
Journal of 

Actuator Networks
Sensor and

Article

Machine Learning Attacks and Countermeasures on Hardware
Binary Edwards Curve Scalar Multipliers

Charis Dimopoulos 1,2,* , Apostolos P. Fournaris 2 and Odysseas Koufopavlou 1

����������
�������

Citation: Dimopoulos, C.;

Fournaris, A.P.; Koufopavlou, O.

Machine Learning Attacks and

Countermeasures on Hardware

Binary Edwards Curve Scalar

Multipliers. J. Sens. Actuator Netw.

2021, 10, 56. https://doi.org/

10.3390/jsan10030056

Academic Editor: Davide Patti

Received: 31 May 2021

Accepted: 3 August 2021

Published: 16 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical and Computer Engineering Department, Rion Campus, University of Patras,
26504 Rion-Patras, Greece; odysseas@ece.upatras.gr

2 Industrial Systems Institute, Research Center ATHENA, Patras Science Park, 26504 Platani-Patras, Greece;
fournaris@isi.gr

* Correspondence: c.dimopoulos@upnet.gr

Abstract: Machine Learning techniques have proven effective in Side Channel Analysis (SCA),
enabling multiple improvements over the already-established profiling process of Template Attacks.
Focusing on the need to mitigate their impact on embedded devices, a design model and strategy
is proposed that can effectively be used as a backbone for introducing SCA countermeasures on
Elliptic Curve Cryptography (ECC) scalar multipliers. The proposed design strategy is based on
the decomposition of the round calculations of the Montgomery Power Ladder (MPL) algorithm
and the Scalar Multiplication (SM) algorithm into the underlined finite field operations, and their
restructuring into parallel-processed operation sets. Having as a basis the proposed design strategy,
we showcase how advanced SCA countermeasures can be easily introduced, focusing on randomizing
the projective coordinates of the MPL round’s ECC point results. To evaluate the design approach
and its SCA countermeasures, several simple ML-based SCAs are performed, and an attack roadmap
is provided. The proposed roadmap assumes attackers that do not have access to a huge number
of leakage traces, and that have limited resources with which to mount Deep Learning attacks.
The trained models’ performance reveals a high level of resistance against ML-based SCAs when
including SCA countermeasures in the proposed design strategy.

Keywords: hardware security; machine learning; side channel attacks; embedded devices; Elliptic
Curve Cryptography

1. Introduction

The impact Elliptic Curve Cryptography (ECC) has made as an approach to Public-Key
Cryptography is profound, mainly by offering various digital signature, key agreement
and certificate schemes. These solutions have been deployed in a wide variety of ap-
plications, which range from high-performance computing systems to low-end IoT and
embedded devices.

A goal when developing an implementation of this kind should be a flexible and
adaptable solution. In practice, this means that alongside high computational performance,
efficient resource management is essential in cases where the execution environments might
be resource constrained. By exploiting this approach, the suitable hardware-accelerated
operations should be selected with the premise that they can provide the best trade-
off between performance improvements and flexibility. In the majority of ECC-based
implementations [1–3], the main computational barrier is related to the scalar multiplication
operation, mainly realized through a series of point addition and point doubling operations.
This fact makes it an ideal point of interest for optimization improvements in most ECC-
based implementations, especially those targeted towards embedded systems. Literature
confirms this fact, with extensive studies focusing on the optimization of the EC scalar
multiplication and its arithmetic operations on Finite Fields in terms of speed, resources
and power consumption improvements [4,5].

J. Sens. Actuator Netw. 2021, 10, 56. https://doi.org/10.3390/jsan10030056 https://www.mdpi.com/journal/jsan

https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0002-8573-725X
https://orcid.org/0000-0002-4758-2349
https://doi.org/10.3390/jsan10030056
https://doi.org/10.3390/jsan10030056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jsan10030056
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan10030056?type=check_update&version=1


J. Sens. Actuator Netw. 2021, 10, 56 2 of 23

Despite the obvious aspects of flexibility and performance enhancement that need to be
addressed during the design phase, another crucial consideration should be made in regard
to the multiplier’s Side Channel attack (SCA) resistance. As a side channel attack, we define
the attempt of an adversary to extract sensitive information during an algorithmic execution.
This information can be accessed through the implementation’s side channels (power
consumption, electromagnetic radiation, timing characteristics, etc.) and through extensive
statistical analysis it can potentially reveal the hidden secret. Thus, the need for resistance
against these attacks has been addressed in literature [6,7], denoting the wide range of side
channel attacks that can be executed on these multiplier implementations. Both the aspects
of performance enhancements and side channel attack resistance are in direct influence of
the adopted scalar multiplication algorithm and the overall multiplier architecture.

The most powerful form of side channel attacks have traditionally been Template
Attacks, proposed in [8]. They belong in the family of profiling side channel attacks, in
which a profile for a given device/cryptographic primitive is generated, mapping the
behavior during the execution of the primitive. This process, however, requires the use of a
system identical with the device under attack, in order to capture the target’s execution
behavior (EM or Power Analysis) and generate the profile. In recent research efforts, there
has been a shift towards performing machine learning and neural-network based analysis,
since the essence of this type of attack is the profiling of the device under attack [9,10].
This attempt has been mainly focused on implementations of symmetric cryptography
(DES, AES) and RSA when referring to public-key cryptography. Regarding Elliptic Curve
Cryptography (ECC), there are works evaluating popular machine learning classification
algorithms [11], with the trend being the further use of Deep Learning techniques.

Being motivated by the above, this paper initially describes the SCA landscape for
Elliptic Curve cryptography, and the potential of profiling attacks such as TA and ML-based
SCAs is highlighted. Using the formulation of the above description, the paper offers the
following contributions on the topic:

• A scalar multiplier design strategy is proposed; the fine-graining of decomposition
operations in the SM computations enables the introduction of SCA countermeasures
that are hard to bypass for an attacker. Given that the MPL Scalar multiplication
algorithm’s EC point operations (point addition and doubling) in each round can be
parallelized, we decompose them into their underlying finite field operations and
propose their merging in a unified SM round computation flow with parallel stages.
In each of those stages, SCA countermeasures can be introduced.

• An example use case of a scalar multiplier for a Binary Extension field is provided, so
as to showcase the practicality of the design approach. In addition, in line with the
proposed design strategy, an advanced side channel attack resistance enhancement
roadmap is provided. This enhancement relies on the re-randomization of the point
operation projective coordinates results in each MPL round. This is achievable by
performing a finite field multiplication of each round’s generated coordinates with a
unique per-round random number.

• We describe a simple ML SCA roadmap showing how to attack the proposed use-case
implementation (that follows the paper’s design strategy and SCA countermeasure
proposal) using simple ML algorithms that require small/medium sized number of
leakage traces. The mounted attacks employ three ML models (Random Forest, SVM
and MLP algorithms). We demonstrate actual simple ML-based SCAs mounted on
two use case SM implementations, an unprotected one (GF operation MPL parallelism
exploitation with no projective coordinate randomization) and a protected one (GF
operation MPL parallelism exploitation with projective coordinate randomization),
and we validate the resistance of the proposed design approach (with SCA counter-
measures) as this is applied in the use case BEC scalar multiplier. The results show
that the protected implementation is highly resistant against simple ML-based SCAs
using any of the three modeling approaches.



J. Sens. Actuator Netw. 2021, 10, 56 3 of 23

The rest of the paper is organized as follows. Section 2 briefly describes the underlying
mathematical foundation of ECC; Section 3 presents an overview of SCA on Elliptic
Curve Cryptography and possible countermeasures; Section 4 describes the proposed
fine-grained GF unification model and design strategy, as well as its expansion to support
SCA countermeasures on the MPL architecture; Section 5 describes the machine learning
algorithms applied in this work; Section 6 analyzes the experimental process that was
followed and Section 7 discusses the outcome of the analysis executed on the impact of
countermeasures. Section 8 concludes the work.

2. Elliptic Curve and Binary Edwards Curve Background

Elliptic Curve Cryptography (ECC) is now widely accepted and adopted as a solu-
tion for security applications based on asymmetric key cryptography. The mathematical
complexity mainly lies on the point operation of the scalar multiplication process (e · P),
in which the scalar e is an element of a Finite Field and P denotes a point on the elliptic
curve defined by the specific Field. The National Institute of Standardization Technology
(NIST) has standardized the default EC equation form—the Weierstrass ECs. Their main
drawback, however, is that not all points can be operated upon uniformly and symmetri-
cally. The existence of those exception points makes this family of curves susceptible to
side channel attacks, further increasing the required overhead needed for side channel
resistance examination.

Binary Edwards Curves

The need to have an intrinsic mechanism for realizing a complete addition formula for
every Elliptic Curve point led to the introduction of the Edwards Elliptic curve [12]. In [13],
this family of curves, referred to as Binary Edwards Curves (BEC) was fully defined over
binary extension fields GF(2k) in addition to the original definition over GF(p).

d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2 (1)

The generic form of the curve can be seen in Equation (1), where the two constant
values that define the shape of the BEC (d1 and d2) must both be elements of GF(2k)
meeting the requirements d1 6= 0 and d2 6= d2

1 + d2
2. An important advantage of BECs is

their symmetry, the property declaring that for a given BEC point P(x1, y1) there exists
a P(y1, x1) on the same curve. Paired with the fact that point addition and doubling
operations follow the same mathematical formulation, it leads to an innate resistance
against some simple side channel attacks (SSCA) such as Simple Power Attacks (SPA) [14].
The trade-off for this resistance is the increased number of GF(2k) operations compared to
Weierstrass curves. Despite this, BECs present a regularity and completeness, since they
have no BEC exception points in the addition formulas. This is valid as long as the trace
Tr(d2) = 1 or, equivalently, there is no element t ∈ GF(2k) that can satisfy the equation
t2 + t + d2 = 0.

