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Abstract: Patients suffering from motor disorders or weakness resulting from either serious spinal
cord injury or stroke often require rehabilitation therapy to regain their mobility. In the lower limbs,
exoskeletons have two motors aligned with the patients’ hip and knee to assist in rehabilitation
exercises by supporting the patient’s body structure to increase the torques at the hip and knee
joints. Assistive rehabilitation is, however, challenging, as the human torque is unknown and varies
from patient to patient. This poses difficulties in determining the level of assistance required for a
particular patient. In this paper, therefore, a modified extended state observer (ESO)-based integral
sliding mode (ISM) controller (MESOISMC) for lower-limb exoskeleton assistive gait rehabilitation
is proposed. The ESO is used to estimate the unknown human torque without application of a
torque sensor while the ISMC is used to achieve robust tracking of preset hip and knee joint angles
by considering the estimated human torque as a disturbance. The performance of the proposed
MESOISMC was assessed using the mean absolute error (MAE). The obtained results show an 85.02%
and 87.38% reduction in the MAE for the hip and joint angles, respectively, when the proposed
MESOISMC is compared with ISMC with both controllers tuned via LMI optimization. The results
also indicate that the proposed MESOISMC method is effective and efficient for user comfort and
safety during gait rehabilitation training.

Keywords: rehabilitation robot; human torque estimation; extended state observer; integral sliding
mode control; gait cycle tracking

1. Introduction

Exoskeletons are important neuron-engineering devices used for rehabilitation of
patients suffering from loss of motor torque at their joints due to spinal cord injuries,
disabilities, or stroke. Two types of exoskeletons are used for rehabilitation of patients to
regain mobility. The first type is full assistive-type exoskeleton, and, mainly, this type is
used for people with serious spinal cord injury or those who are completely paralyzed [1,2].
In this case, the exoskeleton is responsible for providing the total torque required for patient
movement and implies that the patient’s joints are passive. Such systems can be easily
controlled as the total actuator torque is generated by the exoskeleton. The second type is
the assistive-type exoskeleton, which is mostly used for patients with disabilities, who are
aging, or who have weaker torque than is required for complete movement. Assistive-type
exoskeletons can also be used to support healthy people, like cyclists or military personnel,
to increase their load-carrying capacity [3,4]. Exoskeletons provide external support to the
body structure, and thus, athletes and military personnel can use exoskeletons to reduce
stress fractures or chronic stress in the tibia fibula regions.

Several studies have been conducted on assistive exoskeletons. An active power-
assisted lower limb exoskeleton was presented in [5], where the device was designed to
measure thigh torque in real time to improve the random movement of patient lower limbs.
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An unpowered exoskeleton that used kinematic and dynamic extension for human gait
training was proposed [6]. Biomechanics of stair ascent (knee angle and moment) were
shown on the passive knee exoskeleton using brake torque and passive knee exoskeleton
using torsion spring [7,8]. Another study presented impedance modulation using an
electromagnetic brake [9]. Several other methods have been used for human–exoskeleton
force estimation, and some for rehabilitation of patients [10–13].

This work focusses mainly on human torque estimation of the human–exoskeleton sys-
tem. Since the magnitude of human joint torque applied is unknown, estimation of human
joint torque magnitude is critical, particularly in the control of assistive-type exoskeletons.
Two methods are mainly used for human torque estimation in the literature: electromyog-
raphy (EMG) and inverse dynamics methods [14]. EMG signals have been used in several
research works to control assistive robots and estimate the human torque [14–18]. Another
type is electroencephalography (EEG), which is used to estimate the brain’s motor activity
in real time. Thus, prediction of a motion plan for rehabilitation of patients with motor
disorders can be effectively achieved using EEG [19]. In addition, mechanomyography has
been used in some applications [20]. Similarly, there are a number of studies conducted
to estimate human torque using the inverse dynamics method [21–24]. Furthermore, in
other studies, disturbance observers were implemented in robot control. In general, the
disturbance observer is used to estimate unknown external or uncertain torque disturbance
without additional sensors [25]. Other methods have also been implemented for reha-
bilitation of patients using exoskeletons for walking rehabilitation [26–29]. These works
introduced techniques to modulate intrinsic properties of high-force linear actuators for
active body-weight support systems for gait rehabilitation. Furthermore, neural networks
were also used for optimization of human–exoskeleton interaction during the rehabilita-
tion process. Most of the methods used for gait prediction modeling failed to consider
environmental changes, which can be efficiently handled using neural networks [30–32].

Sliding mode control (SMC) has been extensively used in robotics for disturbance
rejection and as observer in rehabilitation robots. SMC was presented in a considerable
number of studies for estimation of torque/force in robotics [33–35]. Super-twisting SMC
was introduced for position and stiffness control of elastic actuators with input delay [36].
Extended state observers (ESOs) have also been used for estimation of unknown system
parameters. There are several works presented on estimation of unknown exoskeleton
parameters [37–39]. In addition, admittance controls for torque estimation were presented
in [40,41]. Other methods have also been implemented for rehabilitation of patients us-
ing exoskeleton for walking rehabilitation [42–44]. Integral sliding mode robust control
has been used in many studies to determine the rejection of matched and unmatched
disturbance and system uncertainties [45,46].

