 1. The basic concept of the interaction of an RFID system. 

One of the major challenges in RFID networks is improving the throughput [16]. In 
an RFID network, a high density of readers [17] can have repercussions on the perfor-
mance of the system due to a large number of collisions. As a result, the system may suffer 
from degradation of data collection efficiency, increased communication time, and high 
energy consumption. Thus, collisions represent a critical problem that considerably re-
duce the performance in RFID systems. 

The RFID network considered in this paper is used as a wireless sensor network, on 
which readers and tags are randomly distributed, readers are fixed, and tags can move. 
Wireless sensor networks can use RFID systems to create a high-performance rechargea-
ble platform. Several articles [18–23] define architectures for this sort of combination of 
RFID sensor networks. 

Collisions are related to the Medium Access Control layer, which is responsible for 
access to the shared channel [24–27]. To solve this problem, several anti-collision protocols 
have been recently proposed [28–37]. These algorithms are based on medium access con-
trol techniques that allow the transmission of a large quantity of traffic on single or mul-
tiple channels. Among the methods used in RFID systems, TDMA uses a time division of 
the bandwidth, the principle of which is to distribute the available time between the dif-
ferent nodes. Alternatively, FDMA uses frequency banding to dynamically allocate part 
of the spectrum to each node. Finally, CSMA is used to detect or avoid message collisions 
in transmissions. 

The algorithm presented in this paper is a hybrid solution combining the different 
FDMA, TDMA, and CSMA methods. 

The remainder of this paper is organized as follows: Section 2 presents the RFID col-
lision problem and related work. Section 3 describes our proposed FTSMAC algorithm, 
and Section 4 presents and describes the results of our simulation. Finally, Section 5 con-
cludes the paper and gives perspectives. 

2. Background and Related Work 
2.1. Background 

In this paper, we take into consideration two types of collisions [38]; Reader–Reader 
Interference (RRI) and Reader–Tag Interference (RTI). Figure 2 represents these types of 
interference by illustrating readers (R1 and R2) and tags (T, T1 and T2), with the reading 
range (rr1 and rr2) and the interference range (cr1 and cr2) of two readers, successively. 
dR1R2 represents the distance between these readers.  

Figure 1. The basic concept of the interaction of an RFID system.

One of the major challenges in RFID networks is improving the throughput [16]. In an
RFID network, a high density of readers [17] can have repercussions on the performance
of the system due to a large number of collisions. As a result, the system may suffer from
degradation of data collection efficiency, increased communication time, and high energy
consumption. Thus, collisions represent a critical problem that considerably reduce the
performance in RFID systems.

The RFID network considered in this paper is used as a wireless sensor network, on
which readers and tags are randomly distributed, readers are fixed, and tags can move.
Wireless sensor networks can use RFID systems to create a high-performance rechargeable
platform. Several articles [18–23] define architectures for this sort of combination of RFID
sensor networks.

Collisions are related to the Medium Access Control layer, which is responsible for
access to the shared channel [24–27]. To solve this problem, several anti-collision protocols
have been recently proposed [28–37]. These algorithms are based on medium access control
techniques that allow the transmission of a large quantity of traffic on single or multiple
channels. Among the methods used in RFID systems, TDMA uses a time division of the
bandwidth, the principle of which is to distribute the available time between the different
nodes. Alternatively, FDMA uses frequency banding to dynamically allocate part of the
spectrum to each node. Finally, CSMA is used to detect or avoid message collisions in
transmissions.

The algorithm presented in this paper is a hybrid solution combining the different
FDMA, TDMA, and CSMA methods.

The remainder of this paper is organized as follows: Section 2 presents the RFID
collision problem and related work. Section 3 describes our proposed FTSMAC algorithm,
and Section 4 presents and describes the results of our simulation. Finally, Section 5
concludes the paper and gives perspectives.