For BECs, explicit addition and doubling formulas exist in both the affine and pro-
jective coordinate planes [13]. However, by restricting d1 and d2 through an equation
between them, the BEC Equation (1) can be degraded to a simplified form that is easily
handled in cryptography. In order to avoid the significant cost of the inversion operation,
a shift from affine to projective coordinates is realized in practice. Despite the ability of
point doubling in projective coordinates to be performed using point addition formulas,
additional simplifications can be applied to them for doubling, thereby further reducing
the necessary GF(2k) operations, as well as the computation delay for this operation. The
drawback of this simplification is that the protection against SSCAs described above is
contradicted, thus raising the need for additional countermeasures. For a conversion to be
performed from a BEC Ṕ : (X, Y, Z) point in projective coordinates to the corresponding
P : (x, y) affine point, the formula x = X/Z and y = Y/Z is used [15].



J. Sens. Actuator Netw. 2021, 10, 56 4 of 23

Despite the existence of various algorithms performing scalar multiplication, not
many can be considered to provide resistance against information leakage. One scalar
multiplication algorithm that has been proved to be resistant against some comparative and
sophisticated Simple Power Attacks [6,7] is the popular Montgomery Power Ladder (MPL)
algorithm. As can be seen in Algorithm 1 where MPL is presented, there is considerable
regularity in each round of operations (step two of Algorithm 1), while dummy operations
are absent during MPL execution. The MPL regularity can be justified by the constant
number of identical point operations that are performed in each scalar round related to
the corresponding key bit [16], which prohibits an attacker to use key-related irregularities
(different number of type of operations for each bit of the secret e) for SSCAs/SPAs.

Algorithm 1: SPA Resistant MPL Algorithm

Input: P : BEC base point ∈ EC(GF(2k)),
e = (et−1, et−2, ...e0) ∈ GF(2k)
Output: e · P
1. R0 = O, R1 = P
2. For i = t− 1 to 0

If (ei = 0) then
(a) R1 = R0 + R1, R0 = 2 · R0

else
(b) R0 = R0 + R1, R1 = 2 · R1

end if
3. Return R0

In Figure 1, the control flow graph for the MPL Algorithm is shown to better visualize
the process followed during its execution.

START

Input: P : BEC base point
e = (et−1, et−2, ...e0) ∈ GF(2k)

R0 = O
R1 = P
i = t

i = i− 1

ei = 0

R1 = R0 + R1
R0 = 2 · R0

R0 = R0 + R1
R1 = 2 · R1

i = 0

RETURN R0

Yes No

No

Yes

Figure 1. Control flow graph for MPL Algorithm.

While BECs synergize well—from a security standpoint—with the MPL algorithm
due to their completeness and uniformity, this synergy is diminished by the BEC dou-
bling optimization [12,13]. This fact, alongside MPL’s vulnerability against Advanced
SCAs (ASCAs), including Correlation and Differential SCAs [1,7], highlights the need to
include additional countermeasures into the scalar multiplier implementation for broader
SCA resistance.



J. Sens. Actuator Netw. 2021, 10, 56 5 of 23

3. ECC Side Channel Attacks and Countermeasures

Scalar Multiplication (SM) constitutes the main attack point of SCAs in Elliptic Curve
Cryptography algorithms since the involved operations have a strong correlation with
the secret scalar. The types of SCA attacks on SM that exist today can vary between
simple or advanced on one hand and vertical or horizontal on the other, as seen in [17–19].
For the collection of the leakage traces/observations Li(t) to be realized in the vertical
method, sets of same or different inputs are utilized at each time t (t ∈ {1, 2 · · · p}) in the
SM implementation within the total p times. Each observation is associated with the tth
execution of the implementation for an operation i. For the horizontal procedure, just a
single execution is sufficient to capture the leakage traces of the unit under attack. In this
case, a distinct time period is represented by each collected trace during the time frame of
the execution [17].

If the double-and-add algorithmic option is followed in SM, the probability of simple
SCAs being deployed in the implementation is increased substantially. These attacks
are usually horizontal in nature, able to be mounted by only a distinct leakage trace.
A straightforward counter against these type of SCAs is the utilization of SM algorithms
that are highly regular, i.e., the scalar bit that is being processed in each round does not
appear to have a link to the round’s operations (e.g., MPL or Double and Always Add) [16].
Nevertheless, there exist some SCAs that have the ability to thwart this regularity, mainly by
altering the EC base point used as an input of the SM [20]. For this objective, Comparative
SCAs were introduced (initially based on Power Attacks but adapted to Electromagnetic
Emission attacks as well). In such attacks the adversary is able to control the SM input,
provide a few inputs (usually two) that are arithmetically related (e.g., Point P and 2 · P),
collect the SM leakage traces and compare them using some statistical tool. Most widely
known such attacks that manage to defeat many regular/balanced SM algorithms are the
doubling attack (collision based attack) [21] (DA) and its variant, the relative doubling
attack (RDA) [22], or the chosen plaintext attack in [23] (also known as the 2-Torsion
Attack (2-TorA) for ECC). The above comparative attacks can be further refined by using
special input points as is the case in Zero PA (ZPA) or Refined PA (RPA). In the former, an
exceptional EC point P0 (which can induce a zero P coordinate at round i) is loaded to the
implementation, thus allowing scalar bit recovery by exploiting the vulnerability at the
ith round.

Besides the attacks already mentioned, there exist other advanced SCAs that can be
executed with either one or many collected leakage traces on EC SM. One of the most
dominant types in this category are the Differential Side Channel Attacks (DSCAs), initially
introduced by Kocher in [24], that depend on power consumption characteristics. DSCAs
follow the hypothesis test principle [18,25], where a series of hypotheses é on the secret
e (or part of the secret, for example some bit of the scalar e) are made for many p inputs
Xi, where i ∈ {1, 2, · · · p} are used in some leaky internal operation of the algorithm
along with some other known values (derived from each Xi, e.g., the plaintext or the
ciphertext). The hypothetical result leakage is then estimated using some prediction model.
The predicted leakages (for all predictions and all inputs Xi) are compared against all real
leakage traces by using a suitable distinguisher Dis for all inputs Xi, in order to choose
which hypotheses are correct. There are various distinguishers that have been used in
literature, leading to sophisticated DSCAs. Most notably, the Correlation SCA demands
less traces in order to recover a secret value when compared to the DSCA [26], and the
Collision Correlation Attack [27–29] has the ability to be executed even if an adversary is
unable to freely influence the inputs that the SM implementation demands [17]. Apart
from vertical attacks, there is a broad range of horizontal advanced SCAs exploiting the
fact that each Oi operation, when performed in off-the-shelf hardware, is partitioned into a
succession of simpler operations (e.g., word-based field multiplications) that are all related
to the scalar bit. In this case, a process similar to a vertical differential SCA is mounted
using leakage partitions from a single trace. Attacks such as these are the Horizontal



J. Sens. Actuator Netw. 2021, 10, 56 6 of 23

Correlation Analysis attack (HCA) [30], the Big Mac Attack [31], or the Horizontal Collision
Correlation Attack (HCCA) [18,19].

Advanced SCAs can follow various leakage models and may take many forms [32], but
in general they fit the above description that assumes a leakage Li(t) from an intermediate
computation Oi(t) at round i of the SM algorithm can be modeled by taking into account
the computational and storage leakage δ(Oi(t)) under the presence of noise, as shown in
the following equation:

Li(t) = δ(Oi(t)) + Ni(t) (2)

where Ni(t) is noise intrinsically associated with the device being tested and is independent
of Oi. In the above equation, t corresponds to the time variable within the timeslot that Oi
is active.

Traditionally, countermeasures can fit into two different classes, leakage masking and
leakage hiding [1,14]. When applying the hiding method, suitable logic is included in the
computation flow of the SM in order to make the leakage of the device independent from
both the operations executed and their intermediate values. This can be achieved either
by implementing cryptographic algorithms in such a way that the power consumption
is random, or by implementing cryptographic operations that consume an equal amount
of power for all operations and for all data values [14]. In practice, information hiding is
realized by the implementation of suitable circuits that can add noise to the monitored
side channel. These mainly include components that offer power scrambling redundancy
or power consumption balancing (dual rail). A similar outcome can be achieved in the
algorithmic level of the EC SM by introducing dummy calculations, or by modifying
the algorithm so that δ(Oi(t)) appears similar to δ(Oj(t)) (where Oj is a different SM
intermediate operation) for all t within a given timeslot that each one of the operations are
active. The MPL algorithm, in conjunction with the nature of BECs, offers great conditions
for developing such countermeasures. On one hand, a designer is able to parallelize
multiple operations in the time domain with the help of the MPL; on the other, BECs
further contribute to the aforementioned hiding procedure with their completeness and
uniformity. Many realizations of the above SCA protection approach cannot effectively
thwart some Advanced SCAs or, in addition, some Comparative SCAs, including the
Doubling Attack (DA) group, i.e., normal and Relative (RDA) [21,22].

