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Abstract: Internet of things (IoT) has become an emerging technology transforming everyday physical
objects to be smarter by using underlying technologies such as sensor networks. The routing
protocol for low-power and lossy networks (RPL) is considered one of the promising protocols
designed for the IoT networks. However, due to the constrained nature of the IoT devices in terms
of memory, processing power, and network capabilities, they are exposed to many security attacks.
Unfortunately, the existing Intrusion Detection System (IDS) approaches using machine learning that
have been proposed to detect and mitigate security attacks in internet networks are not suitable for
analyzing IoT traffics. This paper proposed an IDS system using the hybridization of supervised and
semi-supervised deep learning for network traffic classification for known and unknown abnormal
behaviors in the IoT environment. In addition, we have developed a new IoT specialized dataset
named IoTR-DS, using the RPL protocol. IoTR-DS is used as a use case to classify three known
security attacks (DIS, Rank, and Wormhole). The proposed Hybrid DL-Based IDS is evaluated and
compared to some existing ones, and the results are promising. The evaluation results show an
accuracy detection rate of 98% and 92% in f1-score for multi-class attacks when using pre-trained
attacks (known traffic) and an average accuracy of 95% and 87% in f1-score when predicting untrained
attacks for two attack behaviors (unknown traffic).

Keywords: intrusion detection systems; deep learning; machine learning; security; RPL;
routing protocols

1. Introduction

The IoT technology has recently been the fuel engine for many smart applications
designed to improve life quality, such as smart cities, transportation, healthcare, energy
management, agriculture, environmental monitoring, and others [1]. IoT transforms the
physical objects from being traditional to being smart by taking advantage of underlying
technologies such as sensor networks, embedded devices, pervasive computing, ubiquitous
communications protocols, and applications. The majority of IoT systems use resource-
constrained (low processing power and storage) devices and a low-power and lossy net-
work (LLN) to communicate between them in an ad hoc way. Therefore, these systems
are vulnerable and prone to many cyber-attacks, where traditional security measurements
cannot be directly applied [1].

Each protocol layer in the IoT stack is susceptible to various security threats; however,
most of the attacks target the network layer, as for traditional networks. These attacks
usually affect routing protocols in terms of data flow disruption or network resources
exhaustion. Routing protocols play a vital role in IoT network architecture. A routing
protocol’s primary role is to discover and establish a route from a source node to a des-
tination node and maintain the availability of such routes for subsequent transmissions.
Several routing protocols have been used for the Wireless Sensor Networks (WSN) and
IoT. However, the Routing Protocol for Low-Power and Lossy networks (RPL) is a very
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promising routing protocol because of its ability to provide efficient routing among resource-
constrained IoT IP-based devices. RPL was standardized by IETF ROLL (Routing Over
Low-Power Lossy Links) in 2012 [2]. However, the RPL protocol is vulnerable to a wide
range of attacks that are difficult to detect and mitigate [3]. The attacks can target different
network components in which some attacks are used to exhaust the network resources
(energy, memory, and storage) to shorten the device’s lifetime, which then shortens the
network’s lifetime. Other attacks target the RPL topology, aiming to disturb the normal
data workflow. Moreover, some attacks might target data traffic confidentiality considered
eavesdropping attacks [4].

Among the different security controls that are used to mitigate the security risks in IoT
environments, Intrusion Detection Systems (IDS) are widely used techniques for detecting
suspicious events. The main goal of the IDS is to monitor, analyze, and detect abnormal
behaviors (attacks) in the network traffic [5]. There are three general types of IDS, which
are signature-based, anomaly-based, and specification-based. For the signature-based
approach, which is also known as rule-based, the system stores the signatures of the known
attacks in a database and compares them to the network traffic pattern [6]. Whenever the
pattern matches the existing attack signature, the system triggers an alert. Although this
approach is considered very fast in detecting known attacks, it is not useful in identifying
new attacks. In the anomaly-based detection, the system defines the network’s legitimate
activities and then compares them with anomalous activities (unknown attacks). The
statistical methods and machine learning techniques are the most used in this type of IDS.
However, many of the systems that apply in anomaly-based systems suffer from a higher
rate of false-positives (regular traffic classified as malicious) if they are not designed and
trained carefully. For the specification-based approaches, the expected legitimate behaviors
of the network components such as the routing protocols and the nodes are defined such
that any variation in this behavior is considered as an attack. Although this ensures lower
false-positive rates, some security experts need to determine the elements’ specifications,
which is more time-consuming [6].

IDS systems have been studied and developed using machine learning (ML) tech-
niques to detect anomaly network behaviors. However, with the rapid increase in connected
network devices and traffics that produce a large scale of data, identifying various types
of attacks becomes more sophisticated and challenging by using the simple or shallow
machine learning approaches [7]. Deep learning (DL) is the advanced branch of machine
learning that has shown its success in classification and dimensionality reduction tasks [8,9].
In deep learning, features can be learned from a large number of training samples and au-
tomatically reduce the network traffic complexity to find the correlations among them [10].
This makes it more powerful in detecting complex attack patterns and zero-day attacks.
However, DL-based IDS have not been studied enough in the IoT network context and,
more specifically, in RPL-based networks.

Moreover, to accurately train and evaluate the ML-DL-based IDS, a relevant dataset is
required. The majority of the existing methods use existing benchmark datasets such as
KDD99 [11], NSL-KDD [12], and UNSW-NB15 [13]. However, these datasets are obsolete,
or they have been created using computer system traffics that are not suitable for the IoT
IDS system. On the other hand, the existing datasets that are designed for IoT IDS systems,
such as the WSN-DS [14] dataset, do not mimic the reality in collecting the network traffics.
They are based on sniffing or monitoring mechanisms that need to be distributed across
the IoT network, which is difficult to apply in practice. Moreover, the Bot-IoT [8] dataset,
which is meant for IoT networks, does not consider common types of ad hoc networks
where the devices form a network using routing protocols to communicate between each
other to route the data to a central location.

In this paper, we propose a new dataset named IoTR-DS based on RPL (which is
considered the de facto routing protocol for IoT networks). IoTR-DS is created by simulating
three common attack (DIS, Rank, and Wormhole) traffics beside the normal traffics. Unlike
the existing datasets, the data collection does not involve traffic sniffing or monitoring but
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utilizes the same data packets sent by the nodes to the root by embedding the necessary
information on it. The idea is to shift the IDS control to the powerful node and, at the same
time, not to use the network sniffing technique, which is not practical and costly.