2. Background and Related Work
2.1. Background

In this paper, we take into consideration two types of collisions [38]; Reader–Reader
Interference (RRI) and Reader–Tag Interference (RTI). Figure 2 represents these types of
interference by illustrating readers (R1 and R2) and tags (T, T1 and T2), with the reading
range (rr1 and rr2) and the interference range (cr1 and cr2) of two readers, successively.
dR1R2 represents the distance between these readers.
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Figure 2. RFID collisions. (a) Reader-to-Reader Interference, (b) Reader-to-Tag Interference (1st 
type), (c) Reader-to-Tag Interference (2nd type) 
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to exchange notifications between the readers and uses a data channel for tag interroga-
tion. To avoid simultaneous reading, the reader in the interrogation range of tags broad-
casts a beacon periodically through the control channel. Therefore, the remainder of the 
readers who listen to the control channel are free. However, in a dense RFID network, 
readers turn off a large number of their neighbors, which reduces the performance of the 
system. 
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Figure 2. RFID collisions. (a) Reader-to-Reader Interference, (b) Reader-to-Tag Interference (1st type), (c) Reader-to-Tag
Interference (2nd type).

2.1.1. RRI—Reader-to-Reader Interference

The RRI shown in Figure 2a occurs when several readers within an interference range
(Equation (1)) are communicating simultaneously with the same frequency.

rr1 + rr2 < dR1R2 < max(cr1;cr2) (1)

2.1.2. RTI—Reader-to-Tag Interference

Two types of RTI interference can be distinguished. The first occurs when two or
more readers attempt to interrogate the same tag simultaneously in their common reading
range (see Equation (2)), independently of the working frequency. A representation of this
interference is shown in Figure 2b.

dR1R2 < rr1 + rr2 (2)

The second occurs when a tag is located in the interference range of a reader and in
the reading range of another reader (see Equation (3)) that operates on the same frequency.
This interference is shown in Figure 2c.

max(cr1;cr2) < dR1R2 < max(cr1+rr2;cr2+rr1) (3)

In the remainder of this work, we discuss our anti-collision protocol for “Reader–
Reader” and “Reader–Tag” Interference.

2.2. Related Work

Recently, many anti-collision algorithms have been proposed to reduce RFID-reader
collisions and minimize interference. Existing protocols in RFID systems may be classified
into two foremost groups, centralized and distributed protocols. An example of these
protocols is cited in a previous review [39].

First, Pulse [40] is a distributed protocol based on CSMA that uses a control channel
to exchange notifications between the readers and uses a data channel for tag interrogation.
To avoid simultaneous reading, the reader in the interrogation range of tags broadcasts a
beacon periodically through the control channel. Therefore, the remainder of the readers
who listen to the control channel are free. However, in a dense RFID network, readers turn
off a large number of their neighbors, which reduces the performance of the system.

Secondly, Coverage Oriented Reader Anti-Collision (CORA) [41] is a distributed
mono-channel TDMA-based solution for RFID networks with mobile and time-critical
deployment. The reader performs local learning of its neighbors. For this purpose, each
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reader starts by selecting a time slot, then, informs their neighbors in the collision domain.
The collection of this information collected by the readers allows each one to calculate
the number of readers in collision (same time slot) and non-collision (different time slot)
according to their time slot used. The reader can activate and read the tags if the number
of neighboring non-colliding readers is greater than the number of colliding readers.

By comparison, MCMAC [42] is a distributed multi-channel MAC protocol for RFID
networks that uses several data channels to interrogate tags and a control channel for
reader–reader communication. In this solution, each reader calculates its backoff randomly
and turns off. When receiving a control message, the reader selects a free frequency and
announces new busy channels. If there is no free frequency, it must wait for the next
cycle. This protocol suffers from RTI because the simultaneous reading of the same tag by
two readers causes collisions even if they use different frequencies, since only the control
channel can solve RRI.

Similarly, Distributed Multi-Channel Collision Avoidance (DiMAC) [38] is a dis-
tributed multi-channel protocol based on CSMA that can resolve both RRI and RTI. It uses
two control channels to exchange notifications between readers, and serves to signal the use
of resources. The first channel is used to communicate the busy frequency to the readers
in the interference field, and the second channel to inform the readers in the reading field
of channel occupancy. Each reader generates “Start” and “End” packets to declare the
occupation of the data channel or the freedom. Due to numerous messages exchanged, an
overload is generated and affects the delay.