The goal of masking is the decoupling of sensitive data from their corresponding
leakage trace. Crucial for this method is the existence of some randomization technique
(multiplicative or additive) upon the secret information that has a sensitivity to leakage
Oi(t) [20]. Three well-established EC SM masking techniques have been used in practice
(appearing in several variations), originally proposed by Coron in [33]. The values that are
the targets of randomization by those countermeasures are the EC input point P (i.e., base
point blinding), the projective coordinates in the (X, Y, Z) domain of the same point and the
EC scalar vector (Algorithm 1 e) of the SM. These mentioned randomization methods have
been extended in ECC with several forms after their introduction in literature. In terms of
applicability, though, the two latter ones (projective coordinate and scalar blinding) are
easier to implement. This is due to the fact that the first described method, point blinding
technique, demands the inclusion and storage overhead of an additional random point that
is generated in every multiplication round, which introduces additional complexity [34].

Profiling Attacks

The above existing SCA research (especially univariate Differential SCAs) creates
momentum for the description of a generic DSCA mechanism that will be able to utilize a
generic-compatible distinguisher that uses a generic leakage model on a generic device for
which no information is provided. However, such a generic case is not realistic, as analyzed
in [35], and it is concluded that existing DSCAs (with a specific distinguisher, model and
insight on the device under test and the implemented SM algorithm) may be less effective
than anticipated. Whitnall et al. [35] indicate that another type of SCA can be considerably
more potent than DSCAs, i.e., profiling attacks. The most widely used profiling attack is



J. Sens. Actuator Netw. 2021, 10, 56 7 of 23

the template attack (TA); it requires two identical devices, which we refer to as the profiling
and the attacked device. In the profiling device, a profiling phase occurs, where the attacker
identifies the operation that produces information leakage (δ(Oi(t))) and provides as input
to the device all possible values (ideally) of a secret value portion (e.g., one byte or one
bit) that influences Oi. This will produce all possible different states of this operation for
which the attacker collects the leakage Li(t). During the profiling phase of a TA on SM, the
scalar bit can act as the TA input, and the point addition or point doubling operation values
associated with the scalar bit value can act as Oi(t). The collected traces, along with the
associated input values are used, in order to estimate a leakage model (by calculating the
parameters of a leakage Probability Density Function (PDF)) which is considered the TA’s
template (or profile in general). In the second TA phase (attack phase), an attacker uses an
attacked device with an unknown secret (i.e., secret scalar) and collects leakage traces of
Oi(t) for various inputs t using the same trace-collection mechanism and parameters as in
the previous case. Using some discriminator, the attacker tries to identify from the template
an appropriate leakage trace that has the highest probability of matching the unknown
secret leakages, and then retrieves the secret in the template associated with the selected
leakage trace. The attack exists in several variations [36,37], with various PDF estimators
and even in online form (Online TA) where the profile is created during the collection of
the traces on the device under attack [38].

The concept of creating a leakage model based on labeled leakage traces has been
further researched in academia by adopting Machine Learning (ML) techniques in order to
create an ML-produced leakage model. With ML, an adversary does not need to create a
perfect leakage model (using all possible inputs of a secret value block) but instead allows
an ML model to be built with a non-exhaustive series of leakage traces (that can only
be corresponded to specific, instead of all, secret block values). As the leakage becomes
more noisy (either due to the hiding or the masking countermeasures implemented), more
accurate results can be extracted by applying an approach based on ML profiling [9,10,20].

The analysis carried out above leads us to the conclusion that an SM implementation
cannot be considered secure if it does not incorporate methods to protect against a varied range
of SCAs. As several researchers point out [36,38,39], Profiling SCAs can overcome several
of the existing countermeasures. Thus, the necessity of a more advanced randomization
implementation is highlighted for the entirety of the computation flow during an SM.

4. Proposed SCA Countermeatures on MPL

The analysis in the previous section indicates that the MPL SM algorithm is not
sufficient to thwart many of the existing Advanced SCAs, including the formidable profiling
attacks. Thus, SM MPL should be infused with advanced countermeasures based on
masking and/or hiding (using randomization). However, MPL has some interesting
features that can be exploited in order to make ASCAs difficult. These features stem from
the regularity of each SM round. Each MPL round always performs point addition and
doubling. Moreover, the order of execution of these operations within an SM round is not
important so the two operations can be performed in parallel. Given the fact that most
of the SM SCAs focus on the leakage of a single point operation (usually point doubling),
merging point doubling with point addition by performing them in parallel can potentially
make an attacker’s work harder. In fact, this parallelism approach forces the attacker to
change the leakage observation operation from point addition or doubling to one full MPL
round. Given that the leakage of each point operation has an associated intrinsic noise
level, the leakage of two combined operations will potentially increase this integrated noise.
The identification of each one of point operations is, thus, very hard to pinpoint, making
attacks harder to mount. So, assuming that OA is the point addition operation and OD is
the doubling operation in a single MPL round, the MPL round leakage for a certain round
i would be LR

i (t) = δ(OA
i (t)) + δ(OD

i (t)) + NA
i (t) + ND

i (t). For the sake of simplicity,
we can exclude, from this point onwards, the parameter of time in the above equation,
assuming a constant time slot T for each MPL round and considering the leakage at an



J. Sens. Actuator Netw. 2021, 10, 56 8 of 23

MPL round instead of a single time instance within the round. In addition, note that NA
i (t)

and ND
i (t) correspond to the noise associated with point addition and point doubling,

respectively. Unfortunately, δ(OA
i ) + δ(OD

i ) could potentially have non-trivial information
leakage of the SM secret value (i.e., the scalar bit on a given SM MPL round) on a single
OA

i or OD
i . The issue can be mitigated by a design approach that more deeply fuses OA

i
and OD

i , i.e., on the EC underlying Finite Field operation level.In textbook point addition
and doubling design and implementation, EC points are represented in the projective
space (EC point projective coordinate), and OA

i or OD
i can be partitioned into many finite

field multiplications and additions/subtractions that need to be executed in discrete time
instances within the MPL round execution time slot T. The OA

i and OD
i operations that are

performed in parallel within the MPL round could be considered a unified round operation,
with inputs and outputs that can be point addition and point doubling coordinate results.
This unified round operation can then be fine-grained into a complex sequence of finite
field operations that will collectively contribute to the point addition and point doubling
result of an MPL round. These GF operations can be synchronized with the time units of
the MPL round’s time slot T, based on their data dependence and the capabilities of the
underlying computing device. The latter constraint concerns the number of GF operations
that can be performed in parallel on a given hardware architecture which has a finite
number of operating units (finite field multipliers and adders/subtractors) within the SM
architectural design (the typical case in hardware SM implementation and some software
ones).To identify which GF operations can be performed in parallel in a given time slot of T,
a Data Flow Graph analysis of the GF multiplication and addition sequence is realized. This
analysis is performed for a single unified MPL round computation while also assuming
a specific finite number of parallel processing units (for finite field multiplication and
addition) exist. Such analysis can reveal that the computation can be partitioned into
z parallel stages (corresponding to a single time slot of T) where each stage performs p
concurrent GF operations while processing for both OA

i and OD
i . Assuming that the vth GF

operation within the jth parallel-processing stage is denoted by OP(v,j)

i , leakage LR
i (tj) (the

leakage within round i for the time tj of the jth parallel stage) becomes:

LR
i (tj) =

p

∑
v=1

δ(OP(v,j)
i (tj)) + NR

i (tj) (3)

where NR
i (tj) corresponds to the noise that exists during the computation of leakage round

i for the time tj of the jth parallel stage. This noise is related to both point addition and
doubling computations. Thus, the overall leakage of a single ith MPL round, where OA

i
and OD

i are merged into unified computations and decomposed into GF operations in each
time point tj for all j values inside T, will be the following:

LR
i (T) = {LR

i (t1), LR
i (t2), LR

i (t3), ..., LR
i (tz)} (4)

From the above equation and relevant analysis, it can be remarked that the MPL SM
round computation has now been shifted from a processing model closely related to the
scalar bit operation (related to OD

i or OA
i ) to a processing model of regularly executed

autonomous, unified stages of parallel operations that are associated with both OD
i or

OA
i , and loosely relate the the scalar bit at round i. Using the proposed fine-grained GF

unification stages approach, the OD
i and OA

i are processed in a unified way.
Without any additional countermeasure, in general, the BEC MPL implementations

suffer from MPL’s lack of resistance against Advanced SCAs (ASCAs), including Differen-
tial SCAs, Correlation SCAs, etc. [1], but–most importantly–against Profiling Attacks [7,39].
The inclusion of the fine-grained GF unification stages approach could potentially reduce
the MPL leakage. However, t-test leakage assessment results performed in [34], where a
similar approach is used, reveal that there is still enough leakage associated with the base
point and the secret scalar to reveal the secret. This is an expected result, since δ(OP(v,j)

i (tj))