Human torque estimation remains a challenging task in gait rehabilitation control.
This work, therefore, proposes a modified ESO-based integral SMC (MESOISMC). The
motivation behind the cascade control of ISMC and ESO is based on the need for adequate,
precise estimation and cancelation of effect of the unknown human torque. Any error in
the estimation will cause improper coordination to aligned motion of the exoskeleton joint
motors and the actual human hip/knee joints. This can cause serious damage to the system
and might also injure the wearer. Thus, the combined advantages of ESO in the estimation
of lumped disturbances (unknown parameter and model uncertainties) and rejection
capabilities of ISMC of both matched and unmatched disturbances is the main motivation
of this work. The integral SMC (ISMC) was designed to cancel the effects of human joint
torque estimated by the ESO. Since the magnitude of human joint torque is unknown, it will
be estimated and its effect will be cancelled in this work. Therefore, the total joint torque
for the intended motion will be provided by the exoskeleton. Considering the unknown
human torque as a disturbance in this work implies that the total torque required for the
intended patient mobility will be provided by the exoskeleton. Moreover, a modification
was made to the nonlinear control design by introducing the weighted estimated error from
the ESO in the equivalent control part of the ISMC design. This novel design approach,
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combined with the advantages of the ISMC and ESO, significantly improve the performance
of the exoskeleton system by reducing the error in reference trajectory tracking of human
joints. The rest of the paper is organized as follows. Section 2 introduces the human–
exoskeleton model and integral sliding mode control design concept. Section 3 presents
the design of the proposed MESOISMC. Section 4 describes the implementation of the
proposed controller using the MATLAB Simulation toolbox. Section 5 presents the results
and discussions of the proposed control performance. Section 6 draws a conclusion based
on the research findings.

2. Human–Exoskeleton Model and Control Design

This section presents a dynamic model of the human exoskeleton and control design.
Under the control design, an integral sliding mode control will be presented.

2.1. Dynamic Model of Human Exoskeleton

The dynamic model of human exoskeleton used in this work is as presented in [47].
The unified general form of the nonlinear dynamic model for hip–knee lower limbs of
human leg for stance and swing is given as follows:

M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ) = τr + τh (1)

where M is the mass, moment of inertia, thigh, and shank link matrix of the hip–knee
model, C is centrifugal force and Coriolis force, and G contains the gravitational term. The
terms τr and τh are the exoskeleton and human torque, respectively. The human torque is
unknown and difficult to measure for a particular intended motion. Therefore, in this work,
human torque is considered as disturbance and is lumped with system uncertainties since,
for this type of system, uncertainties are rare, and the exoskeleton torque is the input of the
system. Hence, the dynamic hip–knee model in Equation (1) can be rewritten as follows:

..
θ(t) = b

(
−C
(

θ,
.
θ
)
− G(θ)

)
+ bur(t) + bφ(t) (2)

where φ(t) = τh, b = M−1, and ur(t) = τr. Note that φ(t) is a lumped human torque with
system uncertainties at the hip–knee joints. Similarly, the human torque can be represented
from Equation (1) as follows:

τh = M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ)− τr (3)

Equation (3) represents the dynamic formulated lumped human torque from the
system dynamics, which can also be represented as the following:

φ(t) = M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ)− ur(t) (4)

The total torque was computed using the equation below:

τ(t) = τr(t) + τh(t) (5)

The total control signal is u(t), which is equivalent to the total applied torque τ(t).
Therefore, by estimating and cancelling the effects of the human torque, the exoskeleton
torque would be the resultant torque that enters the system, which is given as follows:

τr(t) = u(t)− φ(t) (6)

The human exoskeleton for hip and knee joint rehabilitation used in this work is
shown in Figure 1.
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2
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(8)
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The state space can be obtained from Equations (42) and (43) as follows: 
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Figure 1. Conceptual design of the hip–knee human–exoskeleton system. The directions of the hip
torque and knee torque are shown. The angles of rotations and direction of the rotations at the hip and
knee were also shown. The τh(t) and τk(t) were the human-contributed hip and knee torques. These
two joints’ torques are unknown and, therefore, can be estimated by the observer. M1, l1 and M2, l2
are the masses and lengths of the links connecting hip to knee and knee to ankle.

From Equation (1), the simplified nonlinear models of the hip and knee are as follows:

τhip =
(

1
3 M1l2

1 + M2l2
1

) ..
θ1 +

(
1
2 M2l1l2 cos(θ2 − θ1)

) ..
θ2 −

(
1
2 M2l1l2 sin(θ2 − θ1)

) .
θ

2
2+

l1g sin θ1

(
1
2 M1 + M2

) (7)

τknee =
(

1
2 M2l1l2 cos(θ2 − θ1)

) ..
θ1 +

(
1
3 M2l2

2

) ..
θ2 +

(
1
2 M2l1l2 sin(θ2 − θ1)

) .
θ

2
1+

M2g l2
2 sin θ2

(8)

where M1 = mhumanThigh + mexoThigh is the sum of human and exoskeleton thigh masses,
and M2 = mhumanShank + mexoShank is the sum of human and exoskeleton shank masses.