Distance Based RFID Reader Collision Avoidance (DRCA) [43], is a centralized TDMA
distance-based protocol that listens to the channel and uses different time slots to avoid
collisions. It improves the GDRA [44] protocol by allowing higher throughput using the
Sift function to randomly choose time slots. The reader that chooses the previous time
slot listens to the channel. If the channel is free, readers interrogate tags. Otherwise, they
increase the number of time slots if the distance is long enough. If this does not occur, a
reader-to-tag collision may happen.

The Beacon Analysis-Based RFID Reader Anti-Collision Protocol (BACP) [45] is a
centralized protocol combining the TDMA and FDMA channel access control methods
to reduce RFID reader collisions. These readers must listen to the channel to make their
decision after receiving a priority code via the beacon. Similar to DRCA and GDRA
techniques, the server signals the start of the round and, unlike NFRA, readers are not
required to send the message continuously to their neighbors.

RFID Reader Anti-Collision Protocol with Adaptive Interrogation Capacity (NFRA-
AIC) [46], is a centralized protocol based on the anti-collision method used by NFRA [47].
The RFID reader calculates the number of tags in its reading field to determine the time
required for the interrogation of the tags.

The Reader-Coverage Collision Avoidance Arrangement (RCCAA) problem has been
addressed to study how to enable readers and adjust their reading fields to query more tags
without collision. The maximum-weight-independent-set-based [48] algorithm (MWISBA)
is a protocol that addresses this problem by using multiple reading fields and proposes
a heuristic-based method for the maximum-weight independent set to define the range
of reading range from redundant readers. MWISBA, therefore, allows the reader-to-tag
interference to be resolved by adjusting the reading field; however, the reader-to-reader
interference is not taken into account.

MWISBAII [49] was proposed to improve and overcome the RRI problem of MWISBA
by allowing to solve the different types of collision. This protocol converts the Reader
Coverage Collision Avoidance (RCCA) problem into the MWIS problem. Then it uses graph
theory to address MWIS. Finally, the MWIS solution can be translated back into a solution
for the RCCA problem. This proposition is centralized, and the graphical transformation
of the MWIS problem may require onerous central server computation.

In contrast to MWISBA and MWISBAII, which are centralized protocols, the goal of
the new Distributed-MWISBAII [50] protocol, which represents the distributed version of
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MWISBAII, is to assign to each reader the process of calculation and decision making, and
to communicate this information to their neighboring readers.

As previously mentioned, the protocols are classified according to their deployment,
i.e., centralized or distributed. Table 1 shows other attributes to clearly differentiate the
protocols. These attributes are the ability to resolve RRI and RTI, the number of data
channels used for tag interrogation, and finally, the channel access method used.

Table 1. Comparison of anti-collision protocols.

Attributes PULSE CORA MCMAC DIMAC NFRA-AIC BACP DRCA MWISBA MWISBAII Distributed-
MWISBAII

FTSMAC
(Proposed)

RRI X X X X X X X - X X X

RTI X X - - X X X X X X X

Distributed X X X X - - - - - X X

Centralized - - - - X X X X X - -

Multi
data

channel
- X X X - - X - - - X

CSMA X - X X X - X - - - X

FDMA - - X X - X - - - - X

TDMA - X X X X X X - - - X

Based on different criteria that characterize each protocol, the proposed solution de-
scribed in the next section is suitable for stable distributed networks. In addition, our
algorithm allows management of several data channels to involve more readers in the
interrogation of tags and, therefore, increase the number of successful communications.
This algorithm represents a hybrid solution using the FDMA, TDMA, and CSMA chan-
nel access control methods. To distribute frequency and time slot resources, we use a
control channel only in the initialization phase for all readers to avoid notification over-
loading. Based on these elements, our proposal allows more successful communication
and improved performance.

3. Proposed Algorithm

In this section, we describe our proposed FTSMAC protocol based on the CSMA,
TDMA, and FDMA channel access control methods.

To avoid collisions between readers, the protocol strategy uses a notification system
that allows readers, according to some defined criteria, to select neighbors. The idea is
based on the reuse of the same frequency by neighbors at different time slots. This strategy
provides readers with an effective reuse and management strategy for frequency resources.

