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Abstract: The robust stabilization of doubly fed induction generators in wind turbines against external
disturbances is considered in this study. It is assumed that the angular speeds of wind turbines can
only be measured and sent to the controller in a discrete-time fashion over a network. To generate
the sampling times, three different triggering schemes were developed: time-triggering, static event-
triggering, and dynamic event-triggering mechanisms; moreover, performance comparisons were
conducted between such approaches. The design methodology is based on emulation, such that
the plant is first stabilized in continuous-time where a robust feedback law is constructed based on
the linear quadratic Gaussian regulator (LQG) approach. Then, the impact of the network is taken
into account, and an event-triggering mechanism is built so that closed-loop stability is maintained
and the Zeno phenomenon is avoided by using temporal regularization. The necessary stability
constraints are framed as a linear matrix inequality, and the whole system is modeled as a hybrid
dynamical system. A numerical simulation is used to demonstrate the effectiveness of the control
strategy. The results show that the event-triggering mechanisms achieve a significant reduction of
around 50% in transmissions compared to periodic sampling. Moreover, numerical comparisons with
existing approaches show that the proposed approach provides better performance in terms of the
stability guarantee and number of transmissions.

Keywords: event-triggered control; renewable energy; wind turbine; doubly fed induction generator

1. Introduction

Due to the increasing electricity demand, the diminishing reserves of fossil fuels,
and growing concerns over climate change, there has been much interest in integrating
renewable energy sources (RES) with conventional electric grids in recent years. Wind
farms, which use either fixed-speed or variable-speed wind turbines (WTs), offer one of
the most promising avenues for supplying the grid with electricity. Induction generators,
particularly doubly fed induction generators (DFIGs), are popular forms of AC generators
used in variable-speed wind turbines. A rotor-side converter and a grid-side converter are
used to connect the rotor winding in a DFIG to the grid in a back-to-back architecture. The
stator winding in a DFIG is directly connected to the grid. When compared to other types
of induction generators, the DFIG has several advantages in terms of resilience and stable
functioning against external disturbances, see, e.g., [1–3].

The fundamental task of wind turbine controllers is to ensure proper supply–demand
matching between the local grid and the wind farm. Controlling the wind turbine genera-
tor’s speed of rotation is a common way to accomplish this power balance. In the literature,
several continuous-time control systems for DFIG-based wind turbines have been pro-
posed, e.g., [4–13], as well as discrete-time systems, e.g., [14–18]. In reality, common for the
controller to be a digital platform while the plant output is evaluated by analog sensors.
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In some circumstances, the plant and the controller must communicate via a common
digital channel, which requires networked control systems. This creates network-induced
errors and increases the difficulty of the control design [19–21]. The sampling effect, in
particular, is a problem brought on by digital implementation and can seriously impair
system performance or possibly cause instability. Traditionally, time-triggering approaches
have been used to treat the sampling impact. The stabilizing sample frequency in these
systems is selected based on the worst-case scenario, which in practice may be conservative.
A different approach, known as the event-triggered control, has been established in the
literature. In this approach, the output-dependent rule is used to produce the transmission
sequence, depending on the desired stability attributes and the present state of the system.
In contrast to periodic sampling, the number of transmissions can be drastically decreased
in this approach [22–24]. The triggering conditions must preclude Zeno behavior (infinite
transmissions in a finite amount of time) in order to be practical. When the plant can
only be measured for output and is prone to perturbations, the problem becomes more
difficult. Two ETC schemes are developed in this paper for the DFIG wind turbine. The
first ETC mechanism is based on the static triggering threshold, which has been considered
in several works in the literature, e.g., [25,26]. The main drawback of this technique is that
the generated inter-transmission times can occasionally become periodic. To avoid this
behavior, the dynamic ETC mechanism is also developed in this study, where the triggering
threshold involves an additional dynamic variable; see [27,28].

By utilizing the LQG feedback law, we explore the robust stabilization issue of
a DFIG-based wind turbine. We make the assumption that the controller can only re-
ceive measurements of the wind turbine shaft’s angular speed through a digital network
at discrete points in time. The closed-loop system’s stability is then maintained while
avoiding the Zeno behavior by creating an output feedback event-triggering mechanism.
By enforcing a positive constant on the inter-transmission intervals, a process known
as temporal regularization, the latter attribute is attained. Due to the network sampling-
induced errors, the closed-loop system exhibits both continuous-time dynamics and discrete
changes. We formulate the total system as a hybrid dynamical system to handle such mixed
dynamics [29]. The necessary requirements are framed as a linear matrix inequality (LMI),
facilitating a methodical design approach. The developed approach ensures L2 stability
for the closed-loop system. The numerical simulation is used to show the efficiency of
the approach.

The contribution of this paper is summarized as follows:

• An observer-based event-triggering mechanism is developed for a DFIG wind turbine.
• To capture the sampled data characteristic of the control system, the closed-loop

system is described as a hybrid system.
• The produced sampling times of the proposed approach are less than the traditional

periodic time-triggered controllers.
• The developed ETC approach provides better performance compared to the existing

results in terms of the stability guarantee and number of triggering instants.

A preliminary version of this paper was published in [30], where only the pitch angle
control problem under static event-triggered control was explored. Compared to [30], in
this paper, we extend the analysis to three implementation scenarios:

• Time-triggered control, where an upper bound on the maximally allowable transmis-
sion interval is derived for periodic sampling implementation. Also, the corresponding
hybrid model and the guaranteed stability property are presented in this case. This
was not provided in [30].