For the design of the equivalent control gain of the MESOISMC, the nonlinear model
was linearized based on the assumption that, as hip/knee angles θ1/θ2 approach zero,
the cos θ1 ≈ 1, cosθ2 ≈ 1, sin θ1 ≈ θ1, sin θ1 sin θ2 ≈ 0,

.
θ1

.
θ2 ≈ 0,

.
θ1

2 ≈ 0, and
.
θ2

2 ≈ 0.
Through simplification and re-arrangement, the linearized models of the hip–knee angles
were given as follows:

..
θ1 = τhip/

(
1
3

M1l2
1 + M2l2

1

)
− l1gθ1

(
1
2

M1 + M2

)
/
(

1
3

M1l2
1 + M2l2

1

)
(9)

..
θ2 = τknee/

(
1
3

M2l2
2

)
−M2g

l2
2

θ2/
(

1
3

M2l2
2

)
(10)

The state space can be obtained from Equations (42) and (43) as follows:

.
x1(t) = x2(t) =

.
θ1

.
x2(t) =

..
θ1 = τhip/

(
1
3 M1l2

1 + M2l2
1

)
− l1gθ1

(
1
2 M1 + M2

)
/
(

1
3 M1l2

1 + M2l2
1

)
.
x3(t) = x4(t) =

.
θ2

.
x4(t) =

..
θ2 = τknee/( 1

3 M2l2
2 −M2g l2

2 θ2/
(

1
3 M2l2

2

) (11)

The state space models of the dynamics of the human exoskeleton are presented as
follows: .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(12)



J. Sens. Actuator Netw. 2023, 12, 53 5 of 27

where A, B, C, D, x, u and y are the state matrix, input matrix, output matrix, feed-forward
matrix, state vector, input and output respectively. The state space matrices of the combined
hip–knee joints are as follows:

A =


0 1 0 0

A12 0 0 0
0 0 0 1

A14 0 0 0

 B =


0 0

b01 0
0 0
0 b02

,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 D =


0
0
0
0


A12 =

−l1gθ1( 1
2 M1+M2)

( 1
3 M1l2

1+M2l2
1)

A14 =
−M2g l2

2 θ2

( 1
3 M2l2

2)
b01 =

τhip

( 1
3 M1l2

1+M2l2
1)

b02 = τknee
( 1

3 M2l2
2)

(13)

And state vector, x =
[
θ1

.
θ1θ2

.
θ2

]T
. The state space can be broken into hip and knee

joint state spaces for controller design because each joint has a separate motor with a
different torque.

Ahip =

[
0 1

A12hip 0

]
B =

[
0

b01

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
Aknee =

[
0 1

A14knee 0

]
B =

[
0

b02

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
(14)

Note that the linear model was only used for the design of the controller gains but,
during the implementation, the nonlinear model was used in the simulation block.

2.2. Integral Sliding Mode Control (ISMC) Design

The ISMC is a well-known robust control for the rejection of matched and unmatched
disturbances and system model uncertainties. The ISMC was designed as presented
in [45,46]. In general, the control law of ISMC is given by the following:

u(t) = ueq(t) + usw(t) (15)

where ueq(t) and usw(t) are the equivalent and switching controls, respectively. By substi-
tuting Equation (6) in Equation (15), the exoskeleton torque can be computed.

τr(t) = ueq(t) + usw(t)− φ(t) (16)

The equivalent control is the control in the absence of disturbances, and the switching
or discontinuous control switches and maintains the state on the sliding surface in the
presence of disturbance to guarantee sliding mode. Figure 2 shows the ISMC control block
diagram used in this work.
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Figure 2. Conceptual ISMC block diagram showing the equivalent and switching control. In addi-
tion, the nominal and actual system are also shown. r, x, u(t), are the reference hip/knee position
input, the measured hip/knee position and the total control signal of the exoskeleton motors, re-
spectively. The equivalent control which is designed to achieve desire positioning of the hip/knee is
ueq = Kx(t) + Nr(t), φ(t) is the human torque which was considered as disturbance in this work, and
usw = −Γ(t) ∗ tan h(s(t)) is the switching control signal that addresses the disturbance rejections.

In this work, for the ISMC design, the equivalent control is given as follows:

ueq(t) = Kx(t) + Nr(t) (17)

where K is designed using a pole placement control method in this work, and N is a scaling
factor. x(t) and r(t) are the system states and reference input, respectively.

Similarly, the switching control is selected using the following:

usw(t) = −Γ(t) ∗ tan h(s(t)) (18)

where the term Γ(t) is a positive function and assumed to be the maximum value of the
bounded disturbance signal given by Γ(t) ≥ φmax(t). The hyper tangent (|tanh|) function
replaced the signum function (|sign|), which is generally used in the design of switching
control to reduce chattering. Therefore, total control signal in Equation (15) was computed
as follows:

u(t) = Kx(t) + Nr(t)− Γ(t)tanh(s(t)) (19)

Consider a nonlinear system given as follows:

.
x = A(x, t) + Bu(x, t) + φ(x, t) (20)

where A(x, t),x ∈ Rn, and B are the system, state, and input matrices, respectively. u(x, t) ∈
Rm is the control signal, and φ(x, t) is the human torque and system uncertainties. Note that
the dynamic formulated human torque φ(x, t) from Equation (4) was used as disturbance
in the ISMC design.
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Norms 1: rank B = m.
Norms 2: φ(x, t) ≤ φ(x, t) although the actual value of the human torque φ(x, t) is
unknown, it is bounded by a known function φ(x, t) for all x and t [45], and, there-
fore, φ(x, t) = φmax(x, t). The proof of the reachability condition of the ISMC is as presented
in [45].

The sliding surface in this work was selected with the following:

s(x, t) = ψ[x(t)− x(t0)−
∫ t

t0

(A(x, τ) + Bu(x, τ))dτ] (21)

where s(x, t) is the sliding surface, ψ is a projection matrix, and it is selected such that ψB is
invertible. The matrix ψ is given by ψ =

(
BT B

)−1BT , as derived in [46]; the actual system
trajectory is x(t), and x(t0)−

∫ t
t0
(A(x, τ) + Bu(x, τ))dτ is the nominal trajectory, where τ

is a finite time in which the states reach the sliding surface.