3.1. Basic Principle

To understand the environment of our RFID networks in Figure 3, we denote Rx as
the black reader. We assume that all readers are uniform and use multiple data channels to
query tags, and a single control channel is used for communication with each other.

Colliding readers Ri (in red color) are competitors in the channel access of Rx because
they are located within its interference range, where Ri is a reader among the set of
neighbors and cr is the length of the interference range of the data channel.

Readers located in this area must operate on different frequencies and in different
time slots to avoid both RRI and RTI collisions. We consider that the neighboring readers
Rj (in blue color) reuse the frequency of Rx without problem, and we use crr as the control
channel reading range. In view of this context, dxj represents the distance between Rx and
its neighbor.
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Figure 3. Basic architecture proposed for the RFID reader.

Using the control channel, the goal of Rx is to select one reader among neighbors
Rj with the capability to reuse its frequency. We call the set of readers using the same
frequency and time slot resource, “FTDMA_Scheme”.

Each reader has a “Control table” in its memory (Table 1) that includes four fields:

• USED_PROTOCOL: The channel access methods used, FTDMA or CSMA.
• READER_IN_CHAIN: The readers constitute the FTDMA_Scheme to which this

reader belongs.
• AFFECT_FREQ: The frequency to reuse.
• AFFECT_TS: The time slot to reuse.

As illustrated in (Table 2), the control message is constituted of six fields:

• TYPE: The type of message (REQUEST1, REQUEST2, RESPONSE, ADD_TO_CHAIN
or NEW_CHAIN) according to the use case.

• READER_SENDER: The reader source identification.
• READER_RECEIVER: The reader destination identification.
• READER_IN_CHAIN: The set of readers’ IDs using the same frequency.
• AFFECT_FREQ: The frequency to reuse by the destination reader.
• AFFECT_TS: The time slot to reuse by the destination reader.

Table 2. Proposed control message structure.

Message Type READER_SENDER READER_RECEIVER READER_IN_CHAIN AFFECT_FREQ AFFECT_TS

REQUEST1 X - X - -
REQUEST2 X - - - -
RESPONSE X X - - -

ADD_TO_CHAIN - X - X X
NEW_CHAIN - X - X X

Upon receipt of an assignment request from a reader in the Rx coalition group, the
reader compares the information in its control memory (Table 3) with the one in the request
received in the control channel, to decide whether it will accept or deny deploying the
FTDMA_Scheme and join the Rx set.

Table 3. Structure of the control memory table used.

USED_PROTOCOLUSED_PROTOCOL READER_IN_CHAIN AFFECT_FREQ AFFECT_TS
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3.2. The Description of the Proposed Algorithm FTSMAC

Before starting tag interrogation, all readers must know their suitable frequency
resources to avoid RRI, and the time slot to avoid RTI. We allocate resources according to
certain defined criteria. As illustrated in Figure 4, the reader waits for a backoff random
time in the range with a step CW (Contention Window) [51] equal to the convergence time
necessary for the readers to create the FTDMA_Scheme. We can therefore ensure that no
other reader tries to send a request during the creation phase of the FTDMA_Scheme.
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3.2.1. Interrogation Phase

After the Rx reader awakens, it starts by checking its memory table (Table 3). If the
USED_PROTOCOL field contains FDMA, then it will execute the blue part of the algorithm;
therefore it can use the frequency in the AFFECT_FREQ and time slot in the AFFECT_TS
field to start tag interrogation.

Otherwise, the USED_PROTOCOL field has the value CSMA. In this case, the reader
listens to the data channel for a Tmin time [52]. If Tmin expires without receiving a beacon,
the reader starts using the free frequency.

3.2.2. Sending Phase

According to the previous phase, if there is only one frequency available for use, the
reader Rx uses the CSMA protocol. However, if there are more frequencies, the reader
performs the processing of the green part (Figure 4). Thus, the reader selects and adds a
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free frequency and time slot to its table using tag interrogation. It then replaces CSMA
by FTDMA and finally registers its ID. This information represents the starting point of
the first FTDMA_Scheme. The reader then searches (REQUEST1) and registers a new
Neighbor-Reader Rj (Figure 3) in its FTDMA_Scheme using ADD_TO_CHAIN message.