In addition, the paper proposes a hybrid DL-based IDS based on the hybridization
of supervised Deep Artificial Neural Network (DANN) and semi-supervised Deep Au-
toencoder (DAE) models to classify attacks using the IoTR-DS dataset. The supervised
DANN model is trained using labeled attacks, and it is used to identify known attacks.
The semi-supervised DAE model is trained using normal traffic samples only and is used
to predict the traffic that DANN was not trained for. The idea is to compare the average
reconstruction error during the normal traffic-training phase with the predicted traffics.
Another goal of the proposed approach is to validate the IoTR-DS dataset in terms of
whether it contains enough features to efficiently classify different attacks. In summary, the
contribution of this paper is twofold:

• Develop a new specialized dataset named IoTR-DS (https://github.com/alsawafi/
IoT-DL-IDS (accessed on 20 October 2020)) by simulating three types of RPL attacks
along with normal traffics and characterize attack features that will be used as the
primary inputs to the IDS.

• Propose a new DL-based IDS using the hybridization of supervised DANN and
semi-supervised DAE and evaluate it on the IoTR-DS dataset.

The remainder of this paper is organized as follows: Section 2 presents some back-
ground about RPL and attacks and reviews related works on machine–deep learning-based
IDS and datasets. Section 3 offers the IoTR-DS dataset creation and RPL attacks modeling.
The design details of the proposed hybrid DL-IDS using the IoTR-DS dataset is discussed in
Section 4. The evaluation experiments’ methodology and the results analysis conducted for
the proposed protocol are shown and discussed in Section 5. Finally, Section 6 concludes
the work and outlines future research directions.

A list of all of the abbreviations cited in this paper is summarized in the following
Table 1:

Table 1. List of abbreviations.

Abbreviation Description

6LoWPAN IPv6 over Low-power WPAN
D2D Device to Device
DAE Deep Autoencoder
DAG Directed Acyclic Graph
DANN Deep Artificial Neural Network
DAO Destination Advertisement Object
DIO DODAG Information Object
DIS DODAG Information Solicitation
DL Deep learning
DODAG Destination-Oriented Directed Acyclic Graph
DoS Denial of Service
ETX Expected Transmission Count
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IoT Internet of Things

2. Literature Review

This section first introduces the RPL protocol components and operation. Then, it
describes the common attacks that target the RPL. Finally, it reviews some related works
on ML-DL IDS and datasets used to detect attacks related to the IoT network.

https://github.com/alsawafi/IoT-DL-IDS
https://github.com/alsawafi/IoT-DL-IDS
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2.1. Routing Protocol for Low-Power and Lossy Networks (RPL)

RPL is an IPv6 routing protocol that has been used in IoT and standardized by IETF in
2012. It is mainly designed to operate on energy-constrained devices that use low power,
low-cost communication technologies, and less memory. Figure 1 illustrates the main
components and terminology used in RPL. The RPL protocol arranges the nodes (sensors)
into a tree topology called a destination-oriented directed acyclic graph (DODAG). The tree
root (sometimes named a border) is a non-constrained node that initiates and orchestrates
the tree construction. All nodes on each DODAG are rooted at a single root. A specific
objective function is used to determine how a DODAG is structured based on specific
application needs. It uses some metrics and constraints to compute some parameters such
as the rank of the node (based on the distance to the root) and the preferred parent of the
node. For example, the hop count metric can be used to compute the rank.
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In order to exchange messages between the nodes themselves and with the root (in
an ad hoc manner), RPL uses some ICMPv6-based control messages. The main control
message used is the DODAG Information Object (DIO). It is used by the root to initiate
and maintain a DODAG tree and by other nodes to join this tree and to keep track of its
RANK (position in relation to the DODAG root). For DODAG consistency purposes, each
node will inspect the next received DIOs for a different DODAG version or different RANK
number than the previous ones. To search for new DODAG or maintain an existing one,
if the node does not receive any DIO message within a specific time, it will multicast a
DODAG Information Solicitation (DIS) message. This will solicit a DODAG DIO message
from an RPL node. RPL also supports downward traffic routes by using a Destination
Advertisement Object (DAO) control message, which is a unicast message that is used to
propagate destination information upward along the DODAG.

2.2. RPL Attacks

In this section, we describe three different attacks against the RPL protocol that are
used in this study. We also describe the relevant features that might help in identifying
such an attack and could be used for the dataset.
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Flooding (DIS) Attack: In flooding attacks, the attacker nodes usually target the avail-
ability of the network by sending a large amount of traffic, which exhausts the resources of
the neighboring nodes and makes them unavailable. It is a Denial of Service attack (DoS).
In RPL, the malicious node may send a large number of DIS control messages to flood
the neighboring nodes to solicit DIO messages. As a response, the nodes receiving DIS
messages generate more traffic to the network by broadcasting DIO messages [15]. The
important features that can be observed to identify such an attack are: the number of DIS
messages received; the number of DIO messages sent by each node; the end-to-end delay;
and the average packet delivery ratio.

Rank attacks: The node rank plays an important role in RPL. It is used to construct the
optimal network topology and prevent the formation of loops in the network. Attacking
the rank by deliberately changing its value can lead to two different types of known attacks:
increased rank attacks and decreased rank attacks. The malicious node advertises a higher
rank value in the increased rank attack than it is supposed to have. In this case, its new
preferred parent might be its previous child in the prior sub-DODAG. This will form a
routing loop between neighbor nodes. Although a loop avoidance mechanism is designed
to fix such loops, it requires many DIOs to be exchanged between the nodes, resulting in
exhausting node resources. In the decrease rank attack, the malicious node advertises a
lower rank value, aiming to attract other nodes to connect to it. The rank attacks lead to
the selection of non-optimized routes and may lead to poor network performance [3]. The
important features that can be observed to identify such attacks are: the number of DIOs
sent; the frequency of parent and RANK change; the end-to-end delay; and the average
packet delivery ratio.

Wormhole attack: The wormhole attack requires at least two nodes to create a dedicated
communication tunnel between them. They usually have an alternative network interface
and use either wired or wireless links to make the out-of-band connection. Once the
tunnel is made, one attacker can replay all the messages received from the normal path to
the second attacker node using the dedicated link [16]. The attacker nodes might be far
away from each other since they might use better communication coverage ranges or wire
connections. In RPL, each attacker node will first replay the DIOs messages received from
other nodes to the second attacker using their second interface. The receiving attacker node
will process this DIO (on its second interface) and add the sender (attacker node) as its
preferred parent. Now, the route is set up between the two nodes. All normal data traffic
received by the first attacker on its first interface will be replayed on the second interface.

Many consequences can result from the wormhole attack depending on the intention
of carrying out such an attack. It can be used to disturb the normal operation of the
routing by selecting non-optimal paths. It can also be used to eavesdrop on all traffic
passing through the tunnel (confidentiality attack). To make it more effective, sometimes,
this attack is combined with other attacks such as a decreased rank attack, which attracts
more neighbors to connect to this malicious node. In this case, the aim is to route more
traffic using a wormhole tunnel. The important features that can be extracted during this
wormhole attack are: the number of DIOs sent by each node; the end-to-end delay; and the
average packet delivery ratio. Although the same features might be present in different
attack types, their values will differ from one attack to another, in which the IDS system is
supposed to capture the difference ranges between them.