3. Modified Extended State Observer Based Integral Sliding Mode Control
3.1. MESOISMC Design

Let Equation (1) be considered a second-order system:

..
θ(t) = φ(x, t) + bu(t) (22)

where φ(x, t) = b
(

τh − C(θ)
.
θ − G(θ)

)
is the lumped disturbance. The state space equa-

tions are as follows:
.
x1(t) = x2(t) (23)

.
x2(t) = λu(x, t) + φ(x, t) (24)

State space equations can be extended to include the lumped human torque as a new
state variable that acts as a matched disturbance x3 = φ(x, t), which yields the following:

.
x1(t) = x2(t) (25)

.
x2(t) = λu(x, t) + φ(x, t) (26)

.
x3(t) =

.
φ(x, t) (27)

Figure 3 shows the proposed MESOISMC block diagram used in this work. Therefore,
the ESO can be designed as follows:

.
x̂1(t) = x̂2(t) + γ1 ê(t) (28)

.
x̂2(t) = x̂3(t) + γ2 ê(t) + λu(x, t) (29)

.
x̂3(t) = γ3 ê(t) (30)

where x̂1(t), x̂2(t), x̂3(t) are the estimate values of x1(t), x2(t), x3(t), respectively. Similarly,
the observer gains are γ1, γ2, γ3, and the observer error is given by ê(t) = x̂1(t)− x1(t).
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Figure 3. Conceptual MESOISMC block diagram showing the Modified ISMC with ESO. The modifi-
cation terms are βê. This figure is the modification of Figure 2 which shows the cascade combination
of the MESOISMC where r, x, u(t) are the reference hip/knee position input, the measured hip/knee
position, and the total control signal of the exoskeleton motors, respectively. The equivalent control
which is designed to achieve desired positioning of the hip/knee is ueq = Kx(t) + Nr(t), φ(t) is the
human torque, which was considered as disturbance in this work, and usw = −Γ(t) ∗ tanh(s(t)) is
the switching control signal that addresses the disturbance rejections.

The observer gains were designed separately for hip and knee joints based on the
general assumption that the observer poles should be placed four to ten times to the left of
the s-plane of the closed loop poles for faster response, that is, ωobs = (4− 10)ωc. Thus,
the observer gains were designed for hip and knee as follows:

γh1 = 3ωobs, γh2 = 3ωobs
2, γh3 = 3ωobs

3 and
γk1 = 3ωobs, γk2 = 3ωobs

2, γk3 = 3ωobs
3

Therefore, the observer gain matrix is given by the following:

L =

[
γh1 γh2 γh3 0 0 0
0 0 0 γk1 γk2 γk3

]T

(31)

Furthermore, the equivalent controller in MESOISMC was modified by introducing
another control part from the observer error (βê) to speed up and improve the convergence
of the system output to the desire reference input. The equivalent control was modified
as follows:

ueq(t) = Kx(t) + Nr(t) + x̂3(t)− βê (32)

where β is a gain, and ê = x̂− θ.
This modification has contributed to improving the performance in this work. The

combined form of the ESO and ISMC is an additional contribution of this work. The new
term βê was only presented in this work, and it significantly reduced the error between the
reference trajectory and the hip and knee output angles.

Let uβ ∝ ê
uβ = βê (33)
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where uβ is the modified control effort introduced in the ESOISMC control to improve
the convergence speed of the controller. β is the correction gain which determines the
relationship between increase or decrease in the error signal and corresponding change
in the control signal. ê is the estimated error between the estimated angular position and
desired position.

Note that if ê is zero, then the modified control signal uβ is also zero. This additional
modified control signal helps to eliminate oscillation in control system. It improves sta-
bility and decreases sensitivity to parameter changes in the system. The magnitude of β
determines the system’s speed response. If β is too small, the system exhibits a sluggish
behavoiur while too high a value causes oscillation and vibration. Based on this, a heuristic
turning technique was used to determine the values of β for which the system is stable.

The βê is part of the the equivalent control (ueq(t)) in this work as given in Equation (32).
Therefore, its stability proof has been included under Section 3.2. The equivalent control
(ueq(t)) is part of the sliding surface in Equation (39). Equation (33) shows the relationship
between the β and ê.

β =
uβ

ê
(34)

From Equation (34), it can be seen that there is inverse relationship between the
correction gain β and ê. This indicates that, when value of β is high, the error will approach
zero, with the minimum steady state error, overshot, and oscillation. The ranges for values
of β for hip and knee joints are given as follows: 60 ≥ βh ≤ 120 and 15 ≥ βk ≤ 20.

Thus, the MESOISMC control signal is given by the following:

u(t) = Kx(t) + Nr(t) + x̂3(t)− βê− Γ(t) ∗ tanh(ŝ(t)) (35)

The correction gain β was represented by βh and βk for hip and knee, respectively.
From Equation (35), the estimated human torque can be expressed as follows:

x̂3(t) = u(t)− Kx̂(t)− Nr(t) + βê + Γ(t)tanh(ŝ(t)) (36)

This control form is a modified version of the existing ESOISMC, which is the main
contribution of this work. The modified part βê significantly increases the convergence
speed and accuracy, while x̂3(t) is the estimated disturbance.