• Static ETC, as in [30]; in this version, we provide the complete analysis and stability
proof, which are not provided in [30] due to space limitations.

• Dynamic ETC, where the performance of the static ETC in [30] is elevated by intro-
ducing a new triggering rule based on a dynamic threshold to allow for a further
reduction in transmissions. This case is a novel contribution compared to [30].
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Moreover, compared to [30], the performance comparisons between the three trigger-
ing schemes previously mentioned were conducted in terms of the number of transmissions
and the state responses to illustrate the advantages of the developed dynamic ETC. In
addition, in this version we provide a numerical comparison with relevant techniques of
the literature to further support the advantages of the proposed approach.

The rest of this paper is structured as follows. Related works are presented in Section 2.
The adopted notation and preliminaries are presented in Section 3. In Section 4, the
description of the implementation scenario is presented and the problem is formally stated.
We present the hybrid dynamical model of the networked control system in Section 6 to
capture the mixed dynamics. In Section 7, the considered triggering implementations are
explored, where we include the design of periodic time-triggered controllers and synthesize
the static and dynamic event-triggering mechanisms. Numerical simulations are provided
in Section 8, where the performances of the considered triggering mechanisms are examined.
Our conclusion is summarized in Section 9.

2. Related Work

To our knowledge, the application of ETC to DFIG-based wind turbines has only been
examined in a few works [31–35]. The authors of [31] developed an ETC for damping
the sub-synchronous resonance of DFIG wind turbines based on the sliding mode control
(SMC). The constructed ETC in [31] and the triggering threshold involve constant param-
eters to prevent Zeno behavior. However, such constant parameters in the ETC rule can
only guarantee practical stabilization of the state in the neighborhood of the origin, even in
the absence of disturbances. In [32], the issue of active power-sharing DFIG wind turbines
has been studied under ETC implementation. To that end, a consensus-based approach has
been developed in a fully distributed manner to achieve the balance between power supply
and load demand. The ETC mechanism in [32] is based on a time-dependent threshold to
achieve the trade-off between the number of transmissions and the desired convergence
rate. Hence, the implementation setup and the control objective in [32] are different from the
considered problem in this study. The approach in [33] is concerned with the direct power
control of DFIG wind turbines under the ETC and is based on the SMC. Moreover, the
extended state observer has been designed to cope with external disturbances. To cope with
Zeno, the triggering threshold consists of a static ETC term and a positive constant, which
can only ensure practical stability even when disturbances vanish. In [34], an asynchronous
ETC mechanism was synthesized for LTI systems subject to external disturbances. The
proposed ETC approach in [34] is based on static cost functions and involves a fixed positive
parameter to rule out Zeno. The technique was applied to a linearized model of a DFIG
wind turbine, demonstrating a significant reduction in transmission times compared to
periodic sampling. The authors of [35] proposed an H∞ ETC mechanism based on dynamic
memory for tracking the frequency variations in a multi-area wind power system. The
overall model was described as a continuous-time LTI system and the closed-loop stability
was studied using Lyapunov–Krasovskii functions. We note that the stability analyses
in [31–35] were carried out in continuous time; this does not accurately represent the hybrid
dynamical nature of NCS. In contrast to the aforementioned findings, in this research, we
investigate the situation where the wind turbine is subject to external disturbances, such
as variations in wind speed and changes in power demand, but only the wind turbine
shaft speed is accessible for measurement. Additionally, the stabilizing control method,
the resulting robustness property, and the event-triggering mechanism are distinct from
those created in the results described earlier. Furthermore, the total system is designed as
a hybrid system to describe such networked control systems with a more accurate model,
in contrast to [31–35].

Table 1 illustrates the main contributions of the developed ETC approaches compared
to the relevant results, which consist of the following main points:

• The overall system is modeled as a hybrid dynamical system to account for both
continuous-time and discrete-time dynamics, in contrast to [31–34].
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• The developed ETC approaches are ensured to provide better performance than
conventional time-triggered controllers in terms of reduced transmission, thanks
to the structure of the proposed ETC mechanism. Such an advantage cannot be
guaranteed by the existing techniques used in [31–34].

• Furthermore, a simulation comparison with closely related work [34] shows that the
constructed ETC in this study outperforms the ETC mechanism presented in [34] in
terms of transmission.

Table 1. Novelty of the proposed approach w.r.t. the existing results.

[31] [32] [33] [34] [35] Proposed
Approach

Problem sub-synchronous
resonance power regulation power control pitch angle

control
frequency
regulation pitch angle control

Control sliding mode load sharing sliding mode observer-based H∞ observer-based

Dynamics linear multi-agent linear linear linear linear

Modeling continuous continuous continuous continuous continuous hybrid

ETC mechanism static time-dependent static static dynamic static/dynamic

Stability practical asymptotic practical asymptotic asymptotic asymptotic

ETC performance
compared to periodic - - - - - better performance

ensured

3. Preliminaries

A standard notation is adopted in this paper. R := (−∞, ∞) denotes the set of real
numbers, R≥0 := [0, ∞) denotes the set of real positive numbers, and N := {0, 1, 2, . . .}
denotes the set of integer numbers.

Based on the framework in [29], we consider the following hybrid systems:

ẋ = F(x, w) x ∈ C, x+ ∈ G(x) x ∈ D, (1)

where x ∈ Rnx is the state, w ∈ Rnw is the external disturbance, C is the flow set, F is the
flow map, D is the jump set, and G is the jump map.