If time expires without receiving any response, the reader broadcasts a REQUEST2 (to
both neighbors’ readers Rj and collision readers Ri) to search a reader that will initialize a
new FTDMA_Scheme.

3.2.3. Reception Phase

If the reader receives a message (REQUEST1 or REQUEST2) during the backoff, it
executes the red part of the algorithm (Figure 4). In the case of a REQUEST1 message,
the reader compares the received signal power Pr with the threshold power (Thresh-
old = Pr|di = cc), where Pr is the received signal power, di the distance between the
two readers, and cc the radius of the data channel collision range. If Pr > Threshold,
these readers are classified as collision readers Ri. Then the collision readers Ri registers
the READER_IN_CHAIN message. Otherwise, the neighbor reader Rj checks if there is
interference with the readers constituting the FTDMA_Scheme in progress.

However, the reader Rj performs the following actions: replace CSMA by FTDMA,
update READER_IN_CHAIN field, and wait for resource allocation at the reception in an
ADD_TO_CHAIN message.

In the second case, after receiving a REQUEST2 message, the reader sends a RE-
SPONSE message to the sender Rx and leaves the IDLE state regardless of receiving
anything. Otherwise, it receives a NEW_CHAIN message, replaces CSMA with FTDMA,
and adds the new resources in its table to start creating the new FTDMA_Scheme.

3.3. Illustrative Example

To understand the operation of the FTSMAC algorithm, below we discuss a case of
study of a random RFID network (Figure 5) and an illustration of the communication
process between readers that constitute this network (Figure 6).
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Using our algorithm, we manage three frequencies and time slots. As a result, we can
define FTDMA_Scheme_1 as the set of readers R1, R10, R12, R7, R2, and R8 using the first
pair resource (freq1 and TS1). In addition, FTDMA_Scheme_2 is composed of R13, R11, R5,
and R4, which use the second pair resource (freq2 and TS2). The readers that do not join
the latter FTDMA_Scheme_2 must use the last frequency using CSMA.

Figure 6 describes the communication process used by the protocol in this example.
We present the process of the algorithm for different situations of readers (R1, R2, R3, R8,
R10, R13) in Appendix A.

First, all readers are in the backoff state. In this case, R1 (Rx) is the reader with the
minimal backoff, and is therefore the first one to wake and start the FTDMA_Scheme
creation process. Then, it broadcasts REQUEST1 on the control channel to announce its
presence and ask neighbor readers (Rj blue readers) to reuse its resource (frequency and
time slot). The readers receive requests and update their tables. The collision readers R5
and R6 (Ri red readers (Figure 3)) receive low threshold power. Therefore, they do not
answer the request. Among the neighbor readers, R10 (Rj blue readers (Figure 3)) responds
first to the R1 request. Therefore, it will be selected as a new neighbor, and confirms by
sending an ADD_TO_CHAIN message. Then, R10 (new Rx) continues the process of
creating the FTDMA_Scheme by adding R12 and R7.

According to the REQUEST1 of reader R7, R2 will be the new member of the current
FTDMA_Scheme. The R3 and R14 readers do not respond to the REQUEST1 message
because they are already in the interference range of R7. The reader R12 does not answer
the request because it is a member of the current FTDMA_Scheme (AFFECT_FREQ = f1
and AFFECT_TS = TS1). The readers R4 and R5 do not respond to the request because they
are colliding with the other readers of the current FTDMA_Scheme. Therefore, R7 accepts
the request of R2.

Then, the reader R2 selects its neighbor R8 (Figure 6). R8 attempts to locate a neighbor
but, in this case, cannot receive an answer after sending a REQUEST1 message because
the reader’s neighbors R2 and R11 determine that the field READER_IN_CHAIN of the
received message contains reader IDs that already exist in their tables. Then, R8 sends
a new REQUEST2 message to select the reader initiator for the new FTDMA_Scheme.
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Because the R3 reader is closest, it answers first. Then R8 sends a NEW_CHAIN message
to transfer the new resources to reader R13, which will start the next FTDMA_Scheme that
will contain R11, R5, and R4.