3.2. Linear Matrix Inequality (LMI) Optimization

The equivalent control part of the ISMC was designed using the LMI optimization
technique to get the best optimal values of the gains. For a fair comparison, the same optimal
gains obtained using LMI were used in both ISMC and MESOISMC. From Equation (17) of
the equivalent control, the values of K and N were designed using the linear model state
space matrix A and B in solving the LMI equation below [48]. Therefore, the LMI closed
loop control equation is as follows:(

AT + BTKT
)

X + X(A + BK) + 2σX < 0 (37)

Letting Q = X−1 and pre- and post-multiplying Equation (37) by Q yielded the
following:

QAT + QBTKT + AQ + BKQ + 2σQ < 0 (38)

Let K = NQ−1, where N is an LMI variable. Equation (38) can be rewritten in a form
that can be solved using the LMI solver:

QAT + AQ + BT NT + BN + 2σQ < 0, Q > 0 (39)

The control purpose is to track the reference intended human–exoskeleton motion,
and it can be achieved by selecting desired pole locations of the system in the LMI region
to ensure internal stability. The LMI region is a complex plane where closed loop poles are
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located to achieve certain desired dynamic behavior by selecting the desired overshoot and
settling time. This region is defined as follows:

η =
{

z ε C : L + sM + sMT < 0
}

(40)

where L and M are matrices and used to select a region of search in the LMI based on the
desired pole locations, M = MT , and s denotes the complex conjugate of s. Thus, from
Equation (40), the characteristic function of η can be obtained:

fη(z) = L + sM + sMT (41)

Thus, the system eigenvalues of matrix A will be placed in the region η if a positive
definite and symmetric matrix X that satisfies the following condition exists:

L⊗ X + M⊗ (A + BK)X + MT ⊗ ((A + BK)X)T + 2σX < 0 (42)

The symbol ⊗ stands for the Kronecker product. We selected L and M as follows:

L =

[
0 0
0 0

]
, M =

[
sin θ − cos θ
cos θ sin θ

]
Equation (42) is rewritten as below:[

0 0
0 0

]
⊗ X +

[
sin θ − cos θ
cos θ sin θ

]
⊗ (A + BK)X +

[
sin θ − cos θ
cos θ sin θ

]T

⊗ ((A + BK)X)T+[
2αX 2αX
2αX 2αX

]
< 0

(43)

3.3. Stability Proof for MESOISMC

The observer sliding surface is as follows:

.
V̂s ≤ ŜT

.
Ŝ (44)

ŝ(x, t) ≤ ψ[x̂(t)− x(t0)−
∫ t

t0

(
A(x̂, τ)+
Bu(x̂, τ)

)
dτ] (45)

.
ŝ(x, t) ≤ ψ

[ .
x̂(t)− A(x̂, t)− Bueq(x̂, t)

]
(46)

where
.
x̂ = A(x̂, t) + Bu(x̂, t) + φ(x̂, t) and can also be rewritten as follows:

.
x̂ = A(x̂, t) + Bu(x̂, t) + x̂3(t) (47)

where x̂3(t) is the estimated of the lumped human torque φ̂(x, t). Substituting Equations
(47) and (44) into Equation (45) gives the following:

.
ŝ(x, t) ≤ ψBusw(x, t) + ψBx̂3(t) (48)

The derivative of the sliding surface can also be represented as follows:

.
ŝ(t) ≤ −ψBΓ(t)

(ψB)Ts(t)

‖(ψB)Ts(t)‖
+ ψBx̂3(t) (49)
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Similarly, substituting Equation (49) into Equation (44), we obtained the following:

ŝT .
ŝ ≤ −ŝTψBΓ(t)

(ψB)T ŝ(t)

‖(ψB)T ŝ(t)‖
+ ŝTψBx̂3(t) (50)

Equation (50) can be rewritten in the norm form.

ŝT .
ŝ ≤ −ŝTψBΓ(t)

(ψB)T ŝ(t)

‖(ψB)T ŝ(t)‖
+ ‖ŝTψBx̂3(t)‖ (51)

ŝT .
ŝ ≤ −Γ(t)

‖(ψB)T ŝ(t)‖2

‖(ψB)T ŝ(t)‖
+ ‖ŝTψB‖x̂3(t) (52)

ŝT .
ŝ ≤ −Γ(t)‖(ψB)T ŝ(t)‖+ ‖ŝTψB‖x̂3(t) (53)

ŝT .
ŝ ≤ ‖(ψB)T ŝ(t)‖(x̂3(t)− Γ(t)) (54)

Hence, the observed system is asymptotically stable if the condition Γ(t) > x̂3(t) in
Equation (54) is achieved for the range of βh 60 ≥ βh ≤ 120 and βk 15 ≥ βk ≤ 20.

4. Implementation

The implementation of the proposed control method was conducted using MATLAB
R2022b. The MATLAB Simulink diagram of the proposed controller is given in Figure A1
under Appendix A.

The nonlinear models in Equations (7) and (8) are used to simulate the hip and knee of
the lower limb. The linear model in state space in Equation (14) was used for the design of
the control gain in the LMI optimization. Tables 1 and 2 provide the system and reference
trajectory parameters used in the simulations. The LMI is derived for optimal gain of the
controller. By solving Equation (43) in the LMI solver in MATLAB, the following results
were obtained individually for hip and knee joints.

