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Abstract: Knee osteoarthritis is one of the most prevalent chronic diseases. It leads to pain, stiffness,
decreased participation in activities of daily living and problems with balance recognition. Force
platforms have been one of the tools used to analyse balance in patients. However, identification
in early stages and assessing the severity of osteoarthritis using parameters derived from a force
plate are yet unexplored to the best of our knowledge. Combining artificial intelligence with medical
knowledge can provide a faster and more accurate diagnosis. The aim of our study is to present a
novel algorithm to classify the occurrence and severity of knee osteoarthritis based on the parameters
derived from a force plate. Forty-four sway movements graphs were measured. The different machine
learning algorithms, such as K-Nearest Neighbours, Logistic Regression, Gaussian Naive Bayes,
Support Vector Machine, Decision Tree Classifier and Random Forest Classifier, were implemented
on the dataset. The proposed method achieves 91% accuracy in detecting sway variation and would
help the rehabilitation specialist to objectively identify the patient’s condition in the initial stage and
educate the patient about disease progression.

Keywords: machine learning; force plate; balance; knee osteoarthritis

1. Introduction

Knee Osteoarthritis (OA) is one of the most prevalent chronic diseases. It leads
to pain, stiffness and decreased participation in activities of daily living [1]. Muscle
strength and bony alignment are altered as the joints become deformed, thereby leading to
problems with balance recognition (proprioceptive sensory deficit) [2]. Balance involves
numerous neuromuscular interactions between the visual, vestibular and neural systems.
Any variation in these systems can hence cause balance alterations [3]. Force platforms have
been one of the tools used to analyse sway/balance in patients. However, identification of
OA in early stages and assessing the severity of OA using parameters derived from force
plates are yet unexplored to the best of our knowledge. An accurate and early diagnosis of
knee OA by a feature detection algorithm using a force platform, followed by appropriate
therapeutic strategies, may help to prevent the progression of the condition.

A force platform, also known as a force plate, is a device that is used to assess dynamic
and static posture control and associated gait parameters [4]. There are two types of force
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platforms: (1) with monoaxial load cells that detect the vertical component of the ground
reaction force (FZ), and (2) with load cells that detect the three components of the ground
reaction force (FX, FY and FZ) along with the moment of force acting on the multiaxial
plates (MX, MY and MZ). Uni- and multiaxial plates can be used to assess the anterior-
posterior (AP) and medio-lateral (ML) time series of the centre of pressure (which is a point
of application of vertical ground reaction force) over time during a postural test. The Centre
of Pressure (COP) is the most commonly used parameter for evaluating postural function.
Variations in Centre of Mass (COM) displacements are referred to as body sway, whereas
changes in COP position are often referred to as postural sway [5].

Though non-instrumental tests can be used to diagnose motor and sensory disorders,
they only provide an overall understanding of how well the posture can be controlled.
Instrumented tests such as force plates are required for a thorough and detailed examination
of postural balance [5]. For the purpose of this study, the authors employed a dual-axis
force plate to measure static postural balance. The aim of our study is to present a novel
algorithm to classify the occurrence and severity of knee OA based on the parameters
derived from a force plate.

2. Methodology
2.1. Postural Balance Measurement

The subjects required for the present research work were recruited from the specialist
department for knee and hip care at KMC Hospital, Ambedkar Circle, Mangalore, India.
The study was approved by the institutional ethics committee (ref. no: IECKMCMLR-
10/2020/290). Following the recruitment of the subjects based on the inclusion and ex-
clusion criteria, the participants were instructed to stand on the force plate with as much
stability as feasible. The inclusion and exclusion criteria are given below:

Inclusion criteria for subjects with EOA:

1. Age ≥20 and <45 years.
2. Satisfying four out of six clinical symptoms criteria (Recurrent pain, Pain following a

duration of rest, Discomfort at rest, Swelling, Instability, Reduced range of motion).
3. Subject with clinically and radiologically (Kellgren Lawrence grade 1 or 2) confirmed

diagnosis of EOA by an Orthopaedist or a Rheumatologist.