Definition 1 ([21]). System (1) is said to achieve L2-gain stability from the input w to the output
y = f (x, w) if the following holds:

||y||2 ≤ α(|x(0, 0)|) + ϑ||w||2, (2)

where α ∈ K∞, ϑ ≥ 0, and the achieved L2 gain is less than or equal to ϑ.

4. System Model

The considered wind power system mainly involves a wind turbine, the customer
loads, the auxiliary diesel generator, and some dispatchable loads, as shown in Figure 1.

The power demand from the grid, denoted by P?, is assumed to be delivered by
extracted power PG from the WT. The objective of the controller is to regulate the pitch
angle of the WT to adjust the output power PG to meet the change in power demand. The
diesel generator compensates for the defect in the output power in case PG < P?. On the
other hand, when PG > P?, the excess power is dissipated by means of dispatchable loads,
such as the resistor bank or irrigation system [36].
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Pitch angle
controller

Dispatchable
load

Auxiliary
generator

Load

Local grid

Vω

ωr

ωr

ωr

β

βcmd

PG

PDL

PAG

P?

Figure 1. Layout of DFIG-based wind turbine control.

The linearized model of the considered system is given by [36]

β̇(t) =
−1
τβ

β(t) +
−1
τβ

βcmd(t)

ω̇r(t) =
M3

J
β(t) + (

M2

J
+

P?

Jω2
0
)ωr(t) +

−1
Jω0

δP?(t)

+
M1

J
δVw(t),

(3)

where β(t) and ωr(t) are the pitch angle and the shaft angular speed of the wind turbine,
respectively, βcmd(t) is the command signal from the controller (to adjust the pitch angle),
and δP?(t) and δVw(t) are the variations in power demand and wind speed, respectively.
The parameters τβ, J denote the time constant of the wind turbine blade and the moment of
inertia, respectively, P? is the load power demand, and Jω0 refers to the moment of inertia
J at the angular speed linearization ω0. The coefficients M1, M2, M3 are functions of the
constant parameters of the wind turbine; their expressions can be found in [36]. We assume
that only the angular speed ωr can be measured. Hence, the state space model of DFIG is
given by

ẋp(t) = Axp(t) + Bu(t) + Ew(t)

y(t) = Cxp(t),
(4)

where xp(t) := (β(t), ωr(t)) is the state vector, u(t) := βcmd(t) is the control signal,
w(t) := (δP?(t), δVw(t)) gathers the external disturbances, and y is the measured output.
The dimensions of xp, u, w, y are xp ∈ Rnp , u ∈ Rnu , w ∈ Rnw , and y ∈ Rny . The matrices
A, B, C, E are given by

A =


−1
τβ

0

M3

J

(
M2

J
+

P?

Jω2
0

)
, B =

 1
τβ

0



E =

 0 0
−1
Jω0

M1

J

, C =
[
0 1

]
.

(5)

We assume that the sensors and the controller are not co-located and the feedback
measurement is sent to the controller over a shared digital network, as shown in Figure 2.
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As such, the out measurement y(t) is only accessible to the controller at discrete sampling
times tk. Moreover, the control input u(tk) is kept constant between two sampling times
using ZOH implementation. We assume that the communication network is noiseless
and delay-free. This assumption ensures that the transmitted output measurement from
the sensors and the received information at the controller at any triggering instant tk
are matched.

DFIG Wind Turbine

Event-triggering
Mechanism

Digital Network

Controller

ZOH

w(t)

y(t)

y(tk)

y(tk)

u(tk)

u(t)

Figure 2. Networked control schematic of the DFIG wind turbine system.

In NCS, the network is often used by multiple feedback loops and applications. Hence,
in such control schemes, it is important to reduce the data transmission over the channel as
much as possible to avoid network congestion. To that end, we employ an ETC mechanism
to orchestrate the sampling instants, where the output y(t) should be submitted according
to the system stability/performance status. The constructed ETC has to preserve the closed-
loop stability and prevent the accumulation of sampling times due to hardware constraints.
Hence, the control design problem can be formally stated as follows:

Problem statement. We design a stabilizing feedback law u(t) and an event-triggering
mechanism, where the system stability is ensured in an appropriate sense and the Zeno
behavior is prevented in the presence of external disturbances.

5. Control Design

We stabilize the system using an observer-based controller of the following type, since
only the output (y) is accessible for measurements rather than the complete state (x):

ẋc(t) = Axc(t) + Bu(t) + F(y(t)− Cxc(t))

u(t) = −Kxc(t),
(6)

where xc ∈ Rnc denotes the estimated state and F, K are the observer and controller gain
matrices, respectively. It was shown in [30] that pair (A, B) is controllable, and pair (A, C)
is observable for any DFIG parameter.

The control input u is updated only at discrete time instants tk, k ∈ N since the output
measurement y is supposed to be transmitted over a digital channel, while the controller
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is directly fed to the plant. We investigate the case where the sequence of transmission
instants tk, k ∈ N is generated by an output feedback event-triggering condition in order
to decrease the number of transmissions. A ZOH is used to keep the transmitted output
measurement y(tk) constant between two transmission instants. As a result, in view
of (4)–(6), the closed-loop system can be described by

ẋp(t) = Axp(t)− BKxc(t) + Ew(t)

u(t) = −Kxc(t)

y(t) = Cxp(t)

 ∀t ∈ R

ẋc(t) = (A− BK− FC)xc(t) + Fy(tk)

ẏ(tk) = 0

 ∀t ∈ [tk, tk+1).