Xhip =

[
0.2070 −0.9325
−0.9325 5.0983

]
Qhip =

[
27.4517 5.0211
5.0211 1.1145

]
Khip =

[
−9.0633 −3.9985

]
Nhip = −

[
C
(

Ahip + BhipKhip

)−1
Bhip

]−1
= 13.2570

XKnee =

[
0.2070 −0.9325
−0.9325 5.0983

]
QKnee =

[
27.4517 5.0211
5.0211 1.1145

]
KKnee =

[
−0.8265 −0.5338

]
NKnee = −

[
C(AKnee + BKneeKKnee)

−1BKnee

]−1
= 1.7697

Table 1. System parameters as presented in [49].

Parameter Symbol Magnitude Units

Human Thigh length l1 0.45 m
Human Shank length l2 0.43 m
Exo-Thigh length l3 0.45 m
Exo-Shank length l4 0.43 m
Human Thigh Mass m1 8 kg
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Table 1. Cont.

Parameter Symbol Magnitude Units

Human Shank mass m2 4 kg
Exo-Thigh mass m3 1 kg
Exo-Shank mass m4 1 kg
Gravitational acceleration g 9.81 m/s2

Frequency f 0.16 Hz
Scaling Factor for Hip βh 80 none
Scaling Factor for Knee βk 18 none

Note l1 = l3, l2 = l4, M1 = m1 + m3, M2 = m2 + m4.

Table 2. Reference hip-knee trajectory parameters.

Parameters Hip Reference Knee Reference

θ0 9.092 9.092
a1 −20.86 −3.99
b1 6.744 −7.14
a2 5.021 8.030
b2 2.101 4.110
a3 −0.1416 −4.141
b3 1.197 0.200
a4 −0.1299 0.013
b4 −0.2158 0.220
wn 0.06314 0.06314

The reference hip–knee signals used in this paper are given as similarly presented
in [50]:

θre f = θ0 + ∑ n
i=1(ai sin(iwnt) + bi cos(iwnt)) (55)

Similarly, the mean absolute error (MAE) was used in performance evaluations of the
proposed controller. The MAE equation is as follows:

MAE =
1
n ∑ n

i=1|xi − x| (56)

where xi, x, and n are the reference trajectory, hip–knee angle, and the amount of sample
data, respectively.

5. Results and Discussions

This section presents the simulation results of both hip and knee joints based on
the conventional ISMC and the proposed MESOISMC. Although the control gains were
designed based on the linear model, the implementation of these controls was carried out
on the nonlinear model of the system. This research mainly aimed to estimate the unknown
human torque and reject its effects as a matched disturbance to the system. Figures 4 and 5
show the reference trajectory tracking of the human hip and knee joints, respectively. The
figures show that the convergence in the hip and knee tracking of reference trajectory using
the proposed MESOISMC was better compared with that obtained with the ISMC. As can
be observed in these figures, there was a high error in the tracking performance of ISMC
during the change from the stance phase to the swing phase. About 4◦ error was observed
during the phase changes in Figure 4 for the hip angle and about 7◦ error in the knee angle,
as seen from Figure 5. These findings can be observed from Figures 6 and 7, which show
the tracking error signals of the two controllers for hip and knee, respectively. Initially,
the angle errors were high for MESOISMC and ISMC, which were 20◦ and 19◦ for the hip
angle and 6.5◦ and 7.5◦ for the knee angle, as shown in Figures 6 and 7. This finding was
observed because, at the beginning, the human body caused some delay in response due to
inertia. Thus, with MESOISMC, the human body followed the exoskeleton motion with
approximately zero error. The results indicate that the effects of human torque have been
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successfully estimated and cancelled. Therefore, the total input torque is completely that of
exoskeleton. On this basis, the proposed control generated a control signal that rejected the
effect of the estimated human torque and maintained the tracking of the desired trajectory
of the patient-intended mobility without safety risk or user discomfort.
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Figure 4. Hip angle tracking. From the figure legend, the reference signal is the desire hip angle,
MESOISMC is the tracking angle that resulted from the controlled effort of MESOISMC, and ISMC is
the tracking angle achieved from the control effort of ISMC. From this figure, it can be observed that
the MESOISMC has better tracking as compared to ISMC. It was observed in the ISMC response that
there is a high position tracking error in this figure from 20 s to about 45 s, and later, from 60 s to 80 s.
These would cause user discomfort or may injure the user.

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW  13  of  27 
 

 

 

Figure 4. Hip angle tracking. From the figure legend, the reference signal is the desire hip angle, 

MESOISMC is the tracking angle that resulted from the controlled effort of MESOISMC, and ISMC 

is the tracking angle achieved from the control effort of ISMC. From this figure, it can be observed 

that the MESOISMC has better tracking as compared to ISMC. It was observed in the ISMC response 

that there is a high position tracking error in this figure from 20 s to about 45 s, and later, from 60 s 

to 80 s. These would cause user discomfort or may injure the user. 

 

Figure 5. Knee angle tracking. Similarly, in this figure, the reference signal is the desire knee angle, 

MESOISMC is the tracking angle that resulted from the controlled effort of MESOISMC, and ISMC 

is the tracking angle achieved from the control effort of ISMC. From the tracking performance, it 

can be observed that the MESOISMC has better tracking as compared to ISMC. It was observed in 

this figure there is a high tracking error from 48 s to almost 70 s. This means the user’s knee was not 

properly tracking the exoskeleton knee motor movement. 