2.3. Related Works

Several IDS systems based on deep learning have been proposed, aiming to secure
IoT systems. In [17], the authors introduce a DL-based IDS that uses the spider monkey
optimization (SMO) algorithm to extract the most relevant features from the dataset and a
stacked-deep polynomial network (SDPN) to classify the data as normal or abnormal. The
model is evaluated using the NSL-KDD dataset and shows a high detection rate for different
attack categories (DoS, U2R, R2L, and probe). The authors in [18] implemented a DL-based
IDS for the IoT at the fog level rather than at a centralized cloud. They demonstrate
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that distributed attack detection at the fog level is scalable, and DL models outperform
shallow ML models when used to detect attacks in the NSL-KDD dataset. Similarly, at
the fog level, the authors in [19] proposed an IDS using a deep multi-layered recurrent
neural network. The system is composed of a cascaded filtering stage where each filter
is tuned to different hyperparameters for enhancing the detection of specific attack types.
The model is evaluated using the NSL-KDD dataset to detect particular types of attacks.
A cloud-based distributed deep learning framework is proposed by [20] to identify and
mitigate Botnet, DDoS, and phishing attacks. The framework consists of two components
that work cooperatively. These two components are the Long–Short-Term Memory (LSTM)
network model at the back-end for detecting Botnet attacks. A Distributed Convolutional
Neural Network (DCNN) model hosted in the IoT devices is used to detect DDoS and
phishing attacks. In [21], the authors propose using a Deep Auto-Encoder (DAE) and Deep
Feedforward Neural Network (DFFNN) to detect anomaly behaviors in Internet Industrial
Control Systems (IICSs). The (DAE) algorithm is used to learn normal network behaviors
and tweak the optimal parameters (i.e., weights and biases), which then give the DFFNN a
better tuning of the parameters and classify normal and abnormal network behaviors.

In more related works that use ML-based IDS in detecting attacks to the RPL, the author
in [22] introduces an IDS to detect wormhole attacks in the RPL using three approaches
based on ML, namely, the K-means-based approach, a decision tree (DT), and a hybrid
approach that combines both methods. The K-mean algorithm is used to cluster routers
into groups of safe zones from which a router can communicate with other nodes in
the same zone. If the router tries to add new neighbors outside the safe zone, this is
considered a wormhole attack. The DT is used to learn the safe distance between any
two neighboring routers, where any attempt to communicate more than this distance will
consider victims of wormhole attacks. The hybrid approach is used to enhance accuracy
by filtering out some of the false-positives. This approach is only limited to one type of
attack: the wormhole attack; it also uses additional control messages to send the mapping
requests to other nodes. The router nodes’ locations are required as input data to the IDS,
which is considered impractical in more real implementation. In [23], the author proposed
a hybrid IDS framework based on specification-based and anomaly intrusion detection
models for detecting selective-forwarding and sinkhole attacks in an RPL-based network.
The specification-based intrusion detection uses the agents located in the router nodes
to monitor the behavior and send the results to the root. The anomaly-based intrusion
detection works as a global detection approach. It is located in the root, and it uses
an unsupervised optimum-path forest algorithm to analyze incoming data and detect
anomalies. The hybrid method can achieve a reasonable true-positive and false-positive
rate for detecting both attacks. This approach considers separating the network nodes into
router and leaf nodes. The local IDS agents are only located on the router nodes, and they
do not generate data. However, this is not the case in the usual IoT RPL-based network,
where the node generates and routes the data simultaneously. In addition, the approach
does not consider the energy consumption of those constrained nodes that have agents that
might be high, and without this important overhead, it is difficult to assess this method.

In practice, most recent ML- and DL-based IDS approaches use existing benchmarking
datasets to evaluate their works. The KDD99 [11] dataset is considered the most popular
one released in 1999. It consists of 4.9 million labeled samples of regular traffic and 22 attack
types that are categorized into four categories, namely, probing (probe) attacks, root to
local (R2L) attacks, user to root (U2R) attacks, and denial of service (DoS) attacks. Another
common dataset is NSL-KDD [12], an improved version of KDD99 that eliminates the
redundant records in both the training and testing sets while keeping a reasonable number
of records. The UNSW-NB15 [13] dataset was introduced to reflect real network traffic
and modern low-footprint attacks. The dataset contains a total number of 2.5 million
records, 49 features, and 9 types of modern attacks. A more recent WSN-DS dataset [14]
was developed for a Wireless Sensor Network (WSN). It consists of 23 features and 4 labeled
attacks (Blackhole, Grayhole, Flooding, and Scheduling). A more recent Bot-IoT dataset [8]
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was developed for both normal IoT-related and other network traffic, along with different
types of attack traffic generally used by botnets. It contains of a total number of 72 million
records, 35 features, and 3 attack categories (probing, DDOS, and information theft).

However, the KDD99, NSL-KDD, and UNSW-NB15 datasets are not sufficient to be
used as a benchmark for IoT-IDS. The network topologies used to create these datasets are
based on client–server wired (Ethernet) communication, which is different from the one
used in IoT, where wireless LLN networks are mostly used. Hence, the data traffic types,
protocols, and attack types are different in those datasets compared to the IoT case. For
example, in IoT networks that use RPL routing over 6LoWPAN, specific control messages
(DIO, DIS, DAO, and DAO-ACK) are responsible for network creation and management.
Therefore, they are sensitive to different types of attacks. For the WSN-DS dataset, although
it was designed for WSN (IoT type network), it requires a set of monitoring nodes to watch
the neighbors and report them to the base station. This process consumes more energy
and is difficult to manage and apply in reality. With the Bot-IoT dataset, the IoT services
are simulated in a direct communication fashion, where the devices are connected directly
with the server. However, this does not replicate other scenarios where the IoT devices
form a sort of ad hoc network that allows them to communicate with each other and route
the data to a center using a routing protocol. In addition, the majority of normal and attack
traffic in the dataset are related to traditional computer network systems, and very little
traffic is associated with the IoT services.

Therefore, our proposed IoTR-DS dataset is more specialized for IoT-type networks
where the RPL protocol is used over the 6LoWPAN link layer. It adds some features that
are further related to IoT normal and attack traffic that are not considered in the other
dataset. In addition, no monitoring or sniffing tools are required to collect the nodes’ data.
The important IDS parameters are carried on the data packet sent by the nodes to the
root, without any extra overhead. A full description of the IoTR-DS dataset is given in the
next section.

3. IoTR-DS Dataset Creation and Attacks Modeling

In this section, we will describe the proposed IoTR-DS dataset attributes (features)
and the modeling of the envisaged attacks that produce traffic sample subsets.