Exclusion criteria:

1. If patient demonstrates any neurological, neuromuscular or musculoskeletal condition
other than EOA, RA or other inflammatory arthritis.

2. Obesity (BMI > 30 kg/m2).
3. Subjects with a history of vertigo (vestibular dysfunction).
4. Patients with hypertension.
5. K and L grade 3 and above.
6. Recent surgeries and significant injuries of a lower limb.

The participants were asked to fix their gaze on a mark placed in front of the wall at
a distance of 3 m for the open-eye scenario, and the same posture was advocated for the
closed-eye scenario. The test was done three times for 30 s each time, with a one-minute
break between each attempt [6]. Figure 1 illustrates the entire solution pipeline. Figure 2
represents the session analysis graph and description.
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2.2. Pre-Processing

Forty subjects’ sway movements were measured, with twenty-three being afflicted
with OA and seventeen without OA.

The following procedure was followed on each of the subjects to formulate the
dataset. The AP excursion was found as the absolute difference between the front-most
and backward-most points on the graph Figure 2, in terms of percentage over time, with
frontward movement as positive and backward movement as negative.

The ML excursion was found as the absolute difference between the leftmost and
rightmost points on the graph in terms of percentage over time, with rightward movement
as positive and leftward movement as negative. The area under the square was found as
the product of the AP and the ML excursions.

Further, the data were augmented by ten non-afflicted points by randomly selecting
AP and ML deviations of two unique, non-afflicted subjects. Six outliers were removed
from the data to improve accuracy (Figure 3). The data were normalized using maximum–
minimum scaling, i.e., the minimum value of a feature was subtracted from that feature of
every data point, and the result was divided by the difference between the maximum and
minimum values within that feature.

Xnew =
Xold − Xmin
Xmax − Xmin
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Before running the models, the AP excursion, ML excursion and area under the square
were given initial weightages in the ratio of 5:3:2, respectively.

The data from the 44 samples were then randomly split into train and test sets in the
ratio of 3:1. An additional constant feature called Bias was added to all the data points,
with the weightage of 0.5.

3. Results

The following different machine learning algorithms were implemented on the newly
augmented dataset.

3.1. K-Nearest Neighbours (KNN)

KNN is a non-parametric supervised machine learning algorithm. The results are
approximated locally by only considering k-nearest datasets (based on Euclidean distance)
at input each time and predicting their class label (based on the mode of the class labels
of the k datasets) [7]. Here, it was used to classify whether the patient suffers from
osteoarthritis or not. This algorithm was run for values of k varying from 1 to 30 (number
of train samples).
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Here, we had three features:
Anterior-posterior (X).
Medio-lateral (Y).
Area under the square (Z).
For a test data sample (X0, Y0, Z0).
The training data sample was as follows: (X0, Y0, Z0),..., (Xn, Yn, Zn).

We calculated the Euclidean distances:

D1 =

√
(X0 − X1)

2 + (Y0 − Y1)
2 + (Z0 − Z1)

2

Dn =

√
(X0 − Xn)

2 + (Y0 − Yn)
2 + (Z0 − Zn)

2

Our answer was the class of the dependent variable that had the least Euclidean
distance value for k = 1 (wherein we considered only one neighbour).

Similarly, our answer was the class that was the most common in the dependent
variables with minimum values of Euclidean distance. The number of values we considered
depended on the value of the k set.

The best results were observed for k = 1, 2, 3 with an accuracy of 92.86%; k = 4, 5 gave
an accuracy of 85.71%. The accuracy further decreased with increase in k. the same has
been described in Figure 4.
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The KNN model performance metrics for the testing and training data are provided
below (Tables 1 and 2). The metrics used for the precision, recall and F1 score is mentioned
in Appendix A.

Table 1. Performance Metrics for Testing Data.

Precision Recall F1-Score

0 0.86 1.00 0.92
1 1.00 0.80 0.89

Testing Accuracy: 91%.

Table 2. Performance Metrics for Training Data.