(7)

Obviously, the sampled-data system contains interactions between continuous- and
discrete-time behaviors and it is, therefore, a hybrid dynamical system by nature. Hence, in
order to deal with the system in an appropriate manner, we need to take into account the
combined dynamics.

By first stabilizing the plant without taking the communication network into account,
and then accounting for the sampling-induced error, we develop the event-triggered
controller, in accordance with the emulation approach. The closed-loop stability is then
maintained by an event-triggering rule that we derive.

First, let us assume that the full state x is measured, i.e., y = x. Then, we can design
an LQR controller to strike a balance between the state response and the control effort by
using the following quadratic cost function:

J =
∫ ∞

0 (xTQ1x + uT R1u)dt, (8)

where Q1, R1 are symmetric positive definite diagonal matrices. Then, by solving the
algebraic Riccati equation (ARE)

AT P1 + P1 A + Q1 − P1BR−1
1 BT P1 = 0 (9)

the optimal state feedback law is given by u = −Kxp, with

K = R−1
1 BT P1. (10)

We take into account that only an output (y), not the entire state, is monitored. The
state is then estimated using the state observer in (6). We use the Kalman filter to design
the observer gain F by resolving the following algebraic Riccati equation since the wind
turbine is impacted by outside disturbances.

P2 AT + AP2 + Q2 − P1CT R−1
2 CP2 = 0, (11)

where Q2, R2 are symmetric positive definite diagonal matrices. Consequently, the observer
gain (Kalman gain) F is given by

F = P2CT R−1
2 . (12)

Since the closed-loop system is both controllable and observable, the existence of
solutions to ARE (9) and (11) is ensured.

6. Hybrid Dynamical Model

Due to the ZOH implementation and the fact that the last transmitted measurement
y(tk) is kept constant between two consecutive sampling times, a sampling error is induced
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until y(t) is updated at the next transmission instant. We define the sampling-induced
error of the output measurement as follows:

e(t) = y(tk)− y(t) ∀t ∈ [tk, tk+1). (13)

It should be noted that at each transmission, the sampling error e(t) is reset to zero,
updating the previous value y(tk) to the true value y(t). Thus, we have

ė(t) = −ẏ(t) = −CAxp(t) + CBKxc(t)− CEw(t)

y(t+k ) = y(tk)

e(t+k ) = 0.

(14)

By substituting (13) in (7), we obtain

ẋp(t) = Axp(t)− BKxc(t) + Ew(t)

ẋc(t) = (A− BK− FC)xc(t) + Fy(t) + Fe(t)
(15)

Define x := (xp, xc) ∈ Rnx with nx := np + nc, then

ẋ(t)=

[
A −BK

FC A− BK− FC

]
x(t) +

[
0

F

]
e(t) +

[
E

0

]
w(t)

=:A1x(t) + B1e(t) + E1w(t).

(16)

By means of the framework [29], we define the closed-loop system as a hybrid dy-
namical system, where the terms flow dynamics and jump dynamics refer to the system’s
continuous-time behavior and discrete-time changes, respectively. Additionally, the flow set
and the jump set, respectively, describe the conditions under which the system operates in
continuous-time or discrete-time.

To facilitate the derivation of the hybrid mode, we introduce an auxiliary time variable
with the following dynamics:

τ̇(t) = 1 ∀t ∈ [tk, tk+1), τ(t+k ) = 0. (17)

The variable τ keeps track of the amount of time that has passed between the trans-
mission instant tk, k ∈ N and the subsequent sampling time tk+1, at which τ is reset to zero,
as described in (17).

Let ξ := (x, e, τ) ∈ Rnx ×Rny ×R. Then, the hybrid dynamical system is

ξ̇(t) ∈


A1x(t) + B1e(t) + E1w(t)

A2x(t) + E2w(t)

1

, ξ(t) ∈ C

ξ(t+k ) ∈


x

0

0

, ξ(t) ∈ D,

(18)

where A2 := [−CA CBK] and E2 := −CE. We designed the flow set C and the jump set D
based on the triggering rule, as will be presented in the next section.

In the following sections, we discuss different event-triggering schemes to maintain
closed-loop stability in the presence of sampling. We start with the conventional time-
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triggered control to derive the maximal allowable sampling period. Then, we explain two
different ETC rules based on static and dynamic triggering thresholds.

7. Design of the Triggering Rules

In this section, we explore the design of the triggering rules, where the stability of
the closed-loop system is maintained. We start with the traditional time-triggered control
and we derive an upper bound on the periodic sampling period. Next, we construct a
static ETC mechanism based on the available output information. Then, we enhance the
performance of the ETC by enriching the triggering threshold with a dynamic variable to
enlarge the inter-transmission times.

7.1. Time-Triggered Control

Conventional periodic time-triggered control is based on the principle that the intervals
between transmissions are separated by a fixed constant time, T > 0. In other words, the
TTC mechanism is given by

tk+1 = tk + T, (19)

which leads to sets C,D in (18) to be

C =
{

ξ(t) : τ ∈ [0, T]
}

D =
{

ξ(t) : τ = T
}

.
(20)

In this context, it is often necessary to derive the so-called maximally allowable transmis-
sion interval (MATI) boundary, under which closed-loop stability is guaranteed. A popular
approach to compute this MATI is via the technique presented in [37], which provides
an explicit expression of the MATI bound based on the system parameters. Let us define
W(e) := |e|, then it holds that

〈∇W(e),A2x(t) + B2e(t) + E2w(t)〉 ≤ H(x, w) + L|e|, (21)

where H(x, w) := |A2x + E2w| and L := |B2|. The following Lemma adapts the results
presented in [37] to LTI hybrid systems (18) for robust stabilization.