J. Sens. Actuator Netw. 2021, 10, 56 9 of 23

does not model only the computation leakage during a single parallel stage, but also the
intermediate values’ storage leakage at this stage. Specifically, for power consumption side
channels where dynamic power consumption is leaking information, the register storage
operations form a distinct leakage pattern for scalar bit si = 1 or si = 0 when all OP(v,j)

i (tj)
are included. However, no actual attack is performed in [34] to show if this leakage can
be exploited, especially for potent Profiling SCAs. The aforementioned fine-grained GF
unification stages approach, as modeled in Equations (3) and (4), relies on the intrinsic
scrabbling of the implementation parallelism to hide the leaked information. To enhance
this information hiding with masking, an additional source of randomness can be intro-
duced in the computation process of each MPL round i. This can be achieved by including
some random computation in some of the OP(v,j)

i (tj) operations included in a parallel stage.
For the sake of efficiency, it suffices to include random operations within only a few

parallel stages of each MPL round and to let the randomness propagate to the remaining
stages. The choice one needs to make in order to identify the best-possible stage to add the
random operation is dependent on three parameters. The first parameter is the available
parallel computation units that the implementation can support (e.g., the number of parallel
finite field multipliers and adders). Secondly, the number of units that are in an idle stage
(i.e., awaiting correct inputs from another computation) and lastly, the data dependency
that exists between the different parallel stages in the executed MPL round. Furthermore,
the inclusion of random operations in some parallel stages should not lead to a false
computation result of the MPL round. In some cases, the same outcome can be achieved by
including additional parallel stages, so that the randomly injected information per round is
handled correctly.

The above masking mechanism can be realized by appropriately adapting existing
randomization techniques in the research literature. Coron’s countermeasures [33] con-
stitute the basis of many algorithmic SCA-resistance solutions. Among them, projective
coordinates randomization may be the most easy to deploy (and simultaneously one of
the most efficient to deploy). In this approach, the input point (X : Y : Z) is random-
ized by multiplying its coordinates with a randomly generated number h, thus, forming
(h · X : h ·Y : h · Z). At first glance, this point seems to be a different one than the original,
when viewed in projective coordinates; however, in reality it is the same point in affine
coordinates. Coordinate randomization is applied once in the MPL. Before the first round
of the algorithm, however, this approach provides no protection against RPAs. Adopting
and adapting the coordinate randomization countermeasure to the proposed fine-grained
GF unification stages mechanism and enhancing its potency, we propose the inclusion, in
some parallel stages of each MPL round’s i, a different multiplicative randomization of
all the round’s projective coordinate point outcomes (both point addition and doubling
results), using a round’s random number hi.

Instantiating the Complete SCA Resistance Mechanism Based on the Proposed Approach

The above proposed SCA resistance approach can be instantiated both in hardware
and software implementations that support parallelism in their computation flow. It is
expected that the application of the proposed approach in software implementations that
have high level of device noise (NR

i (t)) due to parallel processing of unrelated processes
(e.g., Operating System functions), will considerably increase the noise level. Such noise,
in combination with the proposed added random operations per parallel computation
stage, will make the Signal-to-Noise (SNR) ratio significant enough to make SCAs difficult
to mount [39]. In hardware implementations though, where the noise is only related
to the ASIC or FPGA chip’s hardware resources, the impact of noise is small, and SCA
resistance relies mostly on the potency of the proposed solution. For the above reason, in
the remainder of the paper, the analysis is focused on hardware implementations of the
proposed SCA resistance mechanism in BEC ECCs.The explicit formulas for point addition
and point doubling that are defined in [13] can be decomposed into the single GF(2k)
operations presented in Table 1. Based on those operations, a possible realization of the



J. Sens. Actuator Netw. 2021, 10, 56 10 of 23

proposed fine-grained GF unification stages technique can be presented in Table 2 [34].
In this table, each row corresponds to a parallelism stage; thus, one MPL round is concluded
in 13 stages (z = 13). In the last two stages of the MPL round i, random operations have
been included (marked in the table with a different cell color). In these operations, the
projective coordinates of all output BEC points are multiplicatively randomized using
a unique random value hi in each round (each coordinate is multiplied with hi). The
hardware design adopts the hardware architecture described in [34]. Each parallelism stage
in the hardware architecture includes three finite field multipliers (M1 to M3) and three
adders (Ad1 to Ad3) that can operate in parallel.

Table 1. Point Operations Partial Results [34].

Point Addition Point Doubling
(X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) (X3D : Y3D : Z3D) = 2(X1 : Y1 : Z1)

A = X1 · X2 U3 = U1 + U2 DA = X1 · X1
B = Y1 ·Y2 U4 = L ·U3 DC = Y1 ·Y1
C = Z1 · Z2 U5 = F + U4 DE = Z1 · Z1
D = d1 · C U = C ·U5 DB = DA · DA
E = C · C V1 = A · B DD = DC · DC

F = d1d1 · E V2 = G · H DH = DA · DE
G1 = X1 + Z1 V3 = d1 · E DI = DC · DE
G2 = X2 + Z2 V4 = V1 + V2 DL = DE · DE
G = G1 · G2 V5 = V3 + V4 DF = d1 · DL

H1 = Y1 + Z1 V6 = L ·V5 DJ = DH + DI
H2 = Y2 + Z2 V7 = D · F DO = d2 · DJ
H = H1 · H2 V8 = V7 + V6 DM = DB + DD
I = A + G V = Z3 + V8 DG = d1d2 · DM
J = B + H M1 = A + D DK = DG + DO

K1 = X1 + Y1 N1 = G + D DL1 = DF + DJ
K2 = X2 + Y2 O1 = M1 · N1 DL2 = DH + DD
K = K1 · K2 M2 = B + D DL3 = DI + DB
L = d1 · K N2 = H + D DX3 = DL2 + DK

U1 = K + I O2 = M2 · N2 DY3 = DL3 + DK
U2 = J + C P1 = D ·O1 DZ3 = DL1 + DG
P2 = D ·O2
X3 = V + P1
Y3 = V + P2

Z3 = U

In Table 2, it is revealed that the parallel operations of each stage that appears in
Table 1 for an MPL round, are associated with both point operation (addition or doubling)
in this round. Moreover, two extra stages have been introduced in the table in line with
the leakage model of Equation (3) (no random operations in parallel stages). Those stages
(marked in blue in the table) add SCA resistance following the hiding resistance approach.
This hiding countermeasure introduces a timing and computing overhead of approximately
7.69%, which can be considered a satisfactory trade-off. Despite the fact that for all z stages
the processing that occurs in each round has high regularity in regards to the scalar bit
value, the storage leakage footprint might be different depending on the scalar bit. This can
be observed from Algorithm 1 steps 2a or 2b, where the point addition and point doubling
results are stored in R1 and R0, respectively, for ei = 0 and in R0 and R1, respectively, for
ei = 1. This storage in different registers, which is related to ei, is not masked/hidden when
the proposed fine-grained GF unification stages approach is adopted without the random
operations in each parallel stage, which hide the values stored in the implementations’
registers. Despite the fact that this information might not be exploitable in traditional
SCAs/ASCAs, it may provide significant benefit in profiling attacks where the attacker has
the ability to create a concrete profile of the device. In the following sections, we perform
analytic practical evaluation of the proposed SCA countermeasure as is implemented in a
BEC scalar multiplier, following the computation flow of Table 2. The analysis is focused
on simple ML-based SCAs that do not require a huge number of leakage traces for training
and validation.



J. Sens. Actuator Netw. 2021, 10, 56 11 of 23

Table 2. Paralleling BEC point addition and doubling GF(2k) operations on the ith MPL Round
(v = 6 and z = 11 or z = 13).

Inputs (X1 : Y1 : Z1) (X2 : Y2 : Z2) Leakage

Stage M1 M2 M3 Ad1 Ad2 Ad3 LR
i (T)

1 A B DA G1 G2 K1 LR
i (t1)

2 G DC DB H1 H2 K2 LR
i (t2)

3 H DD DE I - - LR
i (t3)

4 C DH DI J - DM LR
i (t4)

5 V2 V1 K DJ DL2 DL3 LR
i (t5)

6 DO E DG U2 V4 U1 LR
i (t6)

7 D V3 L DK - U3 LR
i (t7)

8 DL F U4 M1 V5 N1 LR
i (t8)

9 V7 V6 O1 M2 N2 U5 LR
i (t9)

10 DF O2 U V8 DX3 DY3 LR
i (t10)

11 - P2 P1 DL1 - V LR
i (t11)

12 rDY3 rZ3 rDX3 DZ3 Y3 X3 LR
i (t12)

13 rY3 rX3 rDZ3 - - - LR
i (t13)

Outputs (X3 : Y3 : Z3) (X3D : Y3D : Z3D)
Rand Outputs (rX3 : rY3 : rZ3) (rX3D : rY3D : rZ3D)

-: idle r: random number; M1: OP(1,j)
i , M2: OP(2,j)

i , M3: OP(3,j)
i ; Ad1: OP(4,j)

i , Ad2: OP(5,j)
i , Ad3: OP(6,j)

i .

5. Machine Learning Attacks

Machine Learning has been—for several years—an active field of research, with
innumerable obscure practical applications such as stealing an ML classifier through Deep
Learning [40], and even in the cyber-security domain has been used as a defensive tool for
malware detection [41]. For the assessment of the SCA resistance of our ECC Multiplier,
the following ML methodology was applied.