Precision Recall F1-Score

0 1.00 1.00 0.92
1 1.00 0.80 0.89

Training Accuracy: 100%.
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The blue area in Figure 5 indicates what would be predicted as non-afflicted by the
machine, and the orange area would be predicted as afflicted.
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3.2. Logistic Regression

Logistic Regression (LR) is a statistical machine learning algorithm that is used to
model the probability of a particular class. It basically models a logistic or sigmoidal
function that best fits our dataset and helps us in classifying [8]. Here, that output was
whether the given patient is afflicted by Osteoarthritis or not.

A model was fitted against our dataset, and it gave us the following optimal weights:
AP = 0.73931048 × 5 = 3.6965524.
ML = 1.29462838 × 3 = 3.88388514.
Area = 0.47345805 × 2 = 0.9469161.
Bias = −2.5340467737146395.

The LR model performance metrics for the testing and training data are provided
below (Tables 3 and 4).

Table 3. Performance Metrics for Testing Data.

Precision Recall F1-Score

0 0.86 1.00 0.92
1 1.00 0.80 0.89

Testing Accuracy: 91%.

Table 4. Performance Metrics for Training Data.

Precision Recall F1-Score

0 0.79 1.00 0.88
1 1.00 0.64 0.78

Training Accuracy: 85%.

The blue area in Figure 6 indicates what would be predicted as non-afflicted by the
machine, and the orange area would be predicted as afflicted.
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3.3. Gaussian Naive Bayes

Naive Bayes classifiers are a collection of simple probabilistic classifiers based on
applying Bayes’ theorem with strong (naïve) independence assumptions between the
features. This is a probabilistic approach towards machine learning. Gaussian Naive Bayes
(GNB) is a variant of Naive Bayes. It follows the Gaussian normal distribution and supports
continuous data [9].

Data are standardized before implementation, as GNB expects normally distributed data.
The standardization process is given by:

Xnew =
Xold − µ

σ

where µ = 1
nsamples

x ∑
nsamples
i=1 Xi is the mean of each feature, and σ = ∑

nsamples
i=1

√
(Xi−µ)2

Nsamples
is

the standard deviation of that feature.
The GNB model performance metrics for the testing and training data are provided

below (Tables 5 and 6).

Table 5. Performance Metrics for Testing Data.

Precision Recall F1-Score

0 0.86 1.00 0.92
1 1.00 0.80 0.89

Testing Accuracy: 91%.

Table 6. Performance Metrics for Training Data.

Precision Recall F1-Score

0 0.83 1.00 0.90
1 1.00 0.71 0.83

Training Accuracy: 88%.

The blue area in Figure 7 indicates what would be predicted as non-afflicted by the
machine, and the orange area would be predicted as afflicted.
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3.4. Support Vector Machine (SVM)

SVM is an extension of logistic regression concept, but it helps optimise answers for
extreme cases. It takes the data point of the extreme cases and uses it as a support. The other
training examples become ignorable. Therefore, taking the extreme cases from two different
classes, a function is defined that lies at an equal distance from both the extremes, thus
increasing the margin for classification so that all the points can be classified as accurately
as possible [10]. In the present study, we used a polynomial kernel with the SVM as it
yields the best accuracy for the given dataset.

The SVM model performance metrics for the testing and training data are provided
below (Tables 7 and 8).

Table 7. Performance Metrics for Testing Data.

Precision Recall F1-Score

0 0.75 1.00 0.86
1 1.00 0.60 0.75

Testing Accuracy: 82%.

Table 8. Performance Metrics for Training Data.

Precision Recall F1-Score

0 0.76 1.00 0.86
1 1.00 0.57 0.73

Training Accuracy: 88%.