Lemma 1. We consider the hybrid system (18) and (30). Should there exist values ε, γ > 0, and
a real matrix P = PT > 0, such that the following condition holds

AT
1 P + PA1 + (1 + ε)C̃TC̃ ? ?

BT
1 P −γ2Iny ?

ET
1 P + ET

2 A2 0 ET
2 E2 − ϑ2Inw

 < 0. (22)

where C̃ := [C 0], then the Lyapunov function candidate V(x) = xT Px satisfies for all e ∈ Rne

and almost all x ∈ Rnx

〈∇V(x),A1x + B1e〉 ≤−(1 + ε)|y|2 − H2(x, w) + γ2W2(e) + ϑ2|w|2, (23)

where H(x, w) and W(e) are defined in (21).

Proof of Lemma 1. Let V(x) = xT Px.
Consequently, it holds for all e ∈ Rne and almost all x ∈ Rnx .
Consequently, it holds that, for all e ∈ Rne and almost all x ∈ Rnx

〈∇V(x),A1x + B1e〉 = x̃T(AT
1 P + PA1)x + xT PB1e + eTBT

1 Px. (24)
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By post- and pre-multiplying LMI (22), respectively, by the state vector (x, e) and its
transpose, we obtain

〈∇V(x),A1x(t) + B1e(t) + E1w(t)〉 − (1 + ε)|y|2 − H2(x, w) + γ2W2(e) + ϑ2|w|2 (25)

implying that

xT(AT
1 P + PA1)x + xT PB1e + eTBT

1 Px ≤ −εx|x|2 − |A2x|2 − εy|C̃x|2 + γ2|e|2

= −(1 + ε)|y|2 − |A2x|2 + γ2|e|2 + ϑ2|w|2
(26)

and the conclusion of Lemma 1 holds.

Lemma 1 establishes an L2-gain stability property for the system ẋ = A1x + B1e from
|e| to (|A2x|, |y|); see [38]. Then, according to [37], the MATI bound is given by

T (γ, L) :=


1
Lr arctan(r) γ > L
1
L γ = L
1
Lr arctan(r) γ < L

(27)

with r :=
√∣∣( γ

L )
2 − 1

∣∣ and γ, L from Lemma 1. To provide some intuition about the bound
T (γ, L) in [37], we define a dynamic variable φ ∈ R≥0 as follows:

φ̇ = −2Lφ− γ2(φ2 + 1) φ(0) = λ−1, (28)

where λ ∈ (0, 1), γ comes from Lemma 1 and L, as defined in (21). As such, the upper
bound T (γ, L) is computed as the time it takes for φ to decrease from λ−1 to λ.

The derivation of the sampling period T is often based on the worst-case scenario,
which is conservative. For instance, when the desired stability or performance measure is
achieved and no more disturbances affect the plant, it is unnecessary to keep updating the
control law with the same sampling frequency as in the stage of transient response. This
motivates the event-triggered control idea, where the sampling instants are only generated
when needed, according to the system state.

7.2. Static Event-Triggering

Here, we provide an outline of how to create an output feedback event-triggering
scenario that preserves the sampled data system’s stability. Preventing the occurrence of the
Zeno behavior is one of the primary difficulties dealt with in the design of an ETC, which
is particularly difficult when just the output y is measured and the plant is influenced by
external disturbances. An effective solution for this problem is to enforce a positive dwell
time T on the inter-sampling times; see [28,39]. In this way, the ETC condition takes the
following form:

tk+1 = inf{t ≥ tk + T : |e(t)| ≥ σ|y(t)|}, (29)

where σ, T > 0 are design parameters to be specified later. According to (29), a new
transmission instant tk+1 is only permitted after the passage of time T from the previous
triggering instant tk, such that |e(t)| ≥ σ|y(t)| is satisfied. Consequently, (18) becomes

C =
{

ξ(t) : |e(t)| ≤ σ|y(t)| or τ ∈ [0, T]
}

D =
{

ξ(t) : |e(t)| ≥ σ|y(t)| and τ ≥ T
}

.
(30)

The enforced minimum time T is as in (27), and the same conditions as in Lemma 1
are required. Then, in view of (25), if we enforce

γ2W2(e) ≤ ε|y|2 (31)
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then it holds that

〈∇V(x),A1x(t) + B1e(t) + E1w(t)〉 ≤ −|y|2 + ϑ2|w|2 (32)

which ensures that the closed-loop system is L2-stable. Hence, sets C,D in (30) are defined
with σ =

√
ε

γ and T ∈ (0, T (γ, L)). We have the following results.

Theorem 1. Consider the systems defined by (18), (30), and (42), (43), and assume that the
required conditions in Lemma 1 are satisfied. We take σ =

√
ε

γ and T ∈ (0, T (γ, L)) in (30). Then,
system (18), (30) is L2-stable from w to y with an L2 gain that is less than or equal to ϑ.

Proof of Theorem 1. We consider the following Lyapunov function for all ξ ∈ C ∪ D,

R(ξ) := V(x) + max{0, γφ(τ)W2(e)} (33)

with V(x) and W(e), as defined in (25) and (21). We study the continuous- and discrete-time
dynamics of R(ξ).