In [20], a time-efficient Convolutional Neural Network (CNN)-based approach is
realized, focusing on dimensionality reduction in order to handle the high computational
complexity of CNN attacks. In the proposed CNN model, the optimal number of convolu-
tional blocks is used to build powerful feature extractors within the cost limit. The model
consists of three combinational layers, each one containing a pair of convolutional layers
and one pooling layer. The overall architecture is complemented by a dimensionality-
reduction module and a class imbalance module in order to optimize the collected dataset
prior to the training process. However, ref. [20] does not assess the ECC SM implementa-
tions against small datasets and simple Machine Learning algorithms. Thus, in order to
form a complete performance analysis for small and medium sized datasets, this paper
uses two supervised Machine Learning algorithms and one simple artificial neural network,
complementing and extending the findings in [20]. For the work in [20] and in this paper,
the same unprotected and protected implementations of the ECC SM accelerator have been
utilized to create the trained models.

5.1. Random Forest (RF)

Random Forest belongs to the class of supervised machine learning algorithms, op-
erating on the basis of bagging many random decision trees to give a more accurate
classification. Random Forests [42] can be defined as a group of tree predictors that are
combined in a such way that each tree is dependent on a random vector which is sampled
independently and with the same distribution for all the trees in the forest. Structurally,
they resemble diagrams made of nodes and edges, where these nodes can be of the types
root (top of the tree), internal and leaf (end nodes). These leaf nodes have as values the
target label that we want each sample trace to hopefully converge correctly to (in this
side-channel analysis context, it is the binary classification of bit ‘0’ or bit ‘1’). To enhance
the accuracy, the final decision is made through a majority vote among a set of trees, each
with randomized feature sample value.



J. Sens. Actuator Netw. 2021, 10, 56 12 of 23

5.2. Support Vector Machine (SVM)

Support Vector Machine [43] also belongs to the supervised category of Machine
Learning algorithms and can be utilized for both classification and regression analysis. The
basis of its functionality is the construction of a hyperplane, which separates the training
data points of any class. A larger margin between the nearest training data points means a
better separation and a lower generalization error of the classifier. In cases where a linear
hyperplane between the data points is inadequate to provide a clear separation, a non-linear
kernel function can be used, essentially mapping the data points into high-dimensional
feature spaces.

5.3. Multilayer Perceptron (MLP)

Part of the class of feed-forward Artificial Neural Networks (ANN), the Multilayer
Perceptron typically refers to a network of interconnected perceptrons (introduced by [44]),
often in a multitude of layers. The three main layer categories involve an input layer, one
or more hidden layers and an output layer. The connections between the nodes (neurons)
for all but the input layer are characterized by their weight w value. This value is essential
for the correct application of the activation function in mapping the weighted input to an
output of the node. In essence, an MLP model can be considered properly trained when
each of those weights for all layers has converged to the correct value. The supervised
learning technique used in this case is called ‘backpropagation’, in which the weights are
adjusted based on the output errors relative to the desired value.

6. Experimental Process

The evaluation process requires the collection of a series of traces. The collection of the
required traces was achieved in a controlled environment as previously described in [34].
The SAKURA-X board [45], featuring a Kintex-7 cryptographic FPGA chip, is regarded
as a widely used tool for its low-noise trace collection characteristics. The trace collection
mechanism described and implemented in [46] has been utilized for leakage trace sampling,
irregardless of the underlying executed implementation (AES, ECC, etc.). Thus, in our
process it was used as the control loop of the conducted leakage assessment mechanism,
enabling the collection of waveforms for the two versions (protected and unprotected).
In order to capture the generated traces, a PicoScope 5000D Series Oscilloscope with a
sampling rate of 1 GS/s was connected through a pre-amplifier to a resistor onboard the
SAKURA-X, in order to measure the power consumption.

6.1. Sample Trace Formation

In contrast to the approach used in [34], each collected trace, which corresponds
to a full scalar multiplier, is split into trace blocks, each of them representing a Scalar
Multiplication round for a known random scalar bit. Given the clear visual pattern of
each round (as it can be seen in [34]) in the collected traces, we were able to accurately
identify the timeslot T corresponding to a single SM round. Given that each round in
the MPL algorithm takes constant time, each collected trace was divided into n timeslots
T, where n is the number of MPL rounds or, in other words, the number of scalar bits.
Moreover, given that each round performs the necessary processing for a single scalar bit,
and also given that in the trace-collection process known scalars were used, each trace block
(corresponding to a single round for a known scalar bit) was labeled as a processing of ‘0’ or
‘1’, respectively. Using this splitting strategy for the traces, with each block representing a
single bit, we were able to quickly and efficiently collect a vast amount of samples without
wasting a lot of time. The above process constitutes the profiling phase, where the attacker
has full access on the device and is operating using a known secret scalar e. Figures 2 and 4
show the waveforms captured during the execution of one round in the unprotected
SM implementation, labeled as processing of scalar bit ‘0’ or ‘1’, respectively. Likewise,
Figures 3 and 5 show the waveforms for a single round in the protected SM version of the
accelerator, with the randomization countermeasure rounds shown in detail. Note that



J. Sens. Actuator Netw. 2021, 10, 56 13 of 23

there are 11 clearly visible patterns in Figures 2 and 4 corresponding to the 11 stages of
Table 2’s unprotected approach. Similarly, in Figures 3 and 5, there are 13 patterns that
indicate the stages of the protected implementation of Table 2.

0 0.5 1 1.5 2 2.5 3 3.5

10
4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2. Sample of Unprotected implementation representing bit 0.

0 0.5 1 1.5 2 2.5 3 3.5 4

10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3. Sample of Protected implementation representing bit 0.



J. Sens. Actuator Netw. 2021, 10, 56 14 of 23

0 0.5 1 1.5 2 2.5 3 3.5

10
4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 4. Sample of Unprotected implementation representing bit 1.

0 0.5 1 1.5 2 2.5 3 3.5 4

10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 5. Sample of Protected implementation representing bit 1.

The low-noise captured traces can be considered as very well aligned, without the need
for averaging or post-acquisition alignment, due to the combination of the SAKURA-X, the
collection mechanism and the PicoScope 5000D. In total, 1000 full Scalar Multiplications
were captured, which upon further splitting amounted to a maximum of N = 232,233
different sample block traces labeled ‘0’ and ‘1’. These raw sample traces consist of
33,750 sampling points each, ready to be analyzed for feature generation. In order to
train the different models, the Scikit-Learn library [47] was utilized, offering a fast and
simple development environment with good functionality. Characterizing a dataset as



J. Sens. Actuator Netw. 2021, 10, 56 15 of 23

small or medium sized for ML-based side channel analysis is considerably dependent on
the targeted cryptography algorithm (and relevant implementation) on which the attack
is intended. Typically, simple Machine Learning algorithms use small- to medium-size
datasets while Deep Learning algorithms (e.g., Neural Networks) use larger datasets for
training. In the research literature, the few public SCA raw trace datasets that exist can
provide an indication of the dataset size characterization. In the ASCAD database (one of
the well-used public databases of DL SCA models for symmetric key algorithms) [48] the
authors collect around 100,000 traces to build the DL models. Similarly, in the study of [49],
the authors study DL models for symmetric key using 500,000 traces. When constructing
models for public key cryptography algorithms, the needed number of traces to train a
model can increase even further. Thus, the number of traces needed to train SCA models
of size more than 100,000 can be considered a large dataset. In simple ML SCAs for ECC,
such as the work of [11] which is focused on an unprotected ECC FPGA implementation,
a reasonably sized dataset of 14,000 traces has been used. While in our paper we have
collected a large number of traces (1000 scalar multiplications have been captured with
233 bits of the scalar processed in each one of them, thus resulting in 232,233 traces), we only
needed to use 5000 traces for our models, which is considerably less than the dataset size
used in other works (e.g., 14,000 traces in [11]). For this reason, our traces dataset can be
considered of small or medium size. It should be noted that increasing the dataset size in
the ML training did not improve the accuracy of the models.

6.2. Feature Generation

An important and crucial step to take into account when training any machine learning
or neural network model is choosing the features of the dataset most capable of delivering
as high prediction accuracy as possible. In this effort, targeting efficient model generation
and training time, we adopted the strategy depicted in [11,50], where signal properties of
the collected traces are used as features. Based on the recommendation in these papers, the
following signal properties for every trace were measured to be used as features:

• Mean of Absolute Value
• Kurtosis
• Median Frequency
• Mean Frequency
• Slope Sign Change

The computation of these signal properties was achieved through the usage of already-
available toolsets implemented in a MATLAB environment, as well as in-house built
Python scripts, verifying with two different implementations, the correctness of our feature
generation process. A preliminary observation on the values of the features, indicates that
Kurtosis and Slope Sign Change might have the highest contribution regarding the final
classification decision each model makes. After generating the appropriate values, the
formation of the feature array is completed, appropriately assigning the correct labels to
each feature value of the collected traces. This means that for each captured trace, such
as those shown in Figures 2–5, the raw 33,750 signal data points are now reduced to a
five-value array containing the computed features.

