
Citation: Al-Daraiseh, A.; Sanjalawe,

Y.; Al-E’mari, S.; Fraihat, S.; Bany

Taha, M.; Al-Muhammed, M.

Cryptographic Grade Chaotic

Random Number Generator Based

on Tent-Map. J. Sens. Actuator Netw.

2023, 12, 73. https://doi.org/

10.3390/jsan12050073

Academic Editor: Lei Shu

Received: 2 September 2023

Revised: 22 September 2023

Accepted: 26 September 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Actuator Networks
Sensor and

Article

Cryptographic Grade Chaotic Random Number Generator
Based on Tent-Map
Ahmad Al-Daraiseh 1 , Yousef Sanjalawe 2 , Salam Al-E’mari 3 , Salam Fraihat 4,* , Mohammad Bany Taha 5

and Muhammed Al-Muhammed 1

1 Computer Science Department, School of Information Technology, American University of Madaba,
Amman 11821, Jordan; a.daraiseh@aum.edu.jo (A.A.-D.); m.almuhammed@aum.edu.jo (M.A.-M.)

2 Cybersecurity Department, School of Information Technology, American University of Madaba,
Amman 11821, Jordan; y.sanjalawe@aum.edu.jo

3 Information Security Department, Faculty of Information Technology, University of Petra,
Amman 11196, Jordan; salam.ammari@uop.edu.jo

4 Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology,
Ajman University, Ajman P.O. Box 346, United Arab Emirates

5 Department of Data Science and Artificial Intelligence, School of Information Technology,
American University of Madaba, Amman 11821, Jordan; m.taha@aum.edu.jo

* Correspondence: s.fraihat@ajman.ac.ae

Abstract: In recent years, there has been an increasing interest in employing chaotic-based random
number generators for cryptographic purposes. However, many of these generators produce se-
quences that lack the necessary strength for cryptographic systems, such as Tent-Map. However,
these generators still suffer from common issues when generating random numbers, including issues
related to speed, randomness, lack of statistical properties, and lack of uniformity. Therefore, this
paper introduces an efficient pseudo-random number generator, called State-Based Tent-Map (SBTM),
based on a modified Tent-Map, which addresses this and other limitations by providing highly robust
sequences suitable for cryptographic applications. The proposed generator is specifically designed to
generate sequences with exceptional statistical properties and a high degree of security. It utilizes a
modified 1D chaotic Tent-Map with enhanced attributes to produce the chaotic sequences. Rigorous
randomness testing using the Dieharder test suite confirmed the promising results of the generated
keystream bits. The comprehensive evaluation demonstrated that approximately 97.4% of the tests
passed successfully, providing further evidence of the SBTM’s capability to produce sequences with
sufficient randomness and statistical properties.

Keywords: random number generator; Tent-Map; chaotic; Dieharder

1. Introduction

With the rapid progress of the Internet in recent years, there has been a rising
need for enhanced information security in various fields. As a result, security concerns
have gained increasing attention [1]. The reliability and unpredictability of encryption
algorithms and key generation are pivotal for ensuring the effectiveness of encryption
systems [2–5]. Random numbers are essential elements in the majority of cryptographic
algorithms, and the usage of a random number generator (RNG) holds significant value in
the domain of information security. One notable application of RNGs is their crucial role in
generating parameters for public key cryptographic systems, like ECC and RSA, as well as
facilitating image encryption [6].

In the past few years, there has been a proliferation of image-based cryptographic
schemes that leverage the principles of confusion and diffusion. These encryption schemes
consist of two key phases. The first phase, referred to as confusion, involves scrambling the
positions of pixels to disrupt any correlation between them. The second phase, diffusion,

J. Sens. Actuator Netw. 2023, 12, 73. https://doi.org/10.3390/jsan12050073 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan12050073
https://doi.org/10.3390/jsan12050073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-5240-286X
https://orcid.org/0000-0002-4442-1865
https://orcid.org/0000-0002-2134-4158
https://orcid.org/0000-0002-1025-7868
https://orcid.org/0000-0001-8748-0243
https://orcid.org/0000-0002-1845-4364
https://doi.org/10.3390/jsan12050073
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan12050073?type=check_update&version=1

J. Sens. Actuator Netw. 2023, 12, 73 2 of 26

employs reversible operations to modify the pixel values [7]. The confusion and diffusion
processes can be repeated for multiple rounds denoted by m and n, with both m and n being
greater than zero. Within these processes, pseudo-random number sequences (PRNSs)
generated by chaotic maps play a crucial role [8,9]. Random numbers (RN) play a crucial
role in modern cryptography as they facilitate the encryption of information through ciphers
and ensure security by utilizing private keys and certificates. Their importance extends
across various engineering domains, including asymmetric encryption, digital algorithms in
cryptography, system testing, and statistical Monte Carlo methods [10]. RNGs are utilized
to generate these RNs or confidential keys and can be categorized as deterministic (also
known as pseudo-random number generators or PRNGs) or nondeterministic (also known
as true random number generators or TRNGs). PRNGs produce random numbers through
algorithms that rely on a seed as the input, while TRNGs generate random numbers using
physical sources [11].

Many techniques were developed for generating PRNSs. One approach involves
employing a Chebyshev chaotic map to generate PRNS [12]. In this particular method,
the eight-bit planes of an eight-bit gray level image are stored separately, resulting in a
matrix size eight times that of the original image. The PRNS then performs a permu-
tation of the pixel bits. However, this scheme necessitates sorting the lengthy chaotic
sequence, which introduces additional computational overhead. In the subsequent part of
the scheme, the bit planes undergo another permutation using Arnold’s cat map. Unfor-
tunately, the number of rounds required to achieve the desired outcomes is not specified.
While this dual permutation process generates a diffusion effect on the encrypted image, it
is important to note that permutation-only ciphers are susceptible to cryptanalysis. Conse-
quently, the overall scheme exhibits a high level of complexity but lacks security. Therefore,
an alternative scheme that incorporates both permutation and diffusion is necessary. As
mentioned earlier, chaotic maps are the essential building blocks for creating encryption
algorithms, particularly for image encryption, by serving as the PRNG. These mathematical
functions generate highly unpredictable patterns, beginning from an initial seed value.
Figure 1 illustrates the recent advancements in utilizing chaotic maps in nonlinear dynamic
systems, including pseudo-random number generation and encryption. Pseudo-random
number generators are found in both hardware and software implementations, with Field
Programmable Gate Array (FPGA) and microcontroller-based implementations utilizing
platforms such as Arduino and Raspberry Pi. Encryption applications primarily focus on
image ciphering, with only a few instances involving audio [13].

Quantum Random Number Generation (QRNG) is at the forefront of cutting-edge
research within the field of quantum information science. This captivating discipline
leverages the inherent unpredictability of quantum mechanics to create genuinely random
numbers [14]. In stark contrast to classical random number generators, which often rely on
deterministic algorithms, QRNG capitalizes on the fundamental tenets of quantum physics,
including the uncertainty principle and the superposition of quantum states, to yield in-
herently unpredictable outcomes. The utility of QRNG extends across diverse domains,
encompassing cryptography, secure communications, and simulations [15]. As the demand
for robust, unassailable encryption techniques escalates, QRNG holds the promise of assum-
ing a pivotal role in safeguarding the digital realm. It achieves this by generating random
numbers that are naturally impervious to predictability and exploitation. Researchers in
this field persistently challenge the limits of our comprehension of quantum phenomena,
striving to harness these phenomena for pragmatic, real-world applications that have the
potential to revolutionize secure data transmission and computational integrity in the
future [14,15].