Let ξ ∈ D and define G(ξ) := (x, 0, 0); in view of (18) and the fact that W(0) = 0, we
obtain

R(G(ξ)) = V(x) + max{0, γφ(0)W2(0)} = V(x) ≤ R(ξ). (34)

Let ξ ∈ C, and suppose that φ(τ) < 0, which implies that τ > T. Hence, γ2W2(e) ≤
ε|y|2 in view of (30) since ξ ∈ C. Consequently,

Ṙ(ξ; F(ξ, w)) = ∇V(x;A1x(t) + B1e(t) + E1w(t)) ≤ −|y|2 + ϑ2|w|2, (35)

where F(ξ, w) := (A1x(t) + B1e(t) + E1w(t),A2x(t) + E2w(t), 1).
When ξ ∈ C and φ(τ) > 0, we have R(ξ) = V(x) + γφ(τ)W2(e). As above, in view

of Lemma 1 and (28), we obtain

Ṙ(ξ; F(ξ, w)) ≤ −(1 + ε)|y|2 − H2(x, w) + γ2W2(e) + ϑ2|w|2 + 2γφ(τ)W(e)H(x)
−γ2φ2(τ)W2(e)− γ2W2(e)

(36)

Using the fact that 2γφ(τ)W(e)H(x, w) ≤ γ2φ2(τ)W2(e) + H2(x, w), we obtain

Ṙ(ξ; F(ξ, w)) ≤ −(1 + ε)|y|2 + γ2W2(e) + ϑ2|w|2 − γ2W2(e) (37)

As a result, in view of (35) and (37), it holds that, for all ξ ∈ C

Ṙ(ξ; F(ξ, w)) ≤ −ε|y|2 + ϑ2|w|2, (38)

which implies that the closed-loop system is L2-gain stable from w to y with an L2 gain
that is less than or equal to ϑ.

7.3. Dynamic Event-Triggering

The developed ETC in the previous section belongs to the static event-triggering class
since the triggering threshold is not a dynamic system. The problem with this static ETC is
that it can result in a conservative number of transmissions. To improve the transmission
performance, the ETC can be modified to the following dynamic form:

tk+1 = inf{t > tk + T | η(t) = 0}, i ∈ N, (39)

where η ∈ R≥0 is a dynamic variable with the following dynamics; see [40,41]

η̇ = Ψ(y, e, τ) η > 0

η+ = η0(y, e, τ) η = 0
(40)
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with functions Ψ(y, e, τ) and η0(y, e, τ) given by

Ψ(y, e, τ) :=

 ε|y|2 − αη τ ∈ [0, T],

ε|y|2 − γ̃|e|2 − αη τ > T

η0(y, e, τ) := γ(λ̃− λ)|e|2
(41)

with parameters λ̃ ∈ [λ, λ−1) and γ̃ := γ2 + γ2λ̃2 + 2γλ̃L̃ with L̃ := L + ν for any small
ν, α > 0. In this case, we need to include the dynamics of η in the hybrid model (18). Hence,
with a slight abuse of notation, we redefine ξ := (x, e, η, τ) ∈ Rnx ×Rny ×R ×R. Then,
the hybrid dynamical system becomes

ξ̇(t) ∈


A1x(t) + B1e(t) + E1w(t)

A2x(t) + E2w(t)

Ψ(y, e, τ)

1

, ξ(t) ∈ C

ξ(t+k ) ∈


x

0

η0(y, e, τ)

0

, ξ(t) ∈ D

(42)

and the flow and jump sets are modified, based on (39) to

C :=
{

ξ ∈ X : τ ∈ [0, T] or η > 0
}

D :=
{

ξ ∈ X : τ > T and η 6 0
}

.
(43)

We obtain the following results.

Theorem 2. Consider systems (42) and (43), and assume that the required conditions in Lemma 1
are satisfied. We take T ∈ (0, T (γ, L)) in (30) and design the functions Ψ(y, e, τ), η0(y, e, τ) as
in (41). Then, systems (42) and (43) are L2-stable from w to y with an L2 gain that is less than or
equal to ϑ.

Proof of Theorem 2. Similar to [28,40], we consider the following Lyapunov function for
all ξ ∈ C ∪D

R(ξ) := V(x) + γφ(τ)|e|2 + η, (44)

where V(x) := xT Px for (x, e) ∈ Rnx+ne with P comes from Lemma 1.
Let ξ ∈ D. In view of (42) and (43), and because φ(0) = λ−1 and e+ = 0, we have that

R(G(ξ)) = V(x+) + γφ(τ+)|e+|2 + η+

= V(x) + η0(e)

= V(x) + γ(λ̃− λ)|e|2

6 V(x)+γφ(τ)|e|2+η

6 R(ξ).

(45)

As a result, we deduce that, for all ξ ∈ D, R(G(ξ)) 6 R(ξ).
Dynamics of R during flows. We consider two cases.

Case 1: Let ξ ∈ C and τ ∈ [0, T]. Consequently, in view of (28), (40), and (44), and
recalling that L̃ = L + ν, we obtain
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〈∇R, F(ξ, w)〉 = 〈∇V(x),A1x + B1e + E1w〉+ γ
dφ
dτ |e|

2 + 2γφ(τ)|e|〈 ∂
∂e |e|, g(x, e, w)〉+ η̇

6 −(1 + ε)|y|2 − |A2x + E2w|2 + γ2|e|2 + ϑ2|w|2

+γ|e|2
(
− 2L̃φ(τ)− γ(φ2(τ) + 1)

)
+ 2γφ(τ)|e|(L|e|+ |A2x + E2w|) + Ψ(y, e, η, τ)

= −(1 + ε)|y|2 − |A2x + E2w|2 − 2νγφ(τ)|e|2 + ϑ2|w|2 + 2γφ(τ)|e||A2x + E2w|
−γ2φ2(τ)|e|2 + Ψ(y, e, η, τ).