It is a prevalent conclusion that this feature generation process, in which signal
properties are used as features rather than raw signal data, allows for a significant decrease
in input data amount necessary to train the different ML models. The training time is,
thus, greatly shortened for the majority of the models, allowing for quick evaluation and
assessment of the implemented countermeasures, as well as of the impact each tuned
parameter has on the accuracy of the trained model.

6.3. Feature Extraction

Noise is considered one of the biggest obstacles when attempting a successful side
channel attack. In order to overcome this barrier, it has been shown [51] that using statistical
methods such as Principal Component Analysis (PCA) as a pre-processing method has



J. Sens. Actuator Netw. 2021, 10, 56 16 of 23

the potential to lead to a reduction in noise in the leaked side channel data. This fact
elevates techniques such as PCA into potentially valuable feature extraction mechanisms.
During this process, the data that are evaluated to be redundant and not able to provide
any contribution to the critical leakage are then removed from the finalized feature set.
In our case and in similarity with the above feature generation procedure, PCA was
applied on the raw signal traces containing all the collected information. This leads
to a significant reduction in needed data to just two computed Principal Components.
These values are then labeled correctly before being fed as input data into our models.
As mentioned above, this additional way of reducing the training portion of the data can
lead to shortened training time and better classification accuracy. Out of the three machine
learning algorithms described in Section 5, Support Vector Machines seem to provide better
performance, compared to the other algorithms, when using PCA pre-processing, due to
their high-dimensionality characteristic.

6.4. Validation

Caution during the training of any Machine Learning model should be exercised in
order to avoid the effects of underfitting and overfitting. Underfitting happens in cases
where the dataset is excessively large or there are errors in the input data. The model
then cannot correctly train on the available dataset, producing wrong classification results.
On the other side of the spectrum, when the trained model can predict the training data
with incredibly high accuracy, this is a sign of overfitting, as the model cannot generalize
its predictions to new input data. To overcome these effects, the K-Fold Cross Validation
technique has been adopted. More specifically, the input dataset that has been generated
with the signal properties as features is divided into training and testing data portions.
For our model, the training portion of the data is 20% of the total samples collected. As is
apparent, the training of the model is completed using the training portion of the data,
while the testing portion is only used to assess the classification accuracy without any
impact during the model training phase (holdout method). The whole dataset is then
subjected to the same procedure K-1 times, where in each iteration a different percentage
of datapoints reflects the training set and the testing set, respectively. The model is, thus,
trained K times using a different pair of subsets, after which the final classification accuracy
is considered the mean value of each iteration. The cross validation process ensures that the
training of the model does not lean heavily into one-dimensional learning of the dataset,
which causes inaccuracy in new testing subsets.

7. Results

By configuring and experimenting with different parameter settings, the performance
of each trained model is assessed in terms of learning time and classification efficiency.
The accuracy is calculated for the aforementioned algorithms—Random Forest, Support
Vector Machine and Multilayer Perceptron—and is defined as the percentage of traces each
algorithm can correctly identify as bit ‘0’ or bit ‘1’. Additionally, a 5-fold validation method
was adopted for our experiments.

7.1. Random Forest Analysis

For the Random Forest (RF) Classifier, the two important parameters that can be tuned
to review the accuracy of the model is the tree depth and the total number of trees in
the forest. As can be shown by Figure 6, with Tree Depth value less than 10 there is a
slight drop in accuracy in retrieving the key bit in the unprotected implementation, and a
maximum accuracy of 94.1%. Regarding the protected implementation, a steady behavior
can be observed by tuning tree depth, with a maximum accuracy of 61.5%.



J. Sens. Actuator Netw. 2021, 10, 56 17 of 23

0 10 20 30 40 50
40

50

60

70

80

90

100

Tree Depth

A
cc

ur
ac

y
(%

)

RF Analysis - I

Unprotected
Protected

Figure 6. Analysis of Tree Depth values on accuracy for RF model.

The impact the number of trees has on the accuracy of the Random Forest model can
be seen in Figure 7. There appears to be a consistent performance of the model regardless
of the number of trees in the forest, again with a minor dip when the number of trees is
10 in the unprotected kernel of our implementation. The maximum accuracy recovered
was 94.1%. Similar observations can be made for the protected implementation of our
multiplier, maintaining a steady accuracy in regards to number of trees, with a maximum
value of 62%.

0 20 40 60 80 100 120 140 160 180 200
45
50
55
60
65
70
75
80
85
90
95

100

Number of Trees

A
cc

ur
ac

y
(%

)

RF Analysis - II

Unprotected
Protected

Figure 7. Analysis of number of Trees value on accuracy for RF model.

7.2. Support Vector Machine Analysis

In assessing the Support Vector Machine algorithm, there are several hyper-parameters
that need to be fine-tuned beforehand. Using at its core several nonlinear kernel functions,
we tested the impact the gamma value has on the Support Vector Machine model. Typically,
a low gamma value indicates low bias and high variance. Figure 8 presents the accuracy for
each of the chosen kernel functions: Radial Basis Function (RBF), Sigmoid and Polynomial
on the unprotected version of our multiplier. The Polynomial kernel seems to be unaffected
by the various gamma values, with a steady performance and a maximum accuracy of
89.1% for gamma = 1. For the RBF kernel, low gamma values greatly contribute to a higher
accuracy, reaching 97.2% for gamma = 1 and dropping under 70% for gamma values greater
than 40. The sigmoid kernel has a consistently poor performance across the range of values,
and is unable to recover the key bits efficiently even for the unprotected version.

Measuring the performance of the SVM model after the countermeasures proposed in
Section 4 results in accuracies for the different kernel functions as presented in Figure 9.
The best performer, though by a small margin and only on low gamma values, is the
Polynomial kernel, with a maximum accuracy of 64.6% for gamma = 1. For higher gamma



J. Sens. Actuator Netw. 2021, 10, 56 18 of 23

values, every kernel has a consistent accuracy around 60%, with the Sigmoid kernel again
being unable to achieve a good accuracy score.

0 20 40 60 80 100
40

50

60

70

80

90

100

Gamma

A
cc

ur
ac

y
(%

)

SVM Analysis - I

RBF
Sigmoid

Poly

Figure 8. Analysis of SVM kernel accuracy for Unprotected implementation.

0 20 40 60 80 100
40

50

60

70

80

90

100

Gamma

A
cc

ur
ac

y
(%

)

SVM Analysis - II

RBF
Sigmoid

Poly

Figure 9. Analysis of SVM kernel accuracy for Protected implementation.

Typically, in an attempt to lower the classification error, the C parameter can be tuned,
effectively controlling the rate by which the SVM optimization can avoid misclassifying
each training example. This is achieved through the modification of the margin hyperplane,
where for large values of C the optimizer chooses a smaller hyperplane, thus increasing the
odds of correct classification. Conversely, choosing a small C value will cause the optimizer
to look for a larger-margin separating hyperplane, even if that hyperplane misclassifies
more points. Figure 10 shows the retrieved accuracy for different values of C using the
RBF kernel.

By trying to achieve greater accuracy results only for the protected version of the
SM implementation and as described already in Section 6.3, the PCA feature-extraction
technique was utilized. The number of features selected was n f eatures = 2, in order to
achieve the most efficient trade-off between training time and accuracy. Presented in
Figure 11 are the percentage gains in bit-classification accuracy that the PCA approach
provides, as compared with the other feature sets on the SVM algorithm, since it has been
proven to be the greatest beneficiary of the PCA technique.

The main outcome is that the PCA technique offers minimal gains to the classification
accuracy of the SVM algorithm. It can be noted that the Sigmoid kernel is the one with
the greatest increase in percentage accuracy for the protected implementation, with a
maximum gain of 8.6%. These gains in no case can be considered high enough to lead to an
eventual successful bit recovery attempt in a consistent manner. This small improvement
in accuracy with the PCA technique can be explained by the fact that the original captured
traces innately contain a low amount of noise, due to the low-noise capabilities of the



J. Sens. Actuator Netw. 2021, 10, 56 19 of 23

SAKURA-X platform. The effect of PCA as a noise-reduction method is thus significantly
reduced, which leads to a performance similar to the non-PCA approach.

0 0.5 1 1.5 2 2.5 3
40

50

60

70

80

90

100

C

A
cc

ur
ac

y
(%

)

SVM Analysis - III

Unprotected
Protected

Figure 10. Impact on accuracy of C value for SVM model.

0 20 40 60 80 100
−6
−4
−2

0
2
4
6
8

10

Gamma

Pe
rc

en
ta

ge
ga

in
(%

)

SVM Analysis - IV

RBF
Sigmoid

Poly

Figure 11. PCA comparison on SVM with n_ f eatures = 2.

7.3. Multilayer Perceptron Analysis

During the training of the Multilayer Perceptron model, the two parameters that were
analyzed for their impact in classification accuracy were the learning rate and the batch size.
The learning rate hyperparameter controls the amount by which the weight values should
be altered during the weight-update process (backpropagation), after the optimization
algorithm estimates the error gradient for the current state of the model. Small values of
this parameter lead to higher training times, whereas high values might lead to an unstable
training process. The batch size parameter defines the amount of samples the model should
work through before updating its internal parameters. For our MLP model, one hidden
layer was used with a size of 100, and it utilized the ‘adam’ solver for weight optimization.