3.1. IoTR-DS Attributes

As mentioned, instead of using a monitoring and sniffing tool to capture the nodes’
traffics, the IoTR-DS is created by utilizing the sensing data packets sent by all nodes to the
root. Some of the routing attributes are appended to the UDP (data) packet when they reach
the network layer, such as numSentDIO, numSentDIS, numRankChange, and others (see
Table 2). The root will also append some attributes of information related to the UDP (data)
packet, such as recTime and numUdpRec. According to the literature, these attributes are
useful and analyzed by the IDS system to detect abnormal behaviors. Their values might
change due to normal network behaviors such as nodes joining the tree, changing their
rank or parent, etc. On the other hand, the change can be due to anomaly behaviors in
the network, such as attacks. Moreover, a specific attack can make changes to one or more
parameters at a certain level. The IDS system’s job is to differentiate between normal and
abnormal traffic and classify the attack types.

The packets sent by the nodes are stored in the root as log files, which represent the
raw datasets. Table 1 lists the dataset IoTR-DS attributes, where the last one represents the
traffic label, whether it is normal traffic or an attack. When the malicious nodes attack, the
assumption is that the whole network will be affected during the attack time. Therefore,
all traffics are labeled with an attack number during the attack time. The number zero is
reserved for labeling normal traffic (i.e., when there are no attacks).
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Table 2. IoTR-DS Dataset Attributes.

Number Feature/Abbreviation Description

1 No Packet sequence number
2 recTime Packet receiving time
3 sendTime Packet sending time
4 sendrIP Source IP address
5 nodeID Node ID
6 nextHopAddr Node preferred parent
7 Delay Time received–time sent
8 numSentDIO Count of DIO sent messages
9 numSentDIS Count of DIS sent messages

10 numPrefParentChange Count of preferred parent changes at sending time
11 numRankChange Count of node rank changes at sending time
12 residualEnergy Node residual energy at sending time
13 numUdpSent Count of UDP (data) packets sent at sending time

14 numUdpRec Count of UDP (data) packets received at receiving
time (calculated)

15 PDR Packet delivery ratio (numUdpRec/numUdpSent) at
receiving time (calculated)

16 label Multi-class labels for different attacks and normal traffic

3.2. Attack Implementation

For the evaluation purpose, four subsets are created using four different scenarios in
which the traffic is labeled according to an individual scenario. The first dataset represents
the normal traffic behavior when there is no attack within the network. The other three
datasets are the results of simulating three types of attacks, which are DIS, rank, and
wormhole attacks. In all scenarios, the network’s size consists of 100 nodes, whereas the
number of malicious (attackers) nodes varies in a different attack scenario. The following
gives more details about these attack implementation scenarios.

Algorithm 1 shows the pseudocode for implementing a flood attack (DIS attack in
RPL). At a preset time interval, three selected nodes at different locations will periodically
(every 0.2 s in our implementation) broadcast DIS messages. This process is repeated with
another three malicious nodes at a different place and at different time intervals.

Algorithm 1 DIS Attack

1 Begin
2 If Malicious node and Start Attack < time < End Attack then
3 Create DIS, Send DIS to all reachable nodes every t time
4 If a node receiving DIS then
5 Trickle reset DIO timer, Send DIO to all reachable nodes on next interval
6 End

The pseudocode in Algorithm 2 shows the rank attack implementation. At a preset
point of a time interval, three malicious nodes will initially decrease their rank by two and
broadcast DIO messages, including the new ranks to their neighbors. The nodes receiving
this DIO will see a better-preferred parent candidate than it currently has, and, thus, it will
select it as its preferred parents, recalculate the rank, and broadcast the DIO with the new
parameters. The nodes receiving this new DIO might also consider changing their rank
and preferred parent. This process is repeated again with another three malicious nodes at
a different location and at different time intervals.
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Algorithm 2 Rank Attack

1 Begin
2 If Malicious node and Start Attack < time < End Attack then
3 Rank—(one time), Trickle reset DIO timer, Send DIO next interval
4 If a node receiving DIO and Sender Rank less than Preferred_Parent (default route) Rank then
5 Recalculate Preferred_Parent and this Node Rank
6 Trickle reset DIO timer, Send DIO to all reachable nodes on next interval
7 End

In a wormhole attack, the malicious node has two network interfaces. On the 802.15.4
interface, the node makes communication to the normal RPL tree, whereas it uses the 802.11
(WiFi) interface to create a tunnel with another malicious node. Although the two malicious
nodes are far apart, they are considered neighbors to other nodes. Algorithm 3 shows
the pseudocode for implementing this attack. After the tree creation, and at a particular
time, one malicious node’s multicast DIO message on its interface 802.11 (wider coverage)
will be picked up by another malicious node, which has a similar interface. The second
malicious node will connect to the sender (create a tunnel) and broadcast the DIO message
on 802.15.4, advertising a better link. The node receiving the DIO from this malicious node
will probably change its preferred parent to be the sender.

Algorithm 3 Wormhole Attack

1 Begin
2 If Malicious node and Start Attack < time < End Attack then
3 Replay and Multicast DIO on 802.11 interface every t time
4 If Malicious node receiving DIO on 802.11 interface then
5 Recalculate Preferred_Parent (to be the Malicious node) and this Node Rank

6
Trickle reset DIO timer, Send DIO (with new rank) on 802.11 to all reachable nodes on
next interval

7 If a node receiving DIO and Sender Rank less than Preferred_Parent (default route) Rank then
8 Recalculate Preferred_Parent and this Node Rank
9 Trickle reset DIO timer, Send DIO to all reachable nodes on next interval
10 End

The RPL protocol and attacks are implemented using the OMNeT++ simulation
tool. OMNeT++ is an extensible, modular, component-based C++ simulation library and
framework, primarily for building network simulators [24]. It is open-source and can
run on top of different operating systems such as Linux, Windows, and MAC. It has the
capability of implementing and simulating RPL and other routing protocols at a larger
scale. We applied the attack algorithms mentioned earlier. Table 3 shows the configuration
parameters for the implementation of attack scenarios.

Table 3. Simulation Parameters For Normal and Attack Traffic Scenarios.

Parameters Value(s)

Area 500 m × 500 m
Simulation Time 5000 s
Number of Nodes 100
Attacker Second Physical Layer IEEE 802.11 (WiFi)
WSN Physical Layer IEEE 802.15.4
Wormhole Attacker Radio Range 250 m
WSN Radio Range 60 m
UDPApp (Packet Generation) Starts at 10 s and ends at 5000 s
UDPApp Traffic Generation Rate Every 2 s, 3 s, 5 s
Number of Malicious Nodes 6
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Table 4 describes the five sub-datasets’ results from the simulation scenarios. For the
normal dataset, it contains only normal traffic samples without any attack behaviors. The
DIS, Rank, and Wormhole datasets contain a mixture of both normal and abnormal (attack)
traffic samples. The combined dataset represents the concatenation of the four datasets in
one larger dataset. Notice that the number of samples varies from one dataset to another to
give some samples diversity.