The blue area in Figure 8 indicates what would be predicted as non-afflicted by the
machine, and the orange area would be predicted as afflicted.
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3.5. Decision Tree Classifier (DT)

DT is a machine learning algorithm wherein we make the use of tree-like structure
to classify the data point. We have nodes that represent certain statements, also known
as features (internal nodes), and the lines represent the conditions on those statements
(features). Then, the final answer is published on the leaf node [11]. Say, in this case, that it
takes AP and asks whether it is over a certain value; then, it creates two branches, and on
both branches or on either branch, it either publishes the class or checks another condition
on another feature according to the dataset. This continues until the answer is final, and we
may or may not exhaust checking all the features. It works best for a large dataset.

The DT model performance metrics for the testing and training data are provided
below (Tables 9 and 10).

Table 9. Performance Metrics for Testing Data.

Precision Recall F1-Score

0 1.00 0.83 0.91
1 0.83 1.00 0.91

Testing Accuracy: 91%.

Table 10. Performance Metrics for Training Data.

Precision Recall F1-Score

0 1.00 1.00 1.00
1 1.00 1.00 1.00

Training Accuracy: 100%.

The Decision Tree split for our model is represented in Figure 9.
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3.6. Random Forest Classifier

A Random Forest (RF) is made up of several individual decision trees that work
together to form an ensemble. Each tree in the random forest predicts a class, and the class
with the maximum votes is selected as our model’s prediction [12]. It is a meta-estimator
that employs averaging to increase predicted accuracy and control over-fitting by fitting a
number of decision tree classifiers on various subsamples of the dataset. As it uses multiple
trees, the overall accuracy of the algorithm is greater than one decision tree alone [13].
The RF model performance metrics for the testing and training data are provided below
(Tables 11 and 12).

Table 11. Performance Metrics for Testing Data.

Precision Recall F1-Score

0 0.86 1.00 0.92
1 1.00 0.80 0.89

Testing Accuracy: 91%.
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Table 12. Performance Metrics for Training Data.

Precision Recall F1-Score

0 1.00 1.00 1.00
1 1.00 1.00 1.00

Training Accuracy: 100%.

Three sample tree splits from our RF model are represented in Figures 10–12. Sample
Trees from the Forest:
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3.7. Accuracy Summary

The accuracy of the models is compared in the following tables (Tables 13 and 14).

Table 13. Validation Accuracy.

Classifier KNN Logistic
Regression

Gaussian
Naive Bayes

Support Vector
Machine Decision Tree Random Forest

Classifier

Accuracy 91% 91% 91% 82% 91% 91%

Table 14. Training Accuracy.

Classifier KNN Logistic
Regression

Gaussian
Naive Bayes

Support Vector
Machine Decision Tree Random Forest

Classifier

Accuracy 100% 85% 88% 82% 100% 100%

The recall of the models is compared in the Table 15.
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Table 15. Recall based on validation set.

Classifier KNN Logistic
Regression

Gaussian
Naive Bayes

Support Vector
Machine Decision Tree Random Forest

Classifier

Recall(0) 1 1 1 1 0.83 1
Recall(1) 0.8 0.8 0.8 0.6 1 0.8

4. Discussion
Importance of Force Plate

A force plate is a mechanical sensing system that is designed to measure ground
reaction forces and human moments. Other information that can be procured includes
the centre of pressure, the centre of force, and the moment around each of the axes [14].
Current investigative procedures such as Magnetic Resonance Imaging (MRI) and X-rays
help to identify the signs of arthritis only after the patient starts showing structural changes.
Newer treatments in regenerative medicine are focusing on possibilities of reversing early
structural changes to the cartilage tissue that lines the bones within joints [15]. Though MRI
can detect early changes by using specific sequences, the availability of such sequences is ex-
tremely restricted. Treatment solutions, too, are currently in the research and development
phase, and hence, the interventions have not received wide approval.