Finally, only one frequency remains, which will be reserved for the readers R3, R6,
R9, and R14 outside the collision domain. Following the suspension of their attempt to
create the FTDMA_Scheme, these readers will switch to CSMA, based on the Listen Before
Talking (LSB) principle.

4. Simulations and Results

In this section, we present the performance and results obtained by simulating the
RFID network using our FTSMAC algorithm. In this simulation, we used the distributed-
based anti-collision protocol PULSE, MCMAC, and CORA defined in Section 3 to compare
our technique with existing approaches.

For this purpose, we used the MATLAB platform to simulate a wireless network using
RFID communication technology, including RRI and RTI collision problems. Then, we
simulated our algorithm and the protocols from the literature. Using MATLAB, we also
developed the RFID reader and tag models. To communicate between the two entities, we
simulated reader-to-reader and reader-to-tag communication.

The simulation parameters are presented in Table 4. The deployment of the readers
was randomized in a space of 300 m × 300 m. All readers were uniform and used three
data channels with a reading field of 3.5 m and an interference field of 8 m, and a control
channel with a reading field of 16 m and an interference field of 30 m.

Table 4. Simulation parameters.

Parameter Value

Simulation range 300 × 300 m
Number of readers (case 1) 10, 20, 30, 40, 50
Number of readers (case 2) 50

Simulation time (case 1) 300
Simulation time (case 2) 0, 50, 100, 150, 200, 250, 300
Number of tags (case 2) 20, 40, 60, 80, 100
Reader and Tag position Random

Type of antenna Omni-directional
Read range of data channel (rr) 3.5 m

Collision range of data channel (cr) 8 m
Read range of control channel (crr) 2 × cr

Collision range of control channel (crc) 30 m
Number of Data Channel (case 1) 3
Number of Data Channel (case 2) 1, 2, 3, 4, 5

Number of Time Slot (case 1) 3
Number of Time Slot (case 2) 1, 2, 3, 4, 5
Number of control channel 1

Number of samples for evaluation 10
protocols compared PULSE, MCMAC

Backoff (ReaderID-1) × CW
CW Convergence time of all readers

Tmin 5 ms (Standard EPC)
T Neighboring readers response time

In this study, four scenarios were defined. In the first scenario, the simulation was
applied according to the number of readers (10, 20, 30, 40, 50), whereas the second was
applied depending on the simulation duration (50, 100, 150, 200, 250, 300). The third
scenario was applied depending on the number of tags (20, 40, 60, 80, 100). The final
scenario was applied depending on the number of frequencies and TS (1, 2, 3, 4, 5). In these
scenarios, we measured system performance and the number of active readers.
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An anti-collision protocol should ensure a high number of successful readings in a
collision environment, which is an important criterion for measuring protocol performance.
We consider a successful interrogation if the reader receives the response from the query
by the tags in the reading range.

We define the System Performance (Average Success Reading) as follows:

SystemPer f ormance(%) =
Totalsuccess × 100
Totalinterrogation

(4)

where Total_success represents the number of successful reader-tag interrogations and
Total_interrogation represents the total number of reader-tag interrogations.

Based on Figure 7, we note that the number of interrogation successes in our algorithm
is higher. It exceeds 80% in the case of 50 readers because it allows a maximum number of
readers to exploit the available frequency resources. MCMAC has a poorer performance
because it manages individual resources, which makes it difficult to use the frequencies.
Pulse protocol is the weakest among the remainder. We note the same result is achieved
with CORA because it can manage only one data channel.
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Figure 8 illustrates the average successful interrogation according to the variation of
simulation time. Our protocol is faster because it does not use additional time to achieve a
better result, and stabilizes at 82% of the reading efficiency of simulation times greater than
150, whereas MCMAC reaches 66%. Results for CORA and MAC are similar, but these
approaches stabilize at 70%. Pulse requires more time to interrogate tags because only one
data channel is shared by all readers in a collision domain.
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The parameter for active readers represents the number readers that achieve a successful
tag interrogation. This is an important factor for the evaluation of the system performance.