Table 4. Number of Samples in IoTR Subsets.

Dataset Normal Traffic Attack Total

Normal 122,594 0 122,594
DIS 60,422 7838 68,260
Rank 55,851 16,581 72,432
Wormhole 98,641 18,805 117,446
Combined 337,508 43,224 380,732

4. Proposed Hybrid Deep Learning-Based IDS (DL-IDS)

The proposed IDS model applies semi-supervised and supervised deep-learning
models to detect normal and abnormal (attacks) behaviors in the IoT network. The concept
is to use the semi-supervised DAE to verify whether a given traffic behavior has been
seen before or not by comparing its reconstructing error with known normal and attack
reconstruction errors. If the reconstruction error is within predefined boundaries, it will
pass it to the supervised DANN, which will classify the traffic more accurately. Otherwise,
the traffic is considered a new attack type, and, therefore, a new class and reconstruction
error is added to the system. The proposed model’s overall architecture is presented in
Figure 2, and the following subsection describes it in detail.
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4.1. Data Preprocessing

The log files created by the root, which contain data collected from all network nodes,
are considered raw data and cannot be used directly as inputs to the DL-IDS model. There-
fore, the first step is to preprocess those files. Hence, Python with supported Pandas [25]
and Numpy [26] libraries are used to process the raw datasets. Some of the features, such
as the DIO packet count, DIS packet count, rank changes count, and others, cannot be used
because their values are accumulated each time. Therefore, the first stage is to calculate
their values at the sending time by finding the difference between the previous value and
the current value at the receiving time. The average packet delivery ratio (PDR) and delay
features are also calculated at this stage, as shown in Equations (1) and (2), respectively.

PDR =
number o f packets received

number o f packets sent
(1)

Delay = (time packet receivedi − time packet senti) (2)

where i is node’s packet sequence number.
Subsequently, since the individual sample traffic might not give enough information to

the DL model to process, it is good to group some samples to compute the feature averages.
Therefore, the traffic instances are grouped according to the receiving time window (in
seconds), and the average feature value is taken at this window time. This will also reduce
the total number of instances within the dataset when fed to the DL model, which will
reduce the learning time. In our implementation, we found that taking the average of the
samples every 2 s gives the best result.

After that, we apply normalization techniques to the data features to be on a similar
scale to fit the DL-IDS model; Equation (3) is applied to each column feature X to produce
a normalized value between 0 and 1. Now, the dataset is ready to feed the DL model.

Xnorm =
X− Xmin

Xmax − Xmin
, (3)

4.2. Hybridization of DAE and DANN Models (DAE-DANN)

This section describes the IDS training and classification phase using the DAE-DANN
approach. Algorithm 4 shows the main steps of the approach. Let us first define some terms:
let R be a set of real numbers and X ∈ RN×d be a matrix of N training samples (network
traffics) of d features each; therefore, xi = (xi1, xi2, . . . , xid) stands for the ith training traffic
samples, and y ∈ {y0, y1, . . . , yi}N×1 is a vector of N multi-labels of the training samples.
Z ∈ RM×d: a matrix of M testing samples (network traffics) of d features each; therefore,
zi = (zi1, zi2, . . . , zid) stands for the ith traffic test samples. l ∈ {l0, l1, . . . , li}M×1 is a
vector of M multi-labels of the testing samples.

In the first phase, the DAE model is trained using normal traffic samples. During the
training process, the model will reconstruct the initial input by minimizing the mean
squared error between the input and output. The average loss value (reconstructed
mean square error) result of the training process will be stored as a threshold named
normalLossthreshold. During the test phase, the model calculates the average reconstruction
error for a given test sample zi using the function shown in Equation (4).

This function computes the difference between the average sum of the original input
features (zitest ) of a given sample zi and the reconstructed inputs (zipredict ) when applying
the DAE to the same sample zi and using the tuned training parameters’ weight and
the bias that was used with the normal training samples X. The resulting reconstruc-
tion loss value (zilossdi f f ) will then be compared with the stored normal samples’ loss
threshold (normallossthreshold) boundary and attack (attacklthresholds) boundaries. The
(normallossthreshold) boundary is defined between 0 and normallossthreshold × 2. The attack
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attacklthresholds boundary is defined between attackl threshold
2 and attacklthresholds× 2. If

zilossdi f f is out of these boundaries, then this traffic is considered a new attack label.

zilossdi f f =

∥∥∥∥∑d
j=1 (zipredictj

− zitestj
)

∥∥∥∥2

d
, (4)

where d is the number of features.
To simplify, let us consider the following example: Suppose that we are starting with

training set X containing normal traffic samples and one known attack labeled (y0, y1),
where y0 is the normal traffic label and y1 is the attack traffic label number 1. Therefore
the normallossthreshold and attack1threshold are known. Let us assume that we have another
unknown attack added to the test sample Z in the range of z1.. zm that occurs at a specific
time sequence. These test samples are passed to the DAE, compute the zilossdi f f of each
sample i, and are compared to the exciting normallossthreshold and attack1threshold. If the
zilossdi f f value is within the normallossthreshold boundary or range, then this sample can
be considered as normal traffic, whereas if zilossdi f f is within the attack1threshold, then
this traffic can be considered as attack1. Therefore, these samples will be passed to the
supervised DANN model. However, since this is a new attack type, the zilossdi f f of
attack samples should be different and out of the range of the normalLossthreshold and
attack1threshold boundaries. The average out-of-boundaries zilossdi f f of given samples
within a time window, w, is calculated, the resulting value is stored as the new attack
threshold (attack2threshold), and y is updated by adding a new label for the recently
detected attack. The DANN will be retrained again based on the updated dataset. DANN
was used to classify known behaviors, based on which the model was trained much faster
and produced a higher classification accuracy.

Algorithm 4 Training and Classification phases of DAE-DANN

1
Input: (X, y): Training set; Z: test set
Output: l: Test sample labels

2 Function DAE_Train (X, y):

3
Train DAE with on (X, y),
where y = 0, 0 : normal traffic label

4 Compute the average normalLossthreshold
5 Return normalLossthreshold
6 Function DANN_Train (X, y):
7 Train DANN with on (X, y) to obtain optimal values of weight and bias and reduce loss
8 Return optimal weights & biases
9
10 Function DAE_Classifier (Z):
11 zipredict

= DAE.predict(zi)//Feed the DAE with new traffic instances
12 losszi = LossDi f f (zipredict

, zi)//Compute lossdi f f by Equation (4).
13 If losszi ∈ {NormallossThreshold , attack1threshold, ..., attackl threshold} boundaris
14 Use Supervised DANN classifier
15 Else
16 Add losszi to a list V
17 Within time window w, compute the Average_lossz in V
18 Update the number of classes (labels): y = y + 1
19 attackythreshold = Average_lossz//new class threshold
20 Update (X, y) with new samples and label
21 Retrain DANN with updated (X, y)
22 Return nattackythreshold
23
24 Function DANN_Classifier (Z):
25 Predict the labels l using the DANN classifier
26 Return l
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The following is a description of the architecture and configuration of the DAE and
DANN used in the IoT-IDS system.