Similarly with the previous machine learning models, during the evaluation of the
MLP algorithm, we observe an above-average classification accuracy for the unprotected
implementation, reaching levels of 97.7%, a percentage capable of inducing a successful
key bit recovery. This is true for both parameter-tuning metrics, as for both the learning
rate (Figure 12) and the batch size (Figure 13) this percentage is consistently at a high level.
In contrast, the accuracy level achieved when evaluating the protected implementation
could not exceed 63.7%, a percentage deemed incapable of leading to a key bit recovery.



J. Sens. Actuator Netw. 2021, 10, 56 20 of 23

10−4 10−3 10−2 10−1 100
40

50

60

70

80

90

100

Learning Rate

A
cc

ur
ac

y
(%

)

MLP Analysis - I

Unprotected
Protected

Figure 12. Impact on accuracy of Learning Rate on MLP model.

0 128 256 512 1024
40

50

60

70

80

90

100

Batch size

A
cc

ur
ac

y
(%

)

MLP Analysis - II

Unprotected
Protected

Figure 13. Impact on accuracy of Batch size on MLP model.

7.4. Comparison with Other Works

As far as the authors are aware, there are no relevant ECC-based ML attacks to make a
solid comparison with in regards to the protection techniques used in our implementation.

For the unprotected implementation, the most relevant work is [11,52], where the
authors have applied an SVM model on a 4-bit implementation of ECC leakage traces.
Thus, in Table 3, a comparison of the maximum classification accuracy achieved by each
unprotected implementation is presented. All implementations achieve high accuracy
for the available algorithms. For reference, the maximum accuracy of the proposed pro-
tected implementation is also shown, denoting the clear improvements in bit-classification-
attempt resistance.

Table 3. Maximum Accuracy comparison between implementations.

SVM RF MLP

Mukhtar et al. [11] 87% 89.4% 82.6%
Saeedi et al. [52] 96% - -

Proposed Unprotected 97.2% 94.1% 97.7%

Proposed Protected 64.6% 62% 63.7%

8. Conclusions

In this paper, the current landscape on simple and advanced SCAs for EC scalar
multipliers was described and the potential of profiling attacks, such as TA and ML-based
SCAs, was highlighted. Moreover, a fine-grained GF unification stages model and overall
design approach was proposed, and relevant leakage models were presented. The proposal



J. Sens. Actuator Netw. 2021, 10, 56 21 of 23

relies on the MPL algorithm’s ability to perform all point operations in parallel within a
computation round. This led to a decomposition of the point operations in their underlying
finite field operations and the redistribution of those operations in parallel stages that
concurrently implement finite field operations for both point operations on an MPL round.
The approach is further enhanced by the injection, in some parallel stage, of finite field
operations that perform multiplicative randomization. This process extends the projective
coordinate randomization countermeasure found in relevant literature, showcasing the
transparent migration of randomization inside the parallel stages of the proposed fine-
grained GF unification stages approach. This randomization is performed for each MPL
round with a different random value per round. Furthermore, in the paper, the proposed
fine-grained GF unification stages approach was practically evaluated against ML-based
SCAs that utilize three ML models (Random Forest, SVM and MLP). A detailed roadmap on
how to mount such attacks on MPL-based SM was made using an existing implementation
that follows the proposed fine-grained GF unification stages approach. Actual ML-based
SCAs were mounted onto two SM implementations, an unprotected one and a protected
one (that latter using our proposed approach with projective coordinate re-randomization).

Analyzing the data resulting from the implemented attacks on the fine-grained GF
unification stages based SM implementations, using different and popular SCA applications
with simple Machine Learning algorithms (that do not require a significant amount of
leakage traces, as traditionally needed in deep learning approaches), we can safely conclude
the effectiveness of the applied countermeasures. For all the tested models, the unprotected
version of the scalar multiplier did not manage to conceal important information from the
attempts to recover the key bits, reaching up to 95% accuracy in some cases. This means that
the provided leakage model reveals a significant amount of secret scalar information to an
attacker, regardless of the GF unification in each round, and is not appropriate for ML-based
SCA resistance. On the contrary, after applying the re-randomization countermeasure, the
ML models were unable to achieve an accuracy that can be considered satisfactory in order
to reveal the secret key bits. Thus, the masking mechanism of random operation within
the MPL round’s parallel stages, which can be easily included in the proposed design
approach, seems to be potent enough to thwart several different ML-based SCAs, such as
the ones described in this paper.

Author Contributions: The authors of the paper have contributed to the work as follows: concep-
tualization, C.D. and A.P.F.; methodology, C.D. and A.P.F.; software, C.D.; validation, C.D. and
A.P.F.; formal analysis, C.D. and A.P.F.; investigation, C.D. and A.P.F.; resources, A.P.F. and O.K.;
data curation, C.D. and A.P.F.; writing—original draft preparation, C.D. and A.P.F.; writing—review
and editing, O.K.; visualization, O.K.; supervision, A.P.F. and O.K.; project administration, O.K.;
funding acquisition, A.P.F. and O.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper’s work has received funding from the European Union’s Horizon 2020 research
and innovation program CONCORDIA under grant agreement No. 830927. Additionally, Apostolos
Fournaris’ work has also received funding from the European Union’s Horizon 2020 research and
innovation programme CPSoSaware under grant agreement No. 871738.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data underlying this article will be shared on reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fan, J.; Verbauwhede, I. An Updated Survey on Secure ECC Implementations: Attacks, Countermeasures and Cost. In Cryptogra-

phy and Security: From Theory to Applications; Naccache, D., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 6805, pp. 265–282.

2. Houssain, H.; Badra, M.; France, C.; Al-somani, T.F.; Member, S. Comparative Study of Elliptic Curve Cryptography Hardware
Implementations in Wireless Sensor Networks. Int. J. RFID Secur. Cryptogr. 2012, 1, 67–73. [CrossRef]

http://doi.org/10.20533/ijrfidsc.2046.3715.2013.0009


J. Sens. Actuator Netw. 2021, 10, 56 22 of 23

3. Verri Lucca, A.; Mariano Sborz, G.A.; Leithardt, V.R.Q.; Beko, M.; Albenes Zeferino, C.; Parreira, W.D. A Review of Techniques
for Implementing Elliptic Curve Point Multiplication on Hardware. J. Sens. Actuator Netw. 2021, 10, 3. [CrossRef]

4. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer: New York, NY, USA, 2003.
5. Marzouqi, H.; Al-Qutayri, M.; Salah, K. Review of Elliptic Curve Cryptography processor designs. Microprocess. Microsyst. 2015,

39, 97–112. [CrossRef]
6. Fan, J.; Guo, X.; De Mulder, E.; Schaumont, P.; Preneel, B.; Verbauwhede, I. State-of-the-art of secure ECC implementations:

A survey on known side-channel attacks and countermeasures. In Proceedings of the 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust, Anaheim, CA, USA, 13–14 June 2010; pp. 76–87. [CrossRef]

7. Papachristodoulou, L.; Batina, L.; Mentens, N. Recent Developments in Side-Channel Analysis on Elliptic Curve Cryptography
Implementations. In Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment;
Sklavos, N., Chaves, R., Di Natale, G., Regazzoni, F., Eds.; Springer: Cham, Switzerland, 2017; pp. 49–76.

8. Chari, S.; Rao, J.R.; Rohatgi, P. Template Attacks. Lect. Notes Comput. Sci. 2003, 2523, 13–28. [CrossRef]
9. Lerman, L.; Poussier, R.; Bontempi, G.; Markowitch, O.; Standaert, F.X. Template attacks vs. Machine learning revisited (and the

curse of dimensionality in side-channel analysis). Lect. Notes Comput. Sci. 2015, 9064, 20–33. [CrossRef]
10. Gilmore, R.; Hanley, N.; O’Neill, M. Neural network based attack on a masked implementation of AES. In Proceedings of the

2015 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May
2015; pp. 106–111. [CrossRef]

11. Mukhtar, N.; Mehrabi, M.; Kong, Y.; Anjum, A. Machine-Learning-Based Side-Channel Evaluation of Elliptic-Curve Crypto-
graphic FPGA Processor. Appl. Sci. 2018, 9, 64. [CrossRef]

12. Bernstein, D.; Lange, T. Faster addition and doubling on elliptic curves. In International Conference on the Theory and Application of
Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–22.

13. Bernstein, D.; Lange, T.; Farashahi, R. Binary edwards curves. In International Workshop on Cryptographic Hardware and Embedded
Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 244–265.

14. Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security);
Springer: New York, NY, USA, 2007.

15. Fournaris, A.P.; Koufopavlou, O. Affine Coordinate Binary Edwards Curve Scalar Multiplier with Side Channel Attack Resistance.
In Proceedings of the 2015 Euromicro Conference on Digital System Design, Madeira, Portugal, 26–28 August 2015; pp. 431–437.
[CrossRef]

16. Joye, M.; Yen, S.M. The Montgomery Powering Ladder. In CHES ’02: Revised Papers from the 4th International Workshop on
Cryptographic Hardware and Embedded Systems; Springer: London, UK, 2003; pp. 291–302.