(46)

By using the fact that 2γφ(τ)|e||A2x + E2w| 6 γ2φ2(τ)|e|2 + |A2x + E2w|2 and since
Ψ(y, e, η, τ) = εy|y|2 − αη in view of (41), for all ξ ∈ C and τ ∈ [0, T], we have that

〈∇R, F(ξ, w)〉 6 −(1 + ε)|y|2 − 2νγφ(τ)|e|2 −αη + ϑ2|w|2

6 −|y|2 + ϑ2|w|2
(47)

Case 2: Let ξ ∈ C and τ > T and, thus, η > 0. Then it holds that φ(τ) = λ̃ since φ̇ = 0
for τ > T. Hence, in view of (44), for this case, we obtain that R(ξ) = V(x) + γλ̃|e|2 + η.
By following similar lines as before, in view of (41), and by using the fact that 2γλ̃|e||A2x +
E2w| 6 γ2λ̃2|e|2 + |A2x + E2w|2, we obtain (47). Thus, property (47) holds for all ξ ∈ C
and the L2-gain stability is guaranteed.

8. Results and Discussion

We verify the theoretical results discussed in the previous section by simulating
system (4) with the parameters in Table 2 [36].

Table 2. Parameters of DFIG [36].

Parameter τβ J P0 ω0 M1 M2 M3

Value 1 s 180 s 5.7 kW 300 rad/s 4054 −0.4667 −754.123

As a result, the following state space matrices are obtained

A =

 −1 0

−4.1896 −0.0026

, B =

[
1
0

]

E =

[
0 0

0.0137 22.523

]
, C =

[
0 1

]
.

(48)

Then, we apply the developed ETC approaches by following the procedure in Algorithm 1
below.

We design the controller and the observer gains with Q1 = CTC, R1 = 0.5, and
Q2 = BBT , R2 = 0.01, and we obtain K = [2.5821 − 1.4120] and L = [−8.0408 8.2056]T .
Then, by using the MATLAB environment with the YALMIP toolbox and the SeDuMi
solver [42], the following values are then obtained from the solution of the LMI condition (22):
ε = 0.2013, γ = 19.6791, ϑ = 31.6228, which leads to σ = 0.0228, and the MATI bound
T (γ, β) in (27) was found to be 0.0798 s. Thus, all of the ETC parameters have been estab-
lished. Then, by using the hybrid equation (HyEQ) toolbox for MATLAB [43], simulations
of system (18) execute the initial condition (x(t0), e(t0), τ(t0)) = (2, 3, 0, 0, 0, 0) for 10 s, with
random external disturbances satisfying |w| < 0.5. The closed-loop response is presented
in Figures 3–10.
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Algorithm 1: Guidelines on how to apply the ETC approaches
Start

1: Define the wind turbine parameters and compute the matrices A, B, C, E in (5)
2: Check controllability and observability
If the system is controllable and observable, do:
1: Choose Q1, R1, and compute the controller gain K
2: Choose Q2, R2, and compute the observer gain L
3: Construct the matrices A1,B1, E1,A2,B2, E2 for the hybrid model (18)
4: Check the feasibility of LMI (22)
If LMI is feasible, do:
1: Find γ, L, ε, ϑ and compute σ, T
2: Set the initial condition and start the simulation

End

Figures 3 and 4 show the plant responses in the absence and presence of external
disturbances, respectively, for the three implementation scenarios in Sections 7.1–7.3. We
note that the state responses in the event-triggered implementations (29), (39) are almost
identical to the state response in the time-triggered control (19) in terms of the peak
overshoot and settling time, implying that the ETC implementation maintains the closed-
loop response quality, even with fewer transmissions. We also note that the plant trajectories
exhibit large overshoot in the three cases, indicating that the feedback law can be further
modified or constructed by other design methods to mitigate such behavior.

0 1 2 3 4 5 6 7 8 9 10
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-2

-1

0

1

2

3

Figure 3. Plant and observer state trajectories in the absence of disturbances.
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Figure 4. Plant and observer state trajectories with random disturbances.
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Figure 5 presents the estimation error trajectories of the designed observer, which
converge to the origin at less than 3 s. This implies that the estimated states xc(t) approach
the actual plant states xp(t) in a short time.

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

3

4

Figure 5. Trajectories of the estimation errors in the absence of disturbances.

The norms of the state trajectories in the three implementation scenarios are shown in
Figure 6, where we can see that |x| asymptotically converges to the origin, i.e., the global
asymptotic stability is achieved when no external disturbances are affecting the plant. On
the other hand, when the plant is affected by external disturbances, we can see in Figure 7
that |x| converges to a neighborhood to the origin, as stated by Theorems 1 and 2, i.e., the
L2 stability is guaranteed.
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Figure 6. Norm of the state trajectories in the absence of disturbances.
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Figure 7. Norm of the state trajectories in the presence of disturbances.
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Figure 8 shows the sampling-induced errors in the three implementation scenarios,
where it can be noted that the sampling errors are reset to zero at any transmission instant,
as explained in (14).

0 1 2 3 4 5 6 7 8 9 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8. Sampling-induced errors in the absence of disturbances.