4.2.1. Deep Autoencoder (DAE)

The AE is a type of ANN that is usually used in unsupervised machine learning.
Figure 3 shows the overall architecture of the AE that is implemented in the proposed
model. It consists of an input layer of d neurons, which represent the number of features.
The input layer is then encoded (compressed) by passing it to a hidden layer l1 with a size of
d/2 neurons. Another layer with a size of l1/2 neurons is added, which also represents the
compressed data representation of the original input. The AE is then trained to reconstruct
the inputs from the compressed layer (bottleneck) by having the hidden decoding layers.
All layers are followed by dropout hidden layers (not shown in the figure) to prevent the
data’s overfitting. The encoder maps the input vector xi to the hidden representation unit,
which represents the latent space of the bottleneck layers, as shown in Equation (5).

li = f (xi) = ℊ(Wxi + bi) (5)

where W is the weight matrix, b is the bias vector, and ℊ is the activation function. The
well-known activation functions, namely, the Rectified Linear Unit (ReLU) and hyperbolic
tangent (tanh), are used interchangeably in the model. Experiments have found that
combining these functions produces better results. ReLU (Equation (6)) is a non-linear
activation function, and it is very suitable in MPL with many hidden layers because it
is fast and helps to reduce the error gradient issue and state vanishing [27]. The tanh
(Equation (7)) function is more like a sigmoid function but differs in the output range of
(−1, 1), where the range sigmoid is (0, 1).

ℊ(x) = ReLU(x) = max(0, x) (6)

g(x) = tanh(x) =
ex − e−x

ex + e−x (7)

where x is the input to the function.
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The decoder map ln reconstructs the x′ of the same input size x:

lx′ = ℊ′
(
W′li + bi

′) (8)
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By using backpropagation of the error in the training process, the autoencoder tries to
minimize the average reconstruction error (or loss) between the input and the reconstructed
output (Equation (9))

RE
(
x, x′

)
=

1
m

∥∥∥∥∥ m

∑
1

(
xi − xi

′)∥∥∥∥∥
2

(9)

where m is the number of samples.

4.2.2. Deep Artificial Neural Network (DANN)

A multilayer perceptron (MLP) model is adopted in the proposed architecture, which
represents a deep neural network. The architecture consists of a typical deep neural
network, which has an input layer, multiple hidden layers, and an output layer, as presented
in Figure 4.
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The neurons in each layer are fully connected with other neighbor layer neurons,
where the data are transformed from layer to layer in a forward direction. Each neuron in
the hidden layer is activated by calculating an output value based on the input data from
the previous layer, along with the weight (w) values and bias (b). Let the l ∈ {1, . . . ., L}
index be the hidden layers of the L number. From Figure 4, the output of activating al

i is
shown in Equation (10).

al
i = f (

n

∑
i=0

al−1
i wl

i + bl
i) (10)

where i is any hidden neuron, n is the number of neurons at the hidden layer, al−1
i is

the i neuron at the previous layer, wl
i is the weight connection between the al

i and al−1
i

neurons, and bl
i is the bias of layer l. f is the activation function, and ReLU is used for the

hidden layers.
Since the network outputs are in multiple classes (labeled attacks), the softmax function

is used, which calculates the probability distribution across the classes. The input parameter
is converted to be in the form of a one-hot encoded matrix. Equation (9) calculates the
probability of class zi for traffic input xi, where k is the class number of C classes, and the
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input value of zi and zk are calculated using Equation (11). Each class’s output is in the
range of [0, 1] and adds up to 1 for all the classes.

P (Z = zi|xi) =
ezi

∑C
k=1 ezk

(11)

To calculate the amount of the difference between the predicted class value and the
original true class value, the categorical cross-entropy loss function is used. This function
is designed for the multi-class classification tasks, where an instance input can belong to
one possible class. Equation (12) shows the categorical cross-entropy loss function (CL).

CL = PCL (zi, ẑl) = −
C

∑
i=1

zi log ẑl (12)

where C denotes the number of classes, zi is the true class value, and ẑl is the predicted
class value that is calculated using the softmax function (Equation (9)). To minimize the
loss value during the training process, the Adam optimization algorithm backpropagates
to calculate the gradient (change).

5. Experiment Setup and Evaluation

The experiments were conducted using the TensorFlow platform [28] and Keras [29]
as a higher-level framework. The hardware used for the implantation is: Intel(R) Xeon(R)
CPU E3-1535M v6@3.10 GHz, RAM 64 GB, 1 TB SSD HD. The same hardware could be
used at the root node of the WSN real architecture.

5.1. Experiment Scenarios

Different experiments are designed for various possible scenarios to evaluate the
performance of the IoT IDS-DL model using the IoTR-DS dataset. The first experiment
was designed to evaluate the model’s performance in predicting a single unlabeled attack
based on training with the normal traffic. The model was first trained using the normal
traffic dataset, and then it was tested with a single attack type using the dataset containing
the normal and attack traffic. The second experiment used combined datasets to evaluate
detecting two unseen and untrained attacks, among other trained attacks. The third
experiment was set to evaluate the supervised binary classification based on having only
one known (labeled) attack. Each time, an individual attack dataset was used to train
the model and to identify normal and malicious (attack) traffic. The fourth experiment
was conducted to evaluate the system in detecting multi-trained (labeled) attacks using
multi-class classification. The combined dataset was used to train the model to distinguish
between four classes: normal, DIS, rank, and wormhole attacks. Finally, the system was
evaluated against four different ML-DL learning models, which are J48 [30], KNN [31],
SVM [32], and LSTM [33]. In all of the supervised experiment scenarios, the datasets were
split into 70% train, 30% evaluate, and 30% test from the 70% train. For predicting unseen
attacks using mainly the semi-supervised model, the normal dataset is the only one used
for the training and evaluation (70% train, 30% evaluate), whereas the full attack datasets
are used for testing purposes. This was to ensure that the attack behavior was not seen
(trained) by the model.

Since the IoT-DL models’ performance depends on the optimal hyperparameters
configuration, such as the number of hidden layers, the number of neurons per layer, the
learning rate, the activation function, and others. Tables 5 and 6 show the near-optimal
hyperparameters configuration for DANN and DAE, respectively, based on the best results
of running different experiment trials.
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Table 5. DANN Hyperparameter Configuration.