17. Fournaris, A.P. Fault and Power Analysis Attack Protection Techniques for Standardized Public Key Cryptosystems. In Hardware
Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment; Sklavos, N., Chaves, R., Di Natale, G.,
Regazzoni, F., Eds.; Springer: Cham, Switzerland, 2017; pp. 93–105. [CrossRef]

18. Bauer, A.; Jaulmes, E.; Prouff, E.; Wild, J. Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations.
In Topics in Cryptology, CT-RSA 2013; Dawson, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7779, pp. 1–17.

19. Bauer, A.; Jaulmes, E.; Prouff, E.; Wild, J. Horizontal Collision Correlation Attack on Elliptic Curves. In Selected Areas in
Cryptography—SAC 2013; Lange, T., Lauter, K., Lisonk, P., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2014; Volume 8282, pp. 553–570.

20. Mukhtar, N.; Fournaris, A.P.; Khan, T.M.; Dimopoulos, C.; Kong, Y. Improved Hybrid Approach for Side-Channel Analysis using
Efficient Convolutional Neural Network and Dimensionality Reduction. IEEE Access 2020, 8, 184298–184311. [CrossRef]

21. Fouque, P.A.; Valette, F. The Doubling Attack Why Upwards Is Better than Downwards. In International Workshop on Cryptographic
Hardware and Embedded Systems; Walter, C., Koc, C., Paar, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 2779, pp. 269–280.

22. Yen, S.; Ko, L.; Moon, S.; Ha, J. Relative doubling attack against Montgomery Ladder. In International Workshop on Cryptographic
Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–128.

23. Yen, S.M.; Lien, W.C.; Moon, S.J.; Ha, J. Power Analysis by Exploiting Chosen Message and Internal Collisions—Vulnerability of
Checking Mechanism for RSA-Decryption. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 3715, pp. 183–195.

24. Kocher, P.; Jaffe, J.; Jun, B. Differential Power Analysis. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 388–397.

25. Koc, C.K. Cryptographic Engineering, 1st ed.; Springer: New York, NY, USA, 2008.
26. Amiel, F.; Feix, B.; Villegas, K. Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms. In Selected

Areas in Cryptography; Adams, C., Miri, A., Wiener, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 4876, pp. 110–125.

27. Bogdanov, A.; Kizhvatov, I.; Pyshkin, A. Algebraic Methods in Side-Channel Collision Attacks and Practical Collision Detection.
In Progress in Cryptology—INDOCRYPT 2008; Chowdhury, D., Rijmen, V., Das, A., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2008; Volume 5365, pp. 251–265.

28. Moradi, A. Statistical Tools Flavor Side-Channel Collision Attacks. In Advances in Cryptology—EUROCRYPT 2012; Pointcheval, D.,
Johansson, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7237, pp. 428–445.

http://dx.doi.org/10.3390/jsan10010003
http://dx.doi.org/10.1016/j.micpro.2015.02.003
http://dx.doi.org/10.1109/HST.2010.5513110
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-319-21476-4_2
http://dx.doi.org/10.1109/HST.2015.7140247
http://dx.doi.org/10.3390/app9010064
http://dx.doi.org/10.1109/DSD.2015.120
http://dx.doi.org/10.1007/978-3-319-44318-8_5
http://dx.doi.org/10.1109/ACCESS.2020.3029206


J. Sens. Actuator Netw. 2021, 10, 56 23 of 23

29. Feix, B.; Roussellet, M.; Venelli, A. Side-Channel Analysis on Blinded Regular Scalar Multiplications. In Progress in Cryptology—
INDOCRYPT 2014; Meier, W., Mukhopadhyay, D., Eds.; Lecture Notes in Computer Science; Springer: New York, NY, USA, 2014;
Volume 8885, pp. 3–20.

30. Clavier, C.; Feix, B.; Gagnerot, G.; Roussellet, M.; Verneuil, V. Horizontal Correlation Analysis on Exponentiation. In In-
formation and Communications Security; Soriano, M., Qing, S., López, J., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6476, pp. 46–61.

31. Walter, C. Sliding Windows Succumbs to Big Mac Attack. In Cryptographic Hardware and Embedded Systems—CHES 2001; Ko, E.,
Naccache, D., Paar, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2162,
pp. 286–299.

32. Doget, J.; Prouff, E.; Rivain, M.; Standaert, F.X. Univariate side channel attacks and leakage modeling. J. Cryptogr. Eng. 2011,
1, 123–144. [CrossRef]

33. Coron, J.S. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In International Workshop on
Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 1999; pp. 292–302.

34. Fournaris, A.P.; Dimopoulos, C.; Moschos, A.; Koufopavlou, O. Design and leakage assessment of side channel attack resistant
binary edwards Elliptic Curve digital signature algorithm architectures. Microprocess. Microsyst. 2019, 64, 73–87. [CrossRef]

35. Whitnall, C.; Oswald, E.; Standaert, F.X. The myth of generic DPA and the magic of learning. In Cryptographers’ Track at the RSA
Conference; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8366, pp. 183–205. [CrossRef]

36. Medwed, M.; Oswald, E. Template attacks on ECDSA. In International Workshop on Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 5379, pp. 14–27.

37. Archambeau, C.; Peeters, E.; Standaert, F.X.; Quisquater, J.J. Template attacks in principal subspaces. In International Workshop on
Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4249, pp. 1–14. [CrossRef]

38. Batina, L.; Chmielewski, Ł.; Papachristodoulou, L.; Schwabe, P.; Tunstall, M. Online template attacks. In International Conference
on Cryptology in India; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8885, pp. 21–36.

39. Papachristodoulou, L.; Fournaris, A.P.; Papagiannopoulos, K.; Batina, L. Practical Evaluation of Protected Residue Number
System Scalar Multiplication. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2019, 259–282. [CrossRef]

40. Shi, Y.; Sagduyu, Y.; Grushin, A. How to steal a machine learning classifier with deep learning. In Proceedings of the 2017
IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA, 25–26 April 2017; pp. 1–5.
[CrossRef]

41. Vishwakarma, R.; Jain, A.K. A Honeypot with Machine Learning based Detection Framework for defending IoT based Botnet
DDoS Attacks. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 23–25 April 2019; pp. 1019–1024. [CrossRef]

42. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
43. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
44. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958,

65, 386–408. [CrossRef] [PubMed]
45. SAKURA-X. Available online: http://satoh.cs.uec.ac.jp/SAKURA/ (accessed on 2 June 2021).
46. Moschos, A.; Fournaris, A.; Koufopavlou, O. A Flexible Leakage Trace Collection Setup for Arbitrary Cryptographic IP Cores.

In Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA,
30 April–4 May 2018.

47. Scikit-Learn Library. Available online: https://scikit-learn.org/stable/ (accessed on 2 June 2021).
48. Prouff, E.; Strullu, R.; Benadjila, R.; Cagli, E.; Canovas, C. Study of Deep Learning Techniques for Side-Channel Analysis and

Introduction to ASCAD Database. IACR Cryptol. ePrint Arch. 2018, 2018, 53.
49. Masure, L.; Dumas, C.; Prouff, E. A Comprehensive Study of Deep Learning for Side-Channel Analysis. IACR Trans. Cryptogr.

Hardw. Embed. Syst. 2019, 2020, 348–375. [CrossRef]
50. Mukhtar, N.; Kong, Y. Hyper-parameter optimization for machine-learning based electromagnetic side-channel analysis.

In Proceedings of the 26th International Conference on Systems Engineering, ICSEng 2018, Sydney, Australia, 18–20 December
2018; pp. 1–7. [CrossRef]

51. Batina, L.; Hogenboom, J.; Van Woudenberg, J.G. Getting more from PCA: First results of using principal component analysis for
extensive power analysis. In Cryptographers’ Track at the RSA Conference; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]

52. Saeedi, E.; Hossain, M.S.; Kong, Y. Side channel analysis of an elliptic curve crypto-system based on multi-class classification.
In Proceedings of the 2015 6th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Dallas, TX, USA, 13–15 July 2015; pp. 1–7. [CrossRef]

http://dx.doi.org/10.1007/s13389-011-0010-2
http://dx.doi.org/10.1016/j.micpro.2018.07.003
http://dx.doi.org/10.1007/978-3-319-04852-9_10
http://dx.doi.org/10.1007/11894063_1
http://dx.doi.org/10.46586/tches.v2019.i1.259-282
http://dx.doi.org/10.1109/THS.2017.7943475
http://dx.doi.org/10.1109/ICOEI.2019.8862720
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://satoh.cs.uec.ac.jp/SAKURA/
https://scikit-learn.org/stable/
http://dx.doi.org/10.46586/tches.v2020.i1.348-375
http://dx.doi.org/10.1109/ICSENG.2018.8638234
http://dx.doi.org/10.1007/978-3-642-27954-6_24
http://dx.doi.org/10.1109/ICCCNT.2015.7395195

	Introduction
	Elliptic Curve and Binary Edwards Curve Background
	ECC Side Channel Attacks and Countermeasures
	Proposed SCA Countermeatures on MPL
	Machine Learning Attacks
	Random Forest (RF)
	Support Vector Machine (SVM)
	Multilayer Perceptron (MLP)

	Experimental Process
	Sample Trace Formation
	Feature Generation
	Feature Extraction
	Validation

	Results
	Random Forest Analysis
	Support Vector Machine Analysis
	Multilayer Perceptron Analysis
	Comparison with Other Works

	Conclusions
	References