0 10 20 30 40 50 60 70 80
-30

-20

-10

0

10

20

30

40

50

time (s)

H
ip

 a
n
g
le

 (d
e
g
)

 

 

Reference
MESOISMC
ISMC

0 10 20 30 40 50 60 70 80
-5

0

5

10

15

20

25

30

35

time (s)

K
n
e
e
 A

n
g
le

 (
d
e
g
)

 

 

Reference
MESOISMC
ISMC

Figure 5. Knee angle tracking. Similarly, in this figure, the reference signal is the desire knee angle,
MESOISMC is the tracking angle that resulted from the controlled effort of MESOISMC, and ISMC is
the tracking angle achieved from the control effort of ISMC. From the tracking performance, it can be
observed that the MESOISMC has better tracking as compared to ISMC. It was observed in this figure
there is a high tracking error from 48 s to almost 70 s. This means the user’s knee was not properly
tracking the exoskeleton knee motor movement.
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Figure 6. Hip angle tracking error. From this figure, the reader can clearly observe the tracking
performance based on the controller with high tracking error. It is seen that the ISMC has the higher
tracking error as compared to MESOISMC, which has an error close to zero. This validated the claim
made in Figure 4 above.
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Figure 7. Knee angle tracking error. The tracking performance based on the controller with a high
tracking error can clearly be seen from this figure. The ISMC has the higher tracking error as compared
to MESOISMC. This validated the claim made in Figure 5 above.

Equation (56) was used to calculate the MAE values from the reference trajectory and
MESOISMC and ISMC data to measure the performance of the proposed control. Figure 8
shows that the MAE values of the proposed method MESOISMCE and ISMC for hip-angle
trajectory tracking were 0.2909◦ and 1.9419◦, respectively. These results indicated an 85.02%
improvement in the reference trajectory tracking by the proposed method compared with
ISMC. The high tracking error with ISMC can cause user discomfort, and user safety may
not be guaranteed during gait training. The error found in ISMC means a delay in human
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joint motion compared to the reference trajectory. The word “user discomfort” was used to
indicate if there was an error or inaccurate position tracking, a user wearing the exoskeleton
could experience discomfort at the hip/knee joint. The MAE values for the knee joint angle
with MESOISMC and ISMC were 0.1895 and 1.5020, respectively. This finding produced
87.38% error reduction by MESOISMC compared with ISMC. The high tracking error
found in ISMC may cause user discomfort and could injure the wearer due to a high angle
difference between the exoskeleton hip/knee joint motor’s movement and human joint’s
movement. These results indicate that the proposed method is effective for user comfort
and safety gait training. Figure 8 shows the bar chart of the MAE values for both hip and
knee joints to clearly see the performance comparison of the two controllers.
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Figure 8. Hip and knee MAE values. This figure further illustrated the difference in the tracking
performance based on the Mean Absolute Error of the MESOISMC and ISMC. The controller with
lowest MAE has the high tracking performance.

Figures 9 and 10 show the disturbance signals, which compare the dynamic formu-
lated human torque in Equation (3) with the estimated unknown human torques of the hip
and knee joints, respectively. From Figure 10, the maximum estimated positive human hip
torque at starting was 60 Nm. Furthermore, it can be observed that the responses of the
estimated unknown human torque are in the same pattern as the dynamic formulated hu-
man torque derived from the system dynamic in Equation (3). In addition, Figures 9 and 10
show the stance and swing phase during the gait rehabilitation training. The estimated
torques rise during the stance phase, which indicates the intention for motion, moving
the legs off the ground, and after 40 s, the torques start to drop during the swing phase to
show that the patient’s leg is being put back on the ground. This shows that the estimation
target has been achieved, and, in addition, the proposed control method which estimated
the unknown human torque provided better tracking performance as compared to ISMC,
which used the dynamic formulated human torque. Figures 11 and 12 show the input
torque, which moved the human exoskeleton after rejection of the human estimated torques
for hip and knee, respectively. The ESO had successfully estimated the two system states,
x̂1(t), x̂2(t), and the human torque disturbance x̂3(t), shown in Figure 13. The estimation
of these states helped in reducing the error between the reference trajectory and the output
angular position of the hip and knee joints.
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Figure 9. Estimated human hip torque. This figure shows the estimated human hip torques with
MESOISMC and the formulated ISMC. The estimated torque using MESOISMC shows more accurate
results based on the generated high torque at the beginning, which is true for intended motion.
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Figure 10. Estimated human knee torque. The estimated human knee torques is shown in this figure.
The estimated torque using MESOISMC shows more accurate results based on the generated high
torque at the beginning, which is true for intended motion; a high torque is generated to start walking,
which gradually reduces as the motion changes from the stand phase to the swing phase.
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Figure 11. Hip input torque. The control signal is shown in this figure. It is observed that the
MESOISMC has a high control signal. This was because of the modified term which helped create
rapid convergence performance.
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Figure 12. Knee input torque. A similar case was observed in this figure, where the MESOISMC has
high control signal as a result of the added term that modifies the controller effort in achieving rapid
convergence performance.
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Figure 13. Estimated hip states x̂1(t), x̂2(t), x̂3(t). The estimated states are shown in this figure, and
the three estimated parameters are the estimated hip angle position, hip angle velocity, and human
hip torque. It can be observed that the estimated hip angle is similar to the desire hip angle shown in
Figure 4.