Parameter Binary Classification Multi-Class
Classification

Number of hidden layers 3 3
Number of neurons in the hidden layer 32 32

Dropout 0.5 0.5
Activation function in the hidden layers ReLU ReLU
Activation function in the output layer sigmoid softmax

Optimizer adam adam
Loss function BinaryCrossentropy Categorical_crossentropy
Learning rate 0.001 0.001

Number of epochs 1000 1000
Batch Size 120 120

Early_stopping yes yes

Table 6. DAE Hyperparameter Configuration.

Parameter Value

Encoder [6, 3]
Decoder [3, 6]
Dropout 0.5

Activation function in hidden layers Tanh, ReLU
Optimizer Adamax

Loss function Mean squared error
Learning rate 0.001

Number of epochs 300
Batch Size 100

5.2. Evaluation Metrics

In order to determine the detection accuracy rate of the proposed model using IoTR-DS,
it is evaluated using well-known performance metrics used in machine learning, which are:
accuracy, recall, precision, and F1 score. These metrics are calculated using four parameters:
True-Positive (TP), True-Negative (TN), False-Positive (FP) and False-Negative (FN). TP
determines the amount of malicious traffic that is correctly classified as malicious traffic by
the model, where TN indicates the amount of normal traffic that is correctly classified as
normal by the model. On the other hand, FP determines the amount of normal traffic that
is incorrectly classified as malicious traffic by the model, where FN defines the amount of
malicious traffic that is incorrectly classified as normal traffic by the model.

The accuracy metric measures the correct prediction ratio by dividing the total num-
ber of correct predictions (TP and TN) by the sum of all predictions, as illustrated in
Equation (13).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision (Equation (14)) estimates the ratio of correctly classified attack traffic to all of
the predicted attack traffic, whereas recall (Equation (15)) indicates the ratio of correctly
classified attack traffic to the total attack traffic. The f1 score (Equation (16)) can be defined
as the weighted average of precision and recall.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2× Precision× Recall

Precsion + Recall
(16)
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5.3. Evaluation Results
5.3.1. Semi-Supervised Classification Results

In this evaluation experiment, the model was first evaluated in predicting a single
unlabeled attack at a time when the model did not see attack behaviors during the training
phase. Then, the model was evaluated in predicting two attacks that were not seen by the
model during the training phase using a mixture of testing traffic of DIS and rank attacks,
besides the normal traffic. The model was trained using the normal traffic samples only
where the loss threshold was stored and used to detect the abnormal behaviors.

Figure 5 shows the loss values relevant to the number of epochs over the normal
training dataset. The loss value reaches its lower value near 300 epochs, which means that
the epochs are sufficient for the model. The average reconstruction error (loss) recorded
by the model during the training phase is 0.085, which is stored as a threshold value. As
mentioned earlier, when predicting new traffic, the model will reconstruct the error using
trained normal samples parameters (weight and bias). If the given traffic is not within the
normal traffic range, the reconstruction error should be relatively higher than the threshold.
Figures 6–8 show the average reconstruction error when the DIS, rank, and wormhole
attack are predicted, respectively. These figures clearly show the difference between the
normal loss threshold and the average attack loss values. In addition, they demonstrate
that each attack loss value or cluster does not interchange with other attack loss values;
therefore, they can separate the attack domain between each other. The higher the distance
between the attack loss value and the normal threshold, the higher the detection rate of
the attack.
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Table 7 presents the performance metrics of the binary classification using DIS testing
instances. It shows that the overall DIS attack detection accuracy is 99%, with a precision,
recall, and f1-score of 99%, 98%, and 98%, respectively, using the DIS dataset. With the rank
attack classification, the accuracy is 96%, and the precision, recall, and f1-score are 85%,
98%, and 91%, respectively, as shown in Table 8. For the wormhole DAE classification, the
overall accuracy detection rate is 92%, with a precision, recall, and f1-score of 70%, 93%,
and 80%, respectively, as shown in Table 9. These values are much lower than those of
the other two attack cases because the reconstruction error value for the wormhole attack
traffic is lower than the other attack errors. In other words, the difference in the feature
values changes between the wormhole attack, and there is less normal traffic compared
with those change values in other attacks. Finally, by predicting a combination of two
untrained attacks (DIS, rank), the overall accuracy of classifying the traffic is 95%. The
precision, recall, and f1-score reported in DIS are 99%, 95%, and 97%, respectively, which
are much higher than those in the rank attack, which are 93%, 53%, and 68%, respectively,
as listed in Table 10. Again, this is due to the reconstruction error value for the rank attack
traffic being much lower than that of the DIS attacks, making it more challenging to detect.

Table 7. Performance Metrics in DAE DIS Attack Classification.

Precision Recall F1-Score Accuracy

Normal 0.99 0.98 0.98
0.99Attack 0.99 0.98 0.98
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Table 8. Performance Metrics in DAE Rank Attack Classification.

Precision Recall F1-Score Accuracy

Normal 0.99 0.96 0.98
0.96Attack 0.85 0.98 0.91

Table 9. Performance Metrics in DAE Wormhole Attack Classification.

Precision Recall F1-Score Accuracy

Normal 0.98 0.92 0.95
0.92Attack 0.70 0.93 0.80

Table 10. Performance Metrics in the DAE of Both DIS and Rank Attacks Classification.

Precision Recall F1-Score Accuracy

Normal 0.94 0.99 0.97
DIS 0.99 0.95 0.97 0.95
Rank 0.93 0.53 0.68

Average 0.95 0.82 0.87

5.3.2. Supervised Binary Classification

For the binary classification, loss, and Area Under Curve (AUC) performance, there
are plots based on the training process. Although the training iterations (number of epochs)
was initially set to 1000, the training stopped, and the loss AUC achieved was very good,
even much earlier (converged). The dropout and callback techniques were used to speed up
the training process and avoid overfitting. Figure 9 shows that the loss and AUC converge
to the best performance with 70 epochs in the DIS dataset. For the rank dataset, 140 training
epochs were needed to reach a higher performance rate (Figure 10), and 200 training epochs
were needed in the wormhole case (Figure 11).

The performance detail results for DIS, rank, and wormhole attacks binary classifica-
tion are reported in Tables 11–13, respectively. The model classification accuracy rates are 99,
98, and 97% for the DIS, rank, and wormhole attacks, respectively. The other performance
metrics (precision, recall, and f1 score) also achieved a higher rate between 91 and 99%.

Table 11. Performance of DNN IDS Binary Classification (DIS Attack).

Precision Recall F1-Score Accuracy

Normal 0.99 0.99 0.99
0.99DIS Attack 0.98 0.99 0.98

Table 12. Performance of DNN IDS Binary Classification (Rank Attack).

Precision Recall F1-Score Accuracy

Normal 0.99 0.99 0.99
0.98Rank Attack 0.96 0.97 0.97

Table 13. Performance of DNN IDS Binary Classification (Wormhole Attack).