To obtain the number of active readers in each simulation, we calculate the number
of readers that can interrogate the tags without interfering with neighboring readers. In
Figure 9, the evolution of the Pulse protocol does not exceed 10 active readers, whereas
the other algorithms increase the number of active readers. In a network of more than
40 readers, MCMAC and CORA stop their evolution. In contrast, our proposal continues
the evolution of the number of active readers and achieves better results because it allows
the maximum number of readers in the network to obtain a frequency and avoid collisions
by intelligently reusing the frequency schemes.
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Figure 10 illustrates the average of successful interrogation of the FSDMAC, CORA,
MCMAC, and Pulse protocols in terms of the number of tags (20 to 100) read by 30 readers.
The performance of Pulse is typically low because a single data channel does not allow
successful interrogation. MCMAC and CORA reach around 60% performance, whereas
our protocol exceeds 70%. The results illustrate that our protocol can read a higher range
of tags. Therefore, in terms of the reading efficiency of tags, FSDMAC is more stable and
more efficient compared to other protocols.
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Figure 11 illustrates the evolution of the FSDMAC protocol as a function of the
number of frequencies and time slot available for readers from 10 to 50. The principle
of our approach is based on the generation of the FTDMA_scheme. The scheme uses
the two pairs of frequency and time slot resources. The creation of these schemes allows
a large set of readers to integrate into one of the schemes and obtain resources for tag
interrogation. As shown in Figure 11, this allows the RFID network to use more resources
to create more FTDMA_schemes, and therefore more active readers are able communicate
without collision, thereby increasing system performance. Using a single frequency and
TS achieved 42% of the system efficiency, whereas the increase in parameters, using five
resources, increased the results to 88% of the system efficiency.
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The different technical contributions of this article that distinguish it from other
solutions to achieve these results are as follows:

− A notification mechanism is used to exchange the frequency and temporary resource
allocation packets through the control channel in a distributed mode by the readers to
create the different FTDMA_Schemes.

− FTDMA_Scheme can include and activate a maximum number of readers to obtain
available resources and interrogate the tags without collision.

− Use of a hybrid solution based on the MAC layer shared channel access methods:
FDMA, TDMA, and CSMA.

− FDMA is used for permanent data channel allocation to readers to solve the RRI
collision problem.

− TDMA is used for temporary allocation of the data channels to readers to solve the RRI
collision problem. The number of TDMA periods is equal to the number of generated
FTDMA_Schemes.

− CSMA is used by readers that do not belong to any FTDMA_Scheme to manage
concurrent access to the backup data channel.

− Use of a backoff adapts the time of creation of the FTDMA_Scheme according to the
number of readers to avoid control channel access collisions.
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5. Conclusions and Future Work

In this paper, we proposed a robust protocol that avoids both RTI and RRI reader
collisions in dense multi-channel RFID networks. This protocol is based on a notification
system that distributes the resources using a FTDMA_Scheme.

For this purpose, the readers wait for a backoff random time to avoid collisions in
the control channel. The reader with the minimum backoff wakes first and starts the
FTDMA_Scheme creation process.

In the next step, the readers use the control channel to assign frequencies and time slots
to the nearest readers outside the collision domain. Each reader that receives the control
package memorizes both resources in its table and later begins the process of creating the
FTDMA_Scheme.

The proposed approach involves all readers that receive notification on the control
channel to create the FTDMA_Scheme. Therefore, the maximum number of readers can be
reached using frequency and time slots as resources for tag interrogation.

To prove the effectiveness of our protocol, we used simulation to illustrate the ability
of RFID readers to address reader-to-reader and reader-to-tag interference using this
distributed strategy by increasing the reading efficiency and the number of active readers
with a minimum of resources.

The advantage of our algorithm compared to other solutions is that it uses a new
scheme-based resource distribution technique that allows efficient and faster allocation
and management of resources to RFID readers.

The aim of our future work is to ensure the solution is complete and robust. Thus, we
will adapt this method based on the frequency and time scheme to improve the performance
of the FTDMA_Scheme by using a new algorithm that will improve the efficiency of the
distribution of resources.
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