Figures 14 and 15 show the effects of using too small or too high values of the gain in
the modified signal. It was observed that, when the value is too small, the system response
is slow, and this causes a steady state error in the tracking performance, and when the value
is too high, it leads to vibration or oscillation, causing instability in the system performance.
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Figure 14. Effects of different values of βh on the system performance. It can be observed from this
figure that, with a small value of βh, there exists a steady state error, and when the value is high, it
causes vibration/oscillation leading to unstable performance.
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Figure 15. Effects of different values of βk on the system performance. It can be observed from this
figure that, with a small value of βk, there exists a steady state error, and when the value is high, it
causes vibration/oscillation leading to unstable performance.

Figures 16–25 show the replication of Figures 4–13 with multiple cycles. It was
observed from Figure 20 that the MAE for the MESOISMC and ISMC has values of 0.2875,
1.8689 and 0.1834, 1.4676 for the hip and knee positions, respectively. Similar percentage
improvement was observed from the MAE values of the multiple cycles results. A total of
84.62% and 87.50% improvements were found in MESOISMC as compared to ISMC.
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Figure 16. Hip angle response for multiple cycles.
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Figure 17. Hip angle tracking error for multiple cycles.
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Figure 18. Knee angle response for multiple cycles.
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J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW 21 of 27 
 

 

 
Figure 19. Knee angle tracking error for multiple cycles. 

 
Figure 20. Hip and knee MAE values from multiple cycles. 

0 50 100 150 200 250 300 350 400
-7

-6

-5

-4

-3

-2

-1

0

1

2

time (sec)

K
ne

e 
an

gl
e 

er
ro

r 
(d

eg
)

 

 
MESOISMC

ISMC

Figure 20. Hip and knee MAE values from multiple cycles.



J. Sens. Actuator Netw. 2023, 12, 53 22 of 27J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW  22  of  27 
 

 

 

Figure 21. Estimated human hip torque for multiple cycles. 

 

Figure 22. Estimated human knee torque for multiple cycles. 

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60

80

100

time (sec)

 

 

E
st

im
at

ed
 h

um
an

 h
ip

 to
rq

ue
 (

N
m

)

MESOISMC

ISMC

0 50 100 150 200 250 300 350 400
-20

-15

-10

-5

0

5

time (sec)

E
st

im
at

ed
 h

um
an

 k
ne

e 
to

rq
ue

 (
N

m
)

 

 

Estimated MESOISMC

Formulated ISMC

Figure 21. Estimated human hip torque for multiple cycles.

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW  22  of  27 
 

 

 

Figure 21. Estimated human hip torque for multiple cycles. 

 

Figure 22. Estimated human knee torque for multiple cycles. 

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60

80

100

time (sec)

 

 

E
st

im
at

ed
 h

um
an

 h
ip

 to
rq

ue
 (

N
m

)

MESOISMC

ISMC

0 50 100 150 200 250 300 350 400
-20

-15

-10

-5

0

5

time (sec)

E
st

im
at

ed
 h

um
an

 k
ne

e 
to

rq
ue

 (
N

m
)

 

 

Estimated MESOISMC

Formulated ISMC

Figure 22. Estimated human knee torque for multiple cycles.



J. Sens. Actuator Netw. 2023, 12, 53 23 of 27
J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW  23  of  27 
 

 

 

Figure 23. Hip control signal for multiple cycles. 

 

Figure 24. Knee control signal for multiple cycles. 

0 50 100 150 200 250 300 350 400
-100

-50

0

50

100

150

200

time (sec)

H
ip

 c
on

tr
ol

 s
ig

na
l (

N
m

)

 

 

MESOISMC

ISMC

0 50 100 150 200 250 300 350 400
-20

0

20

40

60

80

100

120

140

time (sec)

K
ne

e 
co

nt
ro

l s
ig

na
l (

N
m

)

 

 

MESOISMC

ISMC

Figure 23. Hip control signal for multiple cycles.
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Figure 24. Knee control signal for multiple cycles.
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Figure 25. Estimated states for multiple cycles.

6. Conclusion and Future Work

This work proposed and implemented a modified extended state observer based
integral sliding mode controller. The control gains were designed based on the linear
model; however, the implementation was conducted on the nonlinear model of the system.
The proposed control was successfully used for estimation of an unknown human torque
and rejection of its effects. The performance of the proposed controller as compared with
the ISMC in terms of faster convergence of the hip and knee joint to the reference angle was
observed from the MAE values. The MAE values of the proposed method MESOISMCE and
ISMC for hip-angle trajectory tracking were 0.2909◦ and 1.9419◦, respectively. These results
indicated an 85.02% improvement in the reference trajectory tracking by the proposed
method compared with ISMC. The 85.02% improvement in ISMC can cause user discomfort,
and user safety may not be guaranteed during gait training. Similarly, MAE values for the
knee joint angle with MESOISMC and ISMC were 0.1895 and 1.5020, respectively. This
finding produced 87.38% error reduction by MESOISMC compared with ISMC. The high
tracking error found in ISMC may cause user discomfort and safety risk to the user. The
results indicated that the proposed method is effective and efficient for user comfort and
safety during gait rehabilitation training because of its minimum tracking position error. In
addition, the system states were estimated, and the error found in MESOISMC was almost
zero. Thus, the proposed method had a more effective convergence compared with the
ISMC. However, the proposed control is limited to torque estimation and position tracking
control to support patients with serious spinal cord injury or stroke. However, this control
device can be applied to other neurological disorders involving motor-weakness-related
symptoms. The ongoing effort is to implement this proposed control algorithm on our
developed prototypes of lower-extremity exoskeletons, such as the wheelchair-exoskeleton
hybrid robot [51].
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