This current study is driven by the significant attention received by chaotic cryptogra-
phy in recent years, evident from the numerous cipher systems proposed and discussed
in the literature that make use of chaotic maps. The appeal of incorporating chaotic maps
in cipher systems arises from several key attributes. Firstly, chaotic maps display a high
sensitivity to initial conditions and control parameters. Secondly, the evolution of their

J. Sens. Actuator Netw. 2023, 12, 73 3 of 26

orbits is unpredictable. Additionally, these maps can be relatively easily implemented in
both hardware and software, resulting in high encryption rates. These attributes are closely
associated with crucial cryptographic properties, such as confusion and diffusion, as well
as balance and the avalanche effect [16]. Despite its advantages, the original Tent-Map
faces several limitations when it comes to generating random numbers, encompassing
drawbacks in terms of speed, randomness, a lack of statistical properties, and the absence of
uniformity [17–20]; therefore, this paper introduces and implements an innovative method-
ology for designing and constructing a PRNG that generates cryptographic-grade random
numbers while prioritizing efficiency, compactness, and simplicity. The remaining sections
of this paper are structured as follows. Section 2 presents a comprehensive review of the
literature and discusses the state-of-the-art random number generator algorithms. Section 3
provides an introduction to the preliminaries of the Tent-Map. The proposed random
number generator is discussed in Section 4. In Section 5, the experimental settings and
evaluation results are presented. Section 6 presents the contributions to sensor and actuator
networks. Finally, Section 7 concludes with the key findings, limitations, and suggestions
for future work.

Figure 1. Applications of chaotic maps [13].

2. Related Works

Chaotic maps find applications in various domains of information security, including
stream ciphers [21,22], block ciphers [23,24], hashing [25,26], steganography, and digital wa-
termarking [27–30]. Consequently, a wide range of chaotic maps is available for generating
pseudo-random numbers, with the logistic map being a popular choice among researchers
due to its extensive exploration. Researchers have utilized various modified versions of
the logistic map for pseudo-random number generation, such as the pseudo-randomly
enhanced logistic map (PELM), which incorporates optimizations to improve random-
ness [31], and the floating-point-based modified logistic chaotic system, which employs
floating-point arithmetic for increased precision [32]. The hyper-chaotic modified robust
logistic map (HC-MRLM) introduces hyper-chaotic behavior to enhance complexity [33].
The modified logistic map, with an increased key-space range, expands the parameter
range to generate more diverse sequences [34]. The nonlinear digitalized modified logistic
map involves digitization techniques for digital implementation [35]. Furthermore, the op-
timized logistic map employing perturbation operation utilizes perturbations to enhance
chaotic behavior and sensitivity to initial conditions [36].

J. Sens. Actuator Netw. 2023, 12, 73 4 of 26

The logistic map typically exhibits chaotic behavior within a narrow range of control
parameter values, specifically between 3.57 and 4. However, efforts have been made to
expand this parameter range and enhance the chaotic behavior of the logistic map. In a
recent study focused on pseudo-random bit generation, logistic maps were utilized to
generate multimodal maps, leading to an increased range of chaotic behavior within the
parameter interval [37]. Additionally, researchers have explored the application of different
chaotic maps, such as the Lorenz map, in their investigations.

Numerous electronic and hardware-based implementations of chaos-based PRNGs
have been introduced in the literature. Matheus et al. presented a gate-level hardware im-
plementation of a PRNG based on an exponential chaotic map [38]. Their hardware design
utilized an FPGA device for the proposed PRNG system. There are several FPGA-based
implementations of chaotic PRNGs, including those using a four-wing memristive hyper-
chaotic system and Bernoulli map [39], a reconfigurable chaotic PRNG based on FPGA [40],
a chaos-based bitwise dynamical PRNG on FPGA [41], and an FPGA implementation of a
chaos-based PRNG for secure communication [42]. FPGA devices are often preferred by
algorithm designers for prototyping as they allow code execution at the gate level using
hardware descriptive languages. While FPGA implementations are common for prototyp-
ing, real-world applications typically employ microcontrollers. Therefore, several proposals
have focused on chaos-based PRNGs using microcontrollers. For example, a recent pro-
posal introduced an analog circuit and microcontroller-based PRNG application based on
a new easily realizable 4D chaotic system [43]. Another study realized a chaotic random
bit generator using a microcontroller [44], and a hardware implementation of initials-
boosted coexisting chaos in a two-dimensional sine map [45]. These proposals leverage
microcontrollers to implement chaos-based PRNGs in practical applications. Chaos-based
PRNGs find applications in various security domains, including stream ciphers [46], block
ciphers [47], secure communications [48], image encryption [49], and video encryption [50],
among others.

However, despite their popularity and successful applications, chaos-based PRNGs
have certain shortcomings. Yeniçeri et al. conducted a study highlighting a vulnerability in
a random number generator based on a time delay differential equation [51]. By predicting
values in advance and coupling them with future states of a time-delay-based chaotic
system, they were able to synchronize the system and generate signals similar to the
original ones, posing a potential attack. Another study focused on the cryptanalysis of
chaos-based PRNGs, identifying system weaknesses and suggesting improvements [52,53].

In the context of hardware-based attacks, Youling et al. conducted cryptanalysis on
chaos-based cryptosystems [54]. They implemented a chaos-based cryptosystem on a
microcontroller device and performed side-channel attack analysis and correlation power
analysis. These attacks involve studying the execution time and power consumption of the
cryptographic algorithm. Vulnerability and security analyses have also been performed in
various other studies on chaos-based PRNGs within cryptographic applications. For ex-
ample, researchers conducted a security analysis of an efficient chaos-based PRNG for
video encryption applications [55]. Additionally, a comprehensive vulnerability analysis
was performed for a chaos-based PRNG in another study [56,57]. These investigations
contribute to understanding the vulnerabilities and security considerations associated with
chaos-based PRNGs in cryptographic contexts.

Also, a novel method for generating pseudo-random sequences using coupled map
lattices is presented in [58]. It addresses the limitation of chaotic maps, which have a
restricted chaotic behavior range, limiting their use in cryptography. The proposed method
introduces generalized symmetric maps with adaptive control parameters, allowing users
to choose any symmetric chaotic map while ensuring independent and random output
sequences. A lattice-based structure connects local maps to their neighboring nodes,
increasing sequence complexity. The method’s effectiveness is evaluated through various
techniques, demonstrating a large key space, the generation of pseudo-random sequences,
and suitability for IoT devices. The model employs a spatiotemporally coupled map

J. Sens. Actuator Netw. 2023, 12, 73 5 of 26

lattice system with adaptive values derived from local map accumulation points, ensuring
consistent chaotic behavior. Detailed explanations of the system’s workings are provided
in subsequent sections. Based on the reviewed literature, it is evident that the majority of
recent research proposals focus on using well-known maps, such as the logistic map or Tent-
Map, as local maps in cryptographic systems. These maps, including the logistic map and
Tent-Map, belong to the family of symmetric chaotic maps, which also encompass higher-
order maps. However, it is worth noting that the Tent-Map, in particular, has been observed
to exhibit a strong dependency on the control variable µ for its chaotic behavior. To remedy
this and other limitations, an efficient chaotic random number generator is proposed in this
paper. The main goal of this paper is to design a generator that produces cryptographic-
grade random numbers while prioritizing efficiency, compactness, and simplicity.