Precision Recall F1-Score Accuracy

Normal 0.99 0.98 0.98
0.97Wormhole Attack 0.91 0.94 0.92
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5.3.3. Supervised Multi-Class Classification

Since the DANN model’s main purpose is to conduct multi-classification, the model
is trained using the combined attack datasets to distinguish among four classes: normal,
DIS, rank, and wormhole. Different depths of hidden layers (1, 2, 3, and 4 layers) were
implemented to find the model’s optimal one. Figure 12 shows the loss and AUC using a
single DANN hidden layer model. It took almost the full training trials (1000 epochs) to
achieve a higher performance. Table 14 presents the performance metrics with a single-layer
multi-class classification. The model achieves an overall accuracy of 96%, with a higher
precision, recall, and F1-score in detecting the normal class, and the lowest one with the
wormhole attack class.
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Table 14. Performance Metrics with Single-Layer Multi-Class Classification.

Precision Recall F1-Score Accuracy

Normal 0.99 0.99 0.99

0.96
DIS Attack 0.98 0.97 0.98

Rank Attack 0.86 0.77 0.82
Wormhole Attack 0.65 0.67 0.66

Average 0.87 0.85 0.86

Using two hidden layers, the model achieves the best loss and AUC performance at
500 training epochs, as shown in Figure 13. Table 15 shows that the overall class detection
accuracy is 96%. Similarly, as with using the one-layer model, the highest precision, recall,
and f1-score are in normal class detection, and the lower performance metrics are in
detecting the wormhole attack.
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Table 15. Performance Metrics with Two-Layer Multi-Class Classification.

Precision Recall F1-Score Accuracy

Normal 0.99 0.99 0.99

0.96
DIS Attack 0.99 0.97 0.98

Rank Attack 0.83 0.74 0.78
Wormhole Attack 0.71 0.74 0.73

Average 0.88 0.86 0.87

Figure 14 shows that the loss and AUC reach the optimal performance at 300 epochs
only by using three hidden layers. The model also gives an overall 98% classification
accuracy, as presented in Table 16. The higher precision, recall, and f1-score performance
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percentage are achieved in classifying the normal class (99%). The overall average per-
formance metrics are very good (92%) in classifying the three attacks in addition to the
normal traffic.

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW 23 of 26 
 

 

percentage are achieved in classifying the normal class (99%). The overall average perfor-
mance metrics are very good (92%) in classifying the three attacks in addition to the nor-
mal traffic. 

 
Figure 14. Loss and AUC with Three DANN Hidden Layers Used in Multi-Class Classification. 

Table 16. Performance Metrics with Three-Layer Multi-Class Classification. 

 Precision Recall F1-Score Accuracy 
Normal 0.99 0.99 0.99 

0.98 
DIS Attack 0.98 0.99 0.98 

Rank Attack 0.89 0.88 0.89 
Wormhole Attack 0.80 0.81 0.80 

Average 0.92 0.92 0.92  

Adding more hidden layers does not always mean improving model performance. 
Figure 15 shows that, with four hidden layers, the model requires more than 600 training 
epochs (which is more than in the three-layers model) to reach the best loss and AUC 
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Table 16. Performance Metrics with Three-Layer Multi-Class Classification.

Precision Recall F1-Score Accuracy

Normal 0.99 0.99 0.99

0.98
DIS Attack 0.98 0.99 0.98

Rank Attack 0.89 0.88 0.89
Wormhole Attack 0.80 0.81 0.80

Average 0.92 0.92 0.92

Adding more hidden layers does not always mean improving model performance.
Figure 15 shows that, with four hidden layers, the model requires more than 600 training
epochs (which is more than in the three-layers model) to reach the best loss and AUC
performance. Table 17 also presents that the overall accuracy detection rate is 97% less
than when using three layers. Moreover, it is noticed that the average precision, recall, and
f1-score of the four classes are less than those in the three-layers model. By considering
these results, it was decided to use three hidden layers in the DNN-IDS multi-class model.
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As mentioned earlier, the DL-IDS using the IoTR-DS dataset is also evaluated against
other classical and deep learning models to see how the model performs compared to those
models. Since it is difficult to evaluate the hybrid model, we have considered comparing
the f1-score and accuracy performance of the supervised part (DANN) against the J48,
KNN, SVM, and LSTM models, and the results are presented in Table 18. As shown, the
DANN outperforms the other models in terms of both f1-score and accuracy metrics. The
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second-ranked detection model is LSTM, one of the deep learning models, which indicates
that deep learning models are better than classical machine learning in this type of attack
detection. It is also worth mentioning that all the models have difficulty classifying both
rank and wormhole attacks because they have common features that are affected during
the attacks.

Table 17. Performance Metrics with Four-Layer Multi-Class Classification.

Precision Recall F1-Score Accuracy

Normal 0.99 0.99 0.99

0.97
DIS Attack 0.98 0.97 0.98

Rank Attack 0.86 0.81 0.84
Wormhole Attack 0.71 0.72 0.71

Average 0.88 0.87 0.88

Table 18. Performance of Different ML-DL Models.

DANN J48 KNN SVM LSTM

F1-
Score Accuracy F1-

Score Accuracy F1-
Score Accuracy F1-

Score Accuracy F1-
Score Accuracy

Normal 0.99 0.98 0.98 0.98 0.98
DIS Attack 0.98 0.97 0.96 0.96 0.96

Rank
Attack 0.89 0.98 0.79 0.95 0.78 0.94 0.77 0.94 0.84 0.96

Wormhole
Attack 0.80 0.75 0.67 0.61 0.77

Average 0.92 0.87 0.84 0.83 0.88

6. Conclusions and Future Work

This paper proposes a hybrid IDS deep learning-based model for detecting and classi-
fying cyber-attacks for IoT networks based on the RPL routing protocol. Due to the lack
of datasets that are developed for IoT traffic, a new dataset named IoTR-DS was created
by simulating three types of common RPL attacks, which are DIS, Rank, and Wormhole
attacks, in addition to the normal traffic. Unlike the existing techniques, which use sniffing
and monitoring tools to collect the data traffic, in our IoTR-DS, the data attributes used for
analysis are contained in the data packet and stored in the root where the hybrid DL-IDS is
implemented. The hybrid DL-IDS is composed of supervised DANN and semi-supervised
DAE, which are designed to predict attacks that are trained and untrained. The goal was to
design a scalable model for detecting new attacks where their traffic behavior was not seen
before by comparing the traffic reconstruction loss with the normal traffic and the existing
attack loss values.

The evaluation results show a detection accuracy rate of 98% for multi-class attacks
when using pre-trained attacks (known) and an average of 95% when predicting unseen
two-attack behaviors (untrained). This high classification detection rate shows the good
performance of the proposed model; it also indicates that the IoTR-DS dataset contains
enough features and information to classify such attacks. Other attacks related to the
routing and application layer will be included in the dataset and tested by the hybrid
model in our future work.
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