The generated sampling times are presented in Figure 9 for the case of w(t) = 0, where
it can be seen that the generated number of transmissions by the ETC mechanisms (29)
and (39) is much less than with the time-triggered control (19). In fact, the simulation
results showed that a reduction of more than 50% in the number of transmissions was
achieved. Moreover, Figure 9 shows that the dynamic ETC (39) has performs better than
the static ETC (29) in terms of reduced transmissions. A similar conclusion can be stated for
the generated transmission times in the presence of disturbances, as shown in Figure 10.
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Figure 9. Inter-transmission times in the absence of disturbances.
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Figure 10. Inter-transmission times with random disturbances.
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Figure 11 reveals the trade-off between the guaranteed L2 gain η, the triggering
threshold σ (upper plot), and the enforced minimum sampling period T (lower plot). We
see that when the L2 is enlarged, the triggering threshold σ is increased, which can lead to
larger inter-transmission intervals and vice versa; see (30). Hence, this provides a tuning
guide for the user according to the desired implementation properties.
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Figure 11. Trade-off between the L2 gain and the parameters of the ETC mechanism.

To further illustrate the advantage of the proposed approach, a simulation comparison
was carried out with [34] on the same plant model and with the same plant parameters, as
shown in Table 3. The first column of Table 3 shows the number of transmission instants
under the time-triggered control, as developed in Section 7.1. Moreover, for static and
dynamic ETCs, the proposed approach generates much fewer transmissions than the ETC
technique presented in [34], which highlights the benefits of the proposed methods.

Table 3. Comparison with [34] on the number of triggering times.

Result No of Periodic Samples
per Second

No of ETC Transmissions
per Second

[34] 50 38

Static ETC technique (29) 13 7

Dynamic ETC technique (39) 13 5

We only performed simulation comparison with [34] since a similar DFIG wind turbine
model and similar observer-based controllers were studied [34], which makes the ETC
comparison relevant. In contrast, the approaches presented in [31,33] considered SMC
controllers, and the approach presented in [32] considers power regulation controllers
based on the multi-agent system method. As such, due to the different control structures
and different DFIG wind turbine models in these works, the ETC comparison is not
relevant since different feedback laws will result in different transmission performances
of the ETC, even with a typical plant model. To further clarify this point, we note that
the feedback law directly affects the structure of the closed-loop matrices, A1,B1, in view
of (16). Consequently, this affects the obtained values of the ETC parameters γ, ε, ϑ from
the feasibility of LMI (22). As a result, the ETC performance will vary with different
control structures.

To conclude our discussion, the simulation results in Figures 3–7 demonstrate that the
event-triggering strategies (29), (39) produce a closed-loop response comparable to that of
periodic time-triggering, while significantly reducing the number of transmissions; this
allows for the efficient use of communication resources and highlights the benefits of the
developed approaches.
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9. Conclusions

In this paper, we examined robust control design for the pitch angle of DFIG ET
under ETC implementation. The created method only uses output feedback, guarantees
the closed-loop system’s asymptotic stability, and guards against the emergence of Zeno
behavior. In order to account for both continuous-time dynamics and discrete transitions,
the entire system is described as a hybrid dynamical system. Simulations support the
technique’s effectiveness. The outcomes demonstrate that by significantly lowering the
number of transmissions, the ETC mechanism outperforms the time-triggered control.

In this paper, we concentrate on output feedback stabilization. In practice, several prac-
tical control applications necessitate set point reference tracking for system state/output
using common methods, such as PID control, which is an intriguing research area to con-
sider. Future developments of this work might also consider quantization and packet
dropouts that arise with digital implementation.

The implementation scenario in this study assumes that only the plant is affected by
external disturbances similar to [36]. The inclusion of measurement noise and transmission
delays is important in practice; however, those phenomena induce technical challenges
on the stability analysis and require thorough investigation, which will be an interesting
extension to this work.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms
ARE algebraic Riccati equation
ETC event-triggered control
ETM event-triggering mechanism
DFIG doubly fed induction generator
LMI linear matrix inequality
LTI linear time-invariant
LQR linear quadratic regulator
MATI maximal allowable transmission interval
NCS networked control system
RES renewable energy sources
SDC sampled-data control
SMC sliding mode control
WT wind turbine
ZOH zero-order hold
List of Symbols
β(t) pitch angle of WT
ωr(t) angular speed of WT
βcmd(t) pitch angle command
δP? (t) variation in power demand
δVw (t) variation in wind speed
τβ time constant of WT blade
J moment of inertia of WT blade
P? load power demand



J. Sens. Actuator Netw. 2023, 12, 64 19 of 21

Jω0 inertia J at ω0
M1, M2, M3 functions of WT parameters
xp(t) state vector of WT
u(t) control input
w(t) external disturbances on WT
y(t) measured output of WT
A, B, C constant matrices of WT model
e(t) sampling error
tk kth triggering instant
y(t+k ), e(t+k ) updated values of y, e at tk
xc(t) estimated state by observer
σ threshold constant for static ETC
K controller gain matrix
F observer gain matrix
Mc controllability matrix
Mo observability matrix
J quadratic cost function
Q1, R1, P1 controller LQR matrices
Q2, R2, P2 observer LQR matrices
np dimension of plant state
τ(t) auxiliary time variable
ξ(t) concatenated state vector
C flow set of the hybrid model
D jump set of the hybrid model
T periodic sampling interval
T (γ, L) MATI bound
φ(t) dynamic variable to compute T
W(e) function of the sampling error
V(x), R(ξ) Lyapunov function candidates
η(t) dynamic ETC variable

Ψ(y, e, τ), η0(y, e, τ)
dynamic ETC functions
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