3. Preliminaries

The exploration of one-dimensional dynamical systems that exhibit chaotic behavior
has been an area of active research. One of the elementary examples of such systems is the
Tent-Map, which is a noninvertible, piecewise linear discrete map in one dimension. The
Tent-Map displays chaotic dynamics and can be mathematically represented as follows [59]:

Xi+1 = f (xi, µ) =

{
fL(xi, µ) = µxi, i f xi < 0.5
fR(xi, µ) = µ(1− xi), otherwise

. (1)

In the defined system, the function f operates on the interval [0, 1] and maps it to
itself (i.e., xi belongs to [0, 1] for all i greater than or equal to zero). The initial condition
denoted as x0 and the control parameter, denoted as µ, play crucial roles in Equation (1).
The initial condition represents the starting value, while the control parameter determines
the behavior of the system. Specifically, µ is a positive real constant within the range
[0, 2]. The collection of real values x0, x1, . . . , xn, . . . is referred to as the orbit of the system.
For every x0, there exists a corresponding orbit. The nature of the dynamical behavior
exhibited by the system varies depending on the value of the control parameter µ, ranging
from predictable to chaotic.

Figure 2 depicts the iterative procedure employed to generate the orbit of the Tent- Map
for the given initial condition x0 = 0.1 and control parameter µ = 1.9998. By examining
this figure, it becomes apparent that the function f (xi, µ) reaches its maximum value when
xi equals 0.5 [59].

Figure 2. Graph of Tent-Map function.

As previously mentioned, one way to qualitatively analyze the Tent-Map is through
its bifurcation diagram, which illustrates its asymptotic behavior. The bifurcation diagram
represents the orbits of the map as a function of the control parameter µ, displaying the
potential ranges of values for xi at different values of i, where i represents an index or a
counting variable. Figure 3 shows the bifurcation diagram of the system for the range of
control parameters for µ ∈ [1, 2] [60,61].

J. Sens. Actuator Netw. 2023, 12, 73 6 of 26

Figure 3. Bifurcation diagram of Tent-Map for µ ∈ [1, 2].

In the following section, a comprehensive analysis of the bifurcation diagram of the
system is provided.

1. When the control parameter µ belongs to the interval [0, 1), the system exhibits a
single fixed point at x = 0, regardless of the initial conditions x0. Consequently, the
trajectories originating from any point within the interval [0, 1] will converge to x = 0.

2. When the control parameter µ equals one, the system possesses fixed points for all
values of x except for x = 0.5. In other words, the trajectories are attracted to various
fixed points, excluding the value x = 0.5.

3. When the control parameter µ exceeds one, the system features two unstable fixed
points: one at x = 0 and the other at x = µ/(µ + 1). The trajectories in this case are
repelled by both fixed points, resulting in complex and chaotic behavior.

4. When the control parameter µ falls between one and the square root of two, the system
exhibits a characteristic where certain intervals, ranging from µ˘(µ2/2) to µ2, map onto
themselves. This collection of intervals represents the Julia set of the system. As the
value of µ exceeds the square root of two, these intervals merge together, forming a
single connected Julia set.

5. Within the range of control parameters from 1 to 2, the behavior of the system becomes
chaotic. All orbits become unstable, and the interval between µ˘(µ2/2) and µ2 contains
both periodic and nonperiodic points.

6. When µ is equal to two, System (1) demonstrates fully chaotic behavior. It maps the
interval [0, 1] onto itself. The iterations produced by System (1) exhibit statistically
uncorrelated noise with a uniform independent and identically distributed [62–64]
distribution. In other words, the natural invariant density for the system is equal to
one.

Unlike the logistic map and some other chaotic maps, it is noteworthy to mention that the
behavior of the iterates in the system transitions directly from stable fixed-point behavior
when µ is less than one to chaotic behavior when µ is greater than one, without undergoing
a period doubling phenomenon.

Lyapunov exponents play a crucial role in analyzing nonlinear dynamics and dis-
tinguishing between chaotic and nonchaotic motion. Therefore, Lyapunov exponents
are employed to assess whether a particular value of µ induces chaotic evolution in the
system [65]. The Lyapunov exponent, denoted as λ, is calculated as follows [59]:

λ(x0) =
1
k
(ln| f́ (µ, x0)|+ln| f́ (µ, x1)|+ · · ·+ ln| f́ (µ, xk−1|). (2)

J. Sens. Actuator Netw. 2023, 12, 73 7 of 26

Clearly,

f́ (xi, µ)

{
f́L(xi, µ) = µ, i f xi < 0.5
f́R(xi, µ) = −µ, i f xi > 0.5

. (3)

Moreover, it should be noted that f0(µ, 0.5) is undefined. Therefore, for any orbit of
the system that does not include 0.5, the Lyapunov exponent, denoted as λ(x0), is equal
to the natural logarithm of the control parameter µ. Specifically, λ(x0) > 0 when µ > 1,
and λ(x0) < 0 when µ < 1. This observation aligns perfectly with the bifurcation diagram
presented in Figure 2, confirming the instability of fixed points and periodic points when
µ > 1. Notably, the fact that λ(x0) is always positive for µ > 1 implies that the bifurcation
diagram of the system (as evident from Figure 2) lacks periodic windows typically observed
in the case of a logistic map. Figure 4 displays the Lyapunov exponents of the system as a
function of its control parameter µ.

Figure 4. The Lyapunov exponents of Tent-Map across the range of control parameter values µ from
0.0001 to −2.

To ensure chaotic behavior and fulfill cryptographic requirements, the control parame-
ter µ should be selected to be greater than one. In stream cipher applications, the iterate
values of the system need to exhibit random-like properties and cover the entire range
from 0 to 1. Therefore, the choice of the control parameter µ is crucial in generating iterate
values that are distributed uniformly from 0 to 1. As the control parameter approaches two,
the iterate values demonstrate a chaotic distribution that spans a dense point set within a
finite interval converging toward (0, 1). This behavior has been extensively studied in the
literature [62–64].

Figure 5 demonstrates the high sensitivity of the system to both its initial condition
and control parameters, which is a crucial requirement for cryptographic applications.
Two sequences of iterates, {Xi}100

i=1 and {X́i}100
i=1, are generated by the system with a fixed

control parameter of 1.9999 but different initial conditions, x0 = 0.1 and x0 = 0.100001.
The figure clearly illustrates that, even after a small number of iterations, the two sequences
diverge significantly.

In stream cipher applications, chaotic systems like this system often utilize the initial
condition and control parameter as the secret key, denoted as K, for the cipher system.
Prior to communication, this key must be shared between the communicating parties and
kept confidential. The security of a cipher system relies on the secrecy of its key, ensuring
protection against cryptanalytic attacks from potential eavesdroppers. While many chaotic
cipher systems based on a single chaotic map, including those utilizing the Tent-Map [66,67],
have been shown to be insecure for cryptographic applications [68,69], the favorable
properties exhibited by the Tent-Map in this system motivate its implementation in the
design of practical and secure ciphers.

J. Sens. Actuator Netw. 2023, 12, 73 8 of 26

Figure 5. Time series plot for two sequences of iterates, satisfying |x0 − x́0| = 10−6. The solid line
stands for (x0, µ) = (0.1, 1.9999), while the dashed line stands for (0.100001, 1.9999).

4. Proposed Scheme—State-Based Tent-Map (SBTM)

The goal of this article is to provide an innovative methodology for designing and
constructing a chaotic pseudo-random number generator (CPRNG) that generates crypto-
graphic grade random numbers yet is very efficient, small, and simple. Tent-Map function
is a one-dimensional chaotic map that exhibits chaotic behavior and is widely used in dy-
namical systems and cryptography. It is defined by the equation: f (x) = r×min(x, 1− x),
where r is a parameter that determines the nature of the map. The function takes an input
value x between 0 and 1 and generates a new output value based on the minimum of x and
1− x, scaled by the parameter r. The Tent-Map function displays sensitive dependence on
initial conditions, meaning that even small changes in the input can lead to significantly
different outputs, contributing to its chaotic properties. It has applications in generating
pseudorandom numbers, data encryption, and secure communication protocols. However,
the Tent-Map faces significant limitations, including the following: (i) a restricted set of
control parameters used as security keys, rendering them susceptible to cyberattacks that
can be easily overcome through brute force methods, (ii) a limited chaotic range of their
control parameters and/or periodic behavior for certain values within their parameter
range, and (iii) the nonuniform distribution of chaotic sequences generated by 1D chaotic
systems [17].

The Tent-Map, chosen for its simplicity and efficiency, serves as the fundamental
component of the proposed algorithm (SBTM). It not only addresses the shortcomings
of the original Tent-Map but also generates high-quality random numbers suitable for
cryptographic purposes. In the SBTM, a circular array of numbers is introduced as the
state, offering great flexibility in terms of initial values and the number of elements. Several
arrangements were tested, all yielding outstanding outcomes, with certain arrangements
outperforming others, as demonstrated in Section 5. There are multiple options for selecting
the initial values of the state array, and two proposals are presented, with emphasis on the
first approach:

(a) The array’s initial values consist of square roots of prime numbers that are less than a
given value, denoted as n.

(b) The initial values are derived from the digits of Pi multiplied by a renowned constant
like e (2.718281828459045).

Figure 6 displays the state representation for both versions.
In the left diagram (a), a circular array with five elements is depicted, initialized

with the square roots of 2, 3, 5, 7, and 11 (random numbers). On the right diagram (b),
a five-element state is shown, initialized with five digits of Pi (1, 4, 1, 5, and 9) multiplied
by the constant e.

The algorithm is characterized by its simplicity. It commences by initializing the state,
as illustrated in Figure 6, and proceeds by multiplying each element by a factor, denoted as f.
The value of f, such as 1000, 10,000, or 100,000, serves to mitigate the influence of extremely
small seed or control variables. It is important to note that in Figure 6b, a one is added to

J. Sens. Actuator Netw. 2023, 12, 73 9 of 26

the digits of Pi to prevent a state element from being zero. Additionally, multiplying each
element by the constant e produces random fractions. The number of elements in the array
is intentionally chosen to be a prime number. Moreover, an index, denoted as i, is randomly
initialized based on the seed. Lastly, a variable named sign is initialized to one.

Figure 6. State of SBTM CPRNG.

Once the state array and other variables have been initialized, the process of generating
random numbers can commence by supplying a seed, denoted as s, and a control variable,
denoted as µ, as the inputs. To circumvent the potential issue of handling extremely small
values of µ, or worse, µ = 0, and considering that the algorithm accepts µ as any positive
real number, µ is adjusted based on Equation (4) in the following manner:

µ = (µ + 1)× e. (4)

The algorithm employs Equation (5) to generate the next value rn+1, according to the
following equation:

rn+1

{
rn × µ× state[i], i f n < 0.5
(1− rn)× µ× state[i], otherwise

. (5)

In this equation, state refers to the circular array, i is a valid index in the array, µ is the
control variable, and rn is the previous random value starting with the seed s. rn+1 could
be a number greater than zero since the state elements are large numbers. To bring it down
to a value in the range (0, 1), the fraction part is used as shown in Equation (6).

rn+1 = rn+1 − int(rn+1) (6)

To update the state of the SBTM, the algorithm performs either an addition or a
subtraction of rn+1 to the state element indexed by the index i, as depicted in Equations (7)
and (8).

sign = sign×−1 (7)

state[i] = state[i] + (sign× rn+1) (8)

If the state element i deviates from its initial value by a threshold t (set at 500),
an automatic reset is triggered. During this step, t is added or subtracted from element i to
restore it to a value near its initial value, as shown in Equation (9).

state[i]

{
state[i] + t, i f state[i] < initialState[i]− t
state[i]− t, i f state[i] > initialState[i] + t

(9)

J. Sens. Actuator Netw. 2023, 12, 73 10 of 26

Finally, the value of the index i is updated, as shown in Equation (10), and rn+1 is
returned.

i = (i + 1)%size(State) (10)

The pseudocode of the algorithm is presented in Algorithm 1.

Algorithm 1 SBTM Pseudocode

Require: Seed, µ
Ensure: Random numeber

1: SBTM (seed, µ)
2: Initialize the state array
3: Initialize sign and i
4: Set rn = seed
5: function GENERATE(rn+1(rn))
6: def Generate rn+1(rn)
7: Use Equation (1) to generate rn + 1
8: Set rn+1 = f raction(rn+1)
9: Update the sign

10: Update the state
11: Automatic reset if needed
12: Update the index variable
13: rn = rn+1
14: return rn+1
15: end function

Discussion of Design Decisions

Variables, constants, and steps used in the SBTM were chosen based on the follow-
ing considerations:

(a) Number of elements in the circular array: The goal was to minimize the size of the
generator’s state, as increasing its size is undesirable. Various experiments were con-
ducted with different numbers of elements to examine their impact on the generated
sequence. All the values used were prime numbers, starting from two. Recommenda-
tions for the optimal size are provided in Section 5.

(b) Initialization of the state: This part was deemed crucial but finding the optimal set
of initial values proved to be challenging. The rationale behind the chosen values
was the need for irrationality. Specifically, the square roots of prime numbers were
considered as if they met this criterion. While higher-order roots could potentially be
as effective, further experimentation with them was left for future work. In version
b, the individual digits of Pi were employed. The attractiveness of Pi lies in its
irrational nature and the random arrangement of its digits. Since the digits of Pi do
not possess fractional parts and could include zeros, the approach taken was to add
one to each digit to avoid zeros and then multiply them by e (2.718) to introduce
a fractional component. It is believed that any other irrational value could also be
suitable, but the experimentation was focused solely on e. Although only 10 values
(1–10) exist, the arrangement of these values in the state array had an influence on the
generated sequences.

(c) The factor f : It is evident that if the control variable µ approaches zero, the sequence
will diminish. To mitigate the impact of this phenomenon, the initial values of the
state are multiplied by a factor, such as 1000, 10,000, or 100,000. Selecting larger values
will affect the random sequence since the majority of the digits stored in the double
data type become part of the whole number, which is truncated in our algorithm,
as demonstrated in Equation (2). Recommendations for the optimal factor values are
provided in Section 5.

(d) Equation (2): The numbers generated by Equation (1) are likely to exceed one. To en-
sure that the generated value remains within the desired limits of 0 and 1, the whole

J. Sens. Actuator Netw. 2023, 12, 73 11 of 26

part of the number is discarded and only the fraction is considered. This mechanism ef-
fectively prevents backtracking, aligning with the principles outlined in “NIST Special
Publication 800-90A Revision 1” [70].

(e) Updating the state: If the array had been infinite, there would have been no need to
update its values. However, due to the limited size of the state array and the desire
for more chaotic behavior, updating the state became necessary. Various methods
could have been employed for this purpose, but we aimed for a mechanism that was
both simple and efficient. Therefore, we chose to add or subtract the newly generated
value rn+1 to the state element that produced it, based on the alternating sign variable
that switched between 1 and −1. This approach ensured that the elements were
updated while maintaining their values close to their initial states, as the addition and
subtraction of random values tended to cancel each other out.

(f) State automatic reset: To maintain alignment with [70] and mitigate the risk of a state
element approaching zero or excessively large values, an automatic reset mechanism
is implemented. This process ensures that the state element is reset to a value in
close proximity to its initial value. By doing so, the algorithm enhances its resistance
against adversarial attempts to predict future outputs through the generation of a
large number of random values.

(g) Updating index i variable: This variable determined the next state element to be used
in generating the subsequent random value. There were several ways to update this
variable, but we opted for a straightforward and efficient approach. By incrementing
it by one and utilizing the Mod operator, we ensured that it wrapped back to zero as it
approached the size of the state array. This sequential updating method proved to be
both efficient and simple.

5. Experiments and Results

Prior to delving into the experiment results, it is crucial to assess the chaotic behav-
ior of the SBTM in comparison to the Tent-Map. This evaluation involves calculating
Lyapunov exponents and constructing a Bifurcation diagram. Since the SBTM is a non-
differentiable function, the Lyapunov exponent calculation algorithm described in [71]
was utilized. To ensure a fair comparison, the same method from [71] was employed to
compute Lyapunov exponents for both the SBTM and the original Tent-Map.

Figure 7 showcases the Lyapunov exponents for the original Tent-Map, while
Figures 8–10 exhibit the results for the SBTM with distinct ranges of the control vari-
able. It becomes apparent that Figure 7 bears a resemblance to Figure 4, with positive
values emerging as µ approaches 1.2. In contrast, the SBTM demonstrates significantly
higher positive values for different ranges of µ starting from 0 to 2, 10, and 100, as depicted
in Figures 8, 9 and 10, respectively.

Figure 7. The Lyapunov exponents of Tent-Map, µ ∈ [0, 2] using [71].

J. Sens. Actuator Netw. 2023, 12, 73 12 of 26

Figure 8. The Lyapunov exponents of SBTM, µ ∈ [0, 2] using [71].

Figure 9. The Lyapunov exponents of SBTM, µ ∈ [0, 10] using [71].

Figure 10. The Lyapunov exponents of SBTM, µ ∈ [0, 100] using [71].

Likewise, the Bifurcation diagrams in Figures 11–13 illustrate the extensive chaotic be-
havior of the SBTM across the entire duration of the three periods [0, 2], [0, 10], and [0, 100].
The stark contrast between these diagrams and those of the original Tent-Map algorithm
makes it evident that the SBTM exhibits superior chaotic dynamics.

J. Sens. Actuator Netw. 2023, 12, 73 13 of 26

Figure 11. Bifurcation diagram of SBTM for µ ∈ [0, 2].

Figure 12. Bifurcation diagram of SBTM for µ ∈ [0, 10].

Figure 13. Bifurcation diagram of SBTM for µ ∈ [0, 100].

In order to assess the performance of the SBTM, a total of 800 random number se-
quences were generated. Each sequence comprised two billion unsigned integers, resulting
in a size of 8 GB. To generate these sequences, various combinations of control variable
values, seed values, and state element values were employed. Specifically, the control
variable adopted the values, the seed values, and the number of state elements varied
according to the values outlined in Table 1. It is noteworthy to mention that the control
variable values were in the period [0, 2] to match those used in the original Tent-Map.

J. Sens. Actuator Netw. 2023, 12, 73 14 of 26

Table 1. Values of control variable, seed, and micro.

Values of control variable Micro 0.00, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60, 1.80
Values of seed Seed 0.01, 0.10, 0.19, 0.28, 0.37, 0.46, 0.55, 0.64, 0.73, 0.82
Values of state State elements 2, 3, 5, 11, 19, 47, 97, 997

To assess the effectiveness of the proposed SBTM, the Dieharder test suite was used,
as it encompasses an extensive collection of statistical tests formulated to evaluate the
randomness and quality of random number generators. Dieharder is widely regarded as
the best test suite for random number generators due to its comprehensive coverage of
statistical tests, adherence to established standards, sensitivity to deviations from random-
ness, widespread acceptance, and open-source nature [65,72,73]. It offers a range of tests
that assess various aspects of randomness, providing a rigorous evaluation of the quality
and randomness of random number generators. Its popularity and flexibility make it a
trusted tool for researchers and developers in assessing the performance of random number
generators. Table 2 below provides an overview of the Dieharder suite tests used to assess
the sequences generated by the proposed SBTM.

Table 2. Description of Dieharder tests.

Test(s) Description

STS_serial
(Serial Test)

The STS_serial test aims to identify any sequential patterns present in the generated sequence.
By analyzing overlapping subsequences of a fixed length, the test assesses whether the

sequence deviates from randomness. It calculates the frequency of specific patterns within the
sequence and compares it to the expected occurrence in a random sequence. Notable deviations

can indicate the presence of nonrandom behavior.

STS_runs
(Runs Test)

The STS_runs test investigates the presence of consecutive repetitions of the same value, known
as "runs," within the sequence. It evaluates whether the number of runs consisting of ones and

zeros falls within the anticipated range for a random sequence. If there are substantial
deviations from the expected range, it may indicate the existence of nonrandomness or

potential bias in the generated sequence.

STS_monobit
(Monobit Test)

The STS_monobit test is a fundamental assessment that examines the distribution of ones and
zeros within the sequence. Its purpose is to determine if the proportion of ones and zeros is

approximately equal, as this is a crucial characteristic of a random sequence. Substantial
deviations from a balanced distribution may be indicative of nonrandomness.

RGB_permutations
(RGB Permutations Test)

The RGB_permutations test examines the arrangements of triplets formed by consecutive
values in the generated sequence. It scrutinizes the presence of unforeseen patterns or

regularities within these permutations and compares them to the anticipated distribution in a
random sequence. Deviations from the expected randomness can be indicative of

nonrandom behavior.

RGB_minimum_distance
(RGB Minimum Distance Test)

The RG_minimum_distance test quantifies the minimum Euclidean distance between
successive triplets of values in the sequence. It evaluates how the values are dispersed or

clustered within the RGB color space. Deviations from the anticipated distances may indicate
the presence of patterns or nonrandomness in the generated sequence.

rgb_lagged_sum
(RGB Lagged Sum Test)

The rgb_lagged_sum test investigates the cumulative sum of pairs of values with a lag in the
RGB sequence. It evaluates the presence of patterns or anomalies in these cumulative sums and

compares them to the anticipated distribution in a random sequence. Deviations from
randomness can suggest nonrandom behavior within the sequence.

rgb_kstest_test
(RGB Kolmogorov–Smirnov

Test)

The rgb_kstest_test employs the Kolmogorov–Smirnov test on the RGB sequence to evaluate its
adherence to a uniform distribution within the RGB color space. It examines significant

deviations from uniformity, which may indicate the presence of nonrandomness or bias in the
generated sequence.

J. Sens. Actuator Netw. 2023, 12, 73 15 of 26

Table 2. Cont.

Test(s) Description

rgb_bitdist
(RGB Bit Distribution Test)

The rgb_bitdist test centers around the distribution of bits within the RGB sequence. It
examines the occurrence of various bit patterns and compares their frequencies to the expected

distribution in a random sequence. Deviations from this expected distribution may suggest
nonrandom behavior or bias in the generated sequence.

marsaglia_tsang_gcd
(Marsaglia and Tsang GCD Test)

The marsaglia_tsang_gcd test scrutinizes the greatest common divisor (GCD) of value pairs in
the sequence. It evaluates the presence of patterns or regularities in the GCD values and
compares them to the anticipated distribution in a random sequence. Deviations from

randomness can suggest the existence of nonrandom behavior in the generated sequence.

diehard_sums, diehard_squeeze,
diehard_runs,

diehard_rank_32×32,
diehard_parking_lot,

diehard_oqso, diehard_operm5,
diehard_dna, diehard_crps,

diehard_count_1st_byt,
diehard_bitstream,
diehard_birthday,
diehard_3dsphere,
diehard_2dsphere,

dab_monobit2, dab_filltree2,
and dab_filltree

Each test focuses on specific statistical properties and patterns present within the generated
sequence. These tests assess characteristics, such as bit distributions, consecutive runs,
permutation patterns, spatial distribution, and more. Their purpose is to identify any

deviations from randomness and detect potential nonrandomness or biases in the sequence.

In evaluating the performance of the proposed SBTM, Dieharder subjects the genera-
tor’s sequences to a battery of 91,200 individual tests (in total) to assess different aspects of
randomness and statistical properties. In an analysis of the results obtained, as depicted in
Table 3 and summarized in Figure 14, it was found that out of the total tests conducted,
303 tests exhibited failures (only 0.33% of the total), indicating significant deviations from
randomness. On the other hand, a substantial majority of 88,830 tests passed (97.4% of
the total), demonstrating the generator’s ability to generate sufficiently random sequences.
Additionally, 2067 tests were categorized as weak (2.27% of the total). This comprehensive
examination of the Dieharder test results provides valuable insights into the strengths and
high quality of the tested random number generator.

Figure 14. Summary of results percentages of Dieharder tests.

The experimental results in accordance with the values of the control variable, the val-
ues of the seed variable, and the values of the state are typically presented in an organized
and comprehensible manner in Tables 4, 5 and 6, respectively, to facilitate comprehension
and analysis. In this paper, the findings have been structured into three distinct tables: the
table of results according to the values of the control variable, Table 4, the table of results

J. Sens. Actuator Netw. 2023, 12, 73 16 of 26

according to the values of the seed variable, Table 5, and the table of results according to
the values of the state Table 6. These tables offer a comprehensive summary of the results
by presenting the relationship between the failure and success rates and the various control
parameters. From Table 4, it is evident that no failed tests were reported when µ values
were 0, 0.2, 0.8, and 1.2. Similarly, Table 5 indicates that no failed tests occurred for the seed
values of 0.19 and 0.55. Furthermore, Table 6 shows that when the number of elements in
the state array was three and five, there were no failed tests, making them optimal choices.

Table 3. Results of Dieharder tests.

Test_Name Failed Passed Weak Total

dab_bytedistrib 2 792 6 800
dab_dct 3 789 8 800

dab_filltree 8 1573 19 1600
dab_filltree2 8 1572 20 1600

dab_monobit2 5 786 9 800
diehard_2dsphere 0 783 17 800
diehard_3dsphere 0 775 25 800
diehard_birthdays 0 785 15 800
diehard_birthdays 0 785 15 800
diehard_bitstream 1 775 24 800

diehard_count_1s_byt 4 780 16 800
diehard_count_1s_str 4 781 15 800

diehard_craps 6 1558 36 1600
diehard_dna 4 786 10 800

diehard_operm5 0 789 11 800
diehard_opso 2 778 20 800
diehard_oqso 2 779 19 800

diehard_parking_lot 4 785 11 800
diehard_rank_32×32 1 791 8 800

diehard_rank_6×8 1 782 17 800
diehard_runs 6 1554 40 800

diehard_squeeze 3 780 17 800
diehard_sums 3 711 86 800

marsaglia_tsang_gcd 0 1561 39 1600
rgb_bitdist 46 9376 178 9600

rgb_kstest_test 0 787 13 800
rgb_lagged_sum 186 25,505 711 26,400

rgb_minimum_distance 0 3152 48 3200
rgb_permutations 1 3121 78 3200

sts_monobit 0 784 16 800
sts_runs 0 776 24 800
sts_serial 3 23,486 511 24,000

total 303 88,830 2067 91,200

Table 4. The results according to the values of control variable.

Micro Failed Passed Weak Total

0.00 0 8881 239 9120
0.20 0 8903 217 9120
0.40 41 8845 234 9120
0.60 49 8883 188 9120
0.80 0 8912 208 9120
1.00 40 8874 206 9120
1.20 0 8949 171 9120
1.40 66 8841 213 9120
1.60 39 8889 192 9120
1.80 68 8853 199 9120
Total 303 88,830 2067 91,200

J. Sens. Actuator Netw. 2023, 12, 73 17 of 26

Table 5. The results according to the values of seed variable.

Seed Failed Passed Weak Total

0.01 38 8895 187 9120
0.10 68 8830 222 9120
0.19 0 8906 214 9120
0.28 48 8871 201 9120
0.37 1 8926 193 9120
0.46 14 8856 250 9120
0.55 0 8923 197 9120
0.64 42 8893 185 9120
0.73 39 8874 207 9120
0.82 53 8856 211 9120
Total 303 88,830 2067 91,200

Table 6. The results according to the values of state.

No. of State Elements Failed Passed Weak Total

2 1 11,128 271 11,400
3 0 11,159 241 11,400
5 0 11,147 253 11,400

11 1 11,142 257 11,400
19 1 11,135 264 11,400
47 42 11,098 260 11,400
97 37 11,108 255 11,400
997 221 10,913 266 11,400

Total 303 88,830 2067 91,200

The seed and the p-value in Dieharder are interconnected in the evaluation of random
number generation. The seed represents the initial value(s) used to initialize the random
number generator. It acts as the starting point for generating a sequence of random numbers.
On the other hand, the p-value is a statistical measure that assesses the compatibility
between the observed data, generated by the random number generator, and the expected
distribution assuming randomness. The relationship between the seed and the p-value,
as illustrated in Figure 15, arises from the fact that the choice of seed can influence the
quality and statistical properties of the generated sequence. Different seed values can lead
to distinct sequences of random numbers. Dieharder applies various statistical tests to
these sequences to evaluate their randomness and quality. When analyzing the results
using Dieharder, the obtained p-value indicates the degree to which the generated sequence
aligns with the expected distribution. A higher p-value, closer to one, signifies a better
fit with the expected distribution, indicating a higher level of randomness. Conversely,
a lower p-value, closer to zero, suggests significant deviations from randomness.

It is important to recognize that the relationship between the seed and the p-value
is indirect. The choice of seed can impact the characteristics of the generated sequence,
which subsequently affects the outcomes of the statistical tests and the resulting p-values.
By carefully selecting suitable seeds, it is possible to generate sequences that demonstrate
stronger adherence to randomness and yield higher p-values in the Dieharder tests. Overall,
the average p-values across all seeds were found to be very similar.

In addition, this paper investigates the correlation between the average TSamples
and the test status, which plays a critical role in assessing the quality and randomness of
random number generators. By analyzing the average TSamples values across various test
outcomes, this study uncovers noteworthy patterns as illustrated in Figure 16. Notably,
tests with an average TSamples of 1.99 million predominantly receive a passed status,
indicating a high level of randomness. Conversely, tests characterized by an average
TSamples of 2.65 million result in a slightly more failed status. Additionally, tests with an
average TSamples of 1.28 million are categorized as weak. This gives clear evidence that

J. Sens. Actuator Netw. 2023, 12, 73 18 of 26

the default values of the Dieharder test suite may not be suitable for all tests, meaning that
some tests require more TSamples to pass and others require less to pass.

Figure 15. Relationship between values of seed and average p value.

Figure 16. Relationship between average of TSamples and result.

In sum, the design choices made during the development of the SBTM algorithm have
played a vital role in establishing its significance and robustness in generating efficient ran-
dom sequences. The selection of the variables, constants, and steps was a deliberate process
aimed at optimizing the performance of the generator. Several important factors guided
these decisions. Firstly, the number of elements in the circular array was carefully chosen
to minimize the state size, ensuring efficiency. Prime numbers were employed as the array
size, and experiments were conducted to assess their impact on the generated sequences.
Optimal sizes were determined to achieve desirable results. Secondly, the initialization of
the state was recognized as a crucial step, leading to the exploration of irrational values.
The square roots of prime numbers were utilized, leveraging their irrational nature and
random arrangement. Further investigations could explore alternative irrational values.
Thirdly, the introduction of the factor "f" addressed the issue of diminishing sequences
when the seed approached zero. Multiplying the initial state values by a factor helped
mitigate this phenomenon.

Furthermore, Equation (6) was incorporated to ensure that the generated values
remained within the range of 0 and 1, avoiding backtracking and adhering to established
principles of random number generators. Also, an automatic reset mechanism was inte-
grated to enhance resistance against prediction attempts. This process ensured that state
elements returned to values close to their initial states, aligning with established standards
and reducing the risk of extreme values or element depletion. These design decisions col-

J. Sens. Actuator Netw. 2023, 12, 73 19 of 26

lectively contribute to the significance and robustness of the SBTM algorithm in generating
efficient sequences with desirable random properties.

Analysis of Failed Tests

It is crucial to emphasize that a failed test does not necessarily imply a poor sequence;
it simply indicates that the P-value is either extremely small, close to zero, or extremely
high, close to one. It should be noted that the authors did not modify the default parameters
of the Dieharder software Version 3.31.1. and reported the results as they were generated.
To recap, a comprehensive testing process was conducted on a total of 800 sequences. Each
sequence underwent a battery of 114 tests using the Dieharder software, consisting of 31
unique tests and multiple repetitions with varying Ntuple values. The distribution of these
unique tests and the corresponding frequency of repetition for each can be found in Table 7.
It is noteworthy that the NIST tests are a subset of these overall assessments, specifically
encompassing the sts_serial tests.

Table 7. Unique Dieharder tests and their frequency.

Test Times Repeated with Different Ntuple or Other Parameters

diehard_birthdays 1
diehard_operm5 1

diehard_rank_32x32 1
diehard_rank_6x8 1
diehard_bitstream 1

diehard_opso 1
diehard_oqso 1
diehard_dna 1

diehard_count_1s_str 1
diehard_count_1s_byt 1
diehard_parking_lot 1

diehard_2dsphere 1
diehard_3dsphere 1
diehard_squeeze 1

diehard_sums 1
diehard_runs 2
diehard_craps 2

marsaglia_tsang_gcd 2
sts_monobit 1

sts_runs 1
sts_serial 30

rgb_bitdist 12
rgb_minimum_distance 4

rgb_permutations 4
rgb_lagged_sum 33
rgb_kstest_test 1
dab_bytedistrib 1

dab_dct 1
dab_filltree 2

dab_filltree2 2
dab_monobit2 1

Among the 800 sequences that underwent testing, only 11 sequences exhibited one or
more failed tests, highlighting the robust performance of the SBTM given the rigorous na-
ture of Dieharder testing. Furthermore, a total of 739 sequences demonstrated one or more
weak test results, while 59 sequences showed no failed or weak test outcomes. The absence
of failed or weak tests in these sequences is typically associated with exceptionally strong
and lengthy (approximately 64 billion numbers, equivalent to 256 GB) sequences generated
by a robust generator, like AES_OFB. A summary of these results is provided in Table 8.

J. Sens. Actuator Netw. 2023, 12, 73 20 of 26

Table 8. Summary of test results by sequence.

Description Count Comments

Perfect sequences 59 No failed or weak tests
Sequences with weak tests 739 9 of which have also failed tests
Sequences with failed tests 11 9 of which have also weak tests

Sequences with failed but no weak tests 2 Have failed tests but no weak tests
All sequences 800 -

To gain a deeper understanding of the sequences with failed tests, Table 9 presents
additional details. Among the sequences, four experienced only one failed test out of the
114 tests performed, while seven sequences encountered multiple failed tests. Notably,
the last sequence, 997_1.8_0.1, recorded the highest number of failed tests. It becomes
evident that when the number of state elements is large (≥47), a few sequences may
exhibit more failed tests. This observation is supported by Table 10, which showcases the
relationship between the number of failed tests and the number of state elements. Notably,
when the state had 3 or 5 elements, no failed tests occurred, whereas the highest number
of failed tests was observed for sequences with 997 state elements. Another noteworthy
observation from Table 9 is that rgb_lagged_sum is the test that had the highest number of
failures. This outcome is not surprising, as each sequence is subjected to rgb_lagged_sum
testing 33 times (as indicated in Table 7), with each test utilizing a different NTuple value.
It is important to note that the sequences that failed did not fail in all 33 tests; rather, only a
few tests within that set resulted in failure.

Table 9. Sequence vs. failed tests.

Sequence (State_µ_Seed) No of Failed Tests Failed Tests Name/s Number of Unique
Tests Failed

11_0.6_0.01 1 rgb_lagge_sum 1
19_1.6_0.37 1 sts_serial 1
2_1.6_0.46 1 sts_serial 1
47_1.0_0.64 1 sts_serial 1

997_1.4_0.46 13
rgb_lagged_sum, rgb_bitdist,

dab_dct, dab_filltree,
dab_filltree2, dab_monobit2

6

97_1.6_0.01 37

rgb_lagged_sum,
diehard_squeeze,

diehard_sums, diehard_runs,
diehard_craps, rgb_bitdist

6

997_1.0_0.73 39

rgb_lagged_sum,
diehard_squeeze,

diehard_sums, diehard_runs,
diehard_craps, rgb_bitdist

6

47_0.4_0.64 41

diehard_dna,
diehard_count_1s_str,
diehard_count_1s_byt,
diehard_parking_lot,

rgb_bitdist, rgb_lagged_sum,
dab_monobit2

7

997_0.6_0.28 48

rgb_lagged_sum,
diehard_dna,

diehard_count_1s_str,
diehard_count_1s_byt,
diehard_parking_lot,

rgb_bitdist, dab_filltree,
dab_filltree2, dab_monobit2

9

J. Sens. Actuator Netw. 2023, 12, 73 21 of 26

Table 9. Cont.

Sequence (State_µ_Seed) No of Failed Tests Failed Tests Name/s Number of Unique Tests Failed

997_1.4_0.82 53

rgb_lagged_sum,
diehard_opso, diehard_oqso,

diehard_dna,
diehard_count_1s_str,
diehard_count_1s_byt,
diehard_parking_lot,

rgb_bitdist, dab_bytedistrib,
dab_dct, dab_filltree,

dab_filltree2, dab_monobit2

13

Table 10. State elements vs. failed tests.

State Elements Failed Tests

2 1
3 0
5 0
11 1
19 1
47 42
97 37

997 221

Providing an exhaustive list of all the sequences with weak tests proves challenging
due to their large number (739). It is essential to note that adjusting the default parameters
of Dieharder would result in reporting all weak results as passed. However, it is important
to emphasize that the default parameters were not modified in this case. Furthermore, gen-
erating longer sequences has the potential to reduce the number of weak tests, as observed
in numerous individual sequences. However, this approach would significantly increase
the testing time and necessitate computers with greater resources.

Analyzing the 739 sequences that yielded a total of 2067 weak test results, the average
number of weak tests per sequence is 2.8. The minimum number of weak tests recorded
is 1, while the maximum is 17. Table 11 outlines the distribution of weak tests across the
sequences, demonstrating that the majority of sequences have only 1, 2, 3, or 4 weak tests.

Table 11. Weak tests vs. no. of sequences.

No. Weak Tests No. Sequences

1 143
2 232
3 166
4 110
5 46
6 25
7 7
8 6
9 2
10 1
17 1

However, there is one sequence with 10 weak tests and another with 17 weak tests.
To see if there is a correlation between the number of state elements and the number of
weak tests, Table 12 provides insight. The table shows that the weak tests encountered by
sequences generated by different sizes of the state are very close. However, in agreement

J. Sens. Actuator Netw. 2023, 12, 73 22 of 26

with the conclusions above, when the state is three and five the least number of weak tests
is noticed.

Table 12. Results of new states.

State No. of Weak Tests

2 271
3 241
5 253
11 257
19 264
47 260
97 255

997 266
total 2067

To ensure the robustness of the SBTM and address any concerns regarding sequences
with high failed tests, a thorough investigation was conducted. Firstly, the seven sequences
with high failed tests were identified from Table 9. In order to ascertain if these failures
were mere coincidences rather than a systematic issue, 28 similar sequences were generated,
as presented in Table 13. Each newly generated sequence featured a slight modification
in either the control variable or the seed. For instance, if the original value of the control
variable was 1.4, the newly generated sequences would use values such as 1.4000000001
and 1.3999999999 (i.e., the original value plus and minus one billionth), and so forth.

The results displayed in Table 13 conclusively demonstrate that the failures observed
in the original sequences were indeed coincidental and not indicative of a systematic flaw
in the algorithm. Among the 28 newly generated sequences, none exhibited any failed tests,
and the number of weak tests remained like that of the original 739 sequences. This further
reinforces the confidence in the algorithm’s performance and reliability.

Table 13. Results of new sequences.

Sequences
(State_µ_Seed)

Failed
(Original)

Seq with
New Micro Failed Weak Seq New

Seed Failed Weak

997_1.4_0.46 13 1.4 + 19
0 3 0.46 + 19 0 3

1.4 − 1−9 0 2 0.46 − 1−9 0 2
97_1.6_0.01 37 1.6 + 19 0 2 0.01 + 19 0 2

1.6 − 1−9 0 1 0.01 − 1−9 0 2
997_1.0_0.73 39 1 + 19 0 3 0.73 + 19 0 2

1 − 1−9 0 2 0.73 − 1−9 0 2
47_0.4_0.64 41 0.4 + 19 0 2 0.64 + 19 0 6

0.4 − 1−9 0 2 0.64 − 1−9 0 6
997_0.6_0.28 48 0.6 + 19 0 2 0.28 + 19 0 3

0.6 − 1−9 0 3 0.28 − 1−9 0 4
997_1.4_0.82 53 1.4 + 19 0 2 0.82 + 19 0 3

1.4 − 1−9 0 4 0.82 − 1−9 0 1
997_1.8_0.1 68 1.8 + 19 0 4 0.1 + 19 0 4

1.8 − 1−9 0 3 0.1 − 1−9 0 3

6. Contributions to Sensor and Actuator Networks

Tent-Map RNGs, derived from the mathematical Tent-Map function, have emerged as
influential tools in the realm of sensor and actuator networks (SANs). These RNGs exhibit
chaotic behavior and are known for their pivotal role in enhancing the capabilities of SANs.
In this section, we will explore the significant contributions and implications of integrating
Tent-Map RNGs into SANs.

J. Sens. Actuator Netw. 2023, 12, 73 23 of 26

1. Enhancing Network Security:
Security is a paramount concern within SANs, particularly in applications such as
military networks, healthcare systems, and critical infrastructure monitoring. Tent-
Map RNGs make substantial contributions to SAN security by furnishing a robust
source of randomness. They excel in resisting statistical tests, thus ensuring that the
generated random numbers remain unpredictable and resistant to potential attacks.
This, in turn, bolsters the confidentiality and integrity of data transmission throughout
the network.

2. Energy-Efficient Operations:
Energy efficiency stands as a pivotal aspect of SANs, especially when dealing with
battery-powered sensor nodes. Tent-Map RNGs offer a distinct advantage in this
regard as they demand minimal computational resources for random number gen-
eration. This low computational overhead makes them particularly well-suited for
resource-constrained SAN devices, ultimately extending battery life and sustaining
the network’s operational longevity.

3. Facilitating Distributed Coordination:
SANs frequently comprise a multitude of sensor and actuator nodes necessitating
seamless coordination. Tent-Map RNGs empower these nodes to generate random
values, thereby aiding tasks such as time synchronization, the selection of routing
protocols, and data aggregation. The introduction of randomness plays a crucial role
in averting synchronization challenges and enhancing overall network performance.

4. Enhancing Fault Tolerance:
SANs operate in diverse environments where they may encounter factors like envi-
ronmental fluctuations, hardware failures, or signal interference. Tent-Map RNGs
contribute to fault tolerance by injecting randomness into decision-making processes.
This randomness equips the network to adapt and recover swiftly from unforeseen
events, ensuring continued functionality even in adverse conditions.

5. Preserving Privacy in Data Aggregation:
Data aggregation is a fundamental operation in SANs, where sensor nodes gather and
transmit data to a central node or base station. Tent-Map RNGs can be employed to
introduce controlled noise into the collected data. This preserves data privacy while
still permitting meaningful aggregation at the central node. This approach safeguards
sensitive information without compromising the network’s overall efficiency.

Random number generators based on the Tent-Map algorithm have made substantial con-
tributions to the realm of sensor and actuator networks. Their unique attributes, including
unpredictability, energy efficiency, and fault tolerance, position them as invaluable tools for
enhancing the security and functionality of SANs. As SANs continue to evolve and play
pivotal roles in various applications, the integration of Tent-Map RNGs is anticipated to
remain a prominent and influential aspect of their design and operation.

7. Conclusions and Future Work

This paper proposed and investigated the performance of the State-Based Tent-Map
as a random number generator. The SBTM was developed to address the shortcomings of
the original Tent-Map in generating random numbers, including issues related to speed,
randomness, lack of statistical properties, and lack of uniformity. The sequences generated
by the SBTM underwent comprehensive testing using the Dieharder test suite, which
rigorously evaluated their statistical properties and adherence to randomness. The results
revealed that a significant majority of the tests, approximately 97.4%, were successfully
passed, indicating the generator’s ability to produce sequences with sufficient randomness.
While a small portion of the tests exhibited failures and weaknesses, these findings provide
valuable insights for further improving the SBTM’s performance. Overall, this paper
highlights the strengths and potential areas of enhancement for the SBTM, contributing
to the understanding and development of reliable random number generation techniques.
Application-specific customizations are a potential avenue for the SBTM. Researchers can

J. Sens. Actuator Netw. 2023, 12, 73 24 of 26

explore adapting and tailoring the SBTM algorithm to address the unique requirements
of diverse application domains. Future studies can also investigate the modification or
extension of the algorithm to align with specific needs in fields like Monte Carlo simulations,
gaming, cryptography, or statistical modeling. By fine-tuning the SBTM to suit these
applications, its performance, efficiency, and suitability can be optimized.

Author Contributions: Conceptualization, A.A.-D. and Y.S.; methodology, S.A.-E., S.F., M.B.T. and
M.A.-M.; formal analysis, A.A.-D. and Y.S.; investigation, S.A.-E., S.F., M.B.T. and M.A.-M.; resources,
S.A.-E., S.F., M.B.T. and M.A.-M.; writing—original draft preparation, A.A.-D. and Y.S.; writing—
review and editing, M.B.T. and M.A.-M.; supervision, A.A.-D. and Y.S.; funding acquisition, S.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All the experiment results data in this manuscript are available
on: https://drive.google.com/drive/folders/1LRdHQnxpLwI5UGFLFQTbMXfHH7KiL7wS?usp=
drive_link.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rathore, M.S.; Poongodi, M.; Saurabh, P.; Lilhore, U.K.; Bourouis, S.; Alhakami, W.; Hamdi, M. A novel trust-based security and

privacy model for internet of vehicles using encryption and steganography. Comput. Electr. Eng. 2022, 102, 108205. [CrossRef]
2. Gupta, R.K.; Almuzaini, K.K.; Pateriya, R.K.; Shah, K.; Shukla, P.K.; Akwafo, R. An improved secure key generation using

enhanced identity-based encryption for cloud computing in large-scale 5G. Wirel. Commun. Mob. Comput. 2022, 2022, 7291250.
[CrossRef]

3. Nisha, C.; Monoth, T. Analysis of spatial domain image steganography based on pixel-value differencing method. In Soft
Computing for Problem Solving