A force plate being a hyper-sensitive device, it picks up early balance alterations that
happen before structural changes develop in patients with early symptoms of the disease.
Balance alterations can be rectified with the development of muscular strength using
simple exercise techniques at the earlier stages, thereby avoiding operative intervention.
It has a potentially huge scope for detecting and preventing progression of one of the
commonest diseases—a solution with tremendous public health importance. The entire
process consisted mainly of three major steps: Firstly, the collection of osteoarthritic and
non-osteoarthritic patients’ data from the hospital; secondly, extracting three main features
from the graphical data; and thirdly, running machine learning algorithms on the dataset
to come up with the best performing model. The machine learning models have vast
applications throughout various fields. According to the findings of the present study, we
were able to find that the best models for the early detection of knee osteoarthritis are the
KNN Classifier and GNB Classifier. Points on the graph that are nearby are of the same
class. The KNN works on the basis of clustering, and hence, it labels nearby points the
same, which is the reason for its great performance. GNB is a model that works purely
on the basis of probability. Along with giving good results, this model also has the added
benefit of giving us an insight, which is that since the model runs well, it is possible that
the data of all people are Gaussian in nature (or distributed normally).

5. Conclusions

We propose this method for early detection of knee osteoarthritis. The datasets
included a total of 44 graphs. The proposed method achieved 91% accuracy in detecting
sway variation. The proposed system would help the rehabilitation specialist to objectively
identify the patient’s condition in the initial stage and to educate the patient about disease
progression. As a future work, it can be considered to improvise the accuracy of the system
towards classifying the patient’s condition into different stages and different compartment
involvement as well.

Author Contributions: Conceptualization, A.J.P., Y.D.K. and S.P.; methodology, A.J.P. and Y.D.K.;
software, A.A. and S.B.; validation, A.J.P. and Y.D.K.; formal analysis, A.A., S.B. and S.P.; investigation,
Y.D.K. and S.P.; resources, Y.D.K. and S.P.; data curation, A.J.P., A.A and S.B; writing—original draft
preparation, A.J.P., A.M.J., A.A. and Y.D.K.; writing—review and editing, A.J.P., A.M.J., Y.D.K.
and G.N; supervision, Y.D.K. and S.P.; project administration, Y.D.K., S.P, G.N. and S.S., funding
acquisition, nil. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no direct funding for this research.



J. Sens. Actuator Netw. 2022, 11, 48 14 of 15

Institutional Review Board Statement: The Institutional Ethics Committee, Kasturba Medical Col-
lege, Mangalore (ref. no: IECKMCMLR-10/2020/290. Date of approval: 22 October 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation
OA Osteoarthritis
ML Medio-lateral
AP Anterior-posterior
COP Centre of pressure
KNN K-Nearest Neighbours
LR Logistic Regression
SVM Support Vector Machine
GNB Gaussian Naive Bayes
DT Decision Tree Classifier
TP True positive
FP False positive
TN True negative
FN False negative

Appendix A

Metrics Used:
ref: TP = True positive; FP = False positive; TN = True negative; FN = False negative
Accuracy: Accuracy is a metric for evaluating classification models. Accuracy is the

fraction of predictions that our model correctly predicted. It also has the following definition:

Accuracy = (Number of correct predictions)/ (Total number of predictions)

In the case of binary classification, accuracy is also calculated in terms of positives and
negatives, which is given as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision: Precision (positive predictive value) gives the proportion of positive identi-
fications that are actually correct.

Precision = (TP)/(TP + FP)

Recall: Recall gives the proportion of actual positives that were identified correctly.

Recall = (TP)/(TP + FN)

F1 score: In the calculation of F-score/F1-score, the precision and recall of the model
are combined, and it is defined as the harmonic mean of the model’s precision and recall.
The formula for the standard F1-score is

F1-score = 2/((1/recall) + (1/precision)) = 2 × ((recall × precision)/(recall + precision)) = TP/(TP + 0.5 × (FP + FN))

Support: The support is the number of samples of the true response that lie in
that class.

Macro avg: The method is straightforward, where we simply have to take the average
of the precision and recall of the system on various different sets. The Macro-average
F-Score is the harmonic mean of these two figures. Macro-average method can be used
when we want to know the overall performance of the system across various sets of data.
No specific decision is drawn from this average.
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Weighted avg: Weighted average takes into consideration the number of each class
present in its calculation. The lower the number of one class, the lower the impact its
precision/recall/F1 score has on the weighted average for each of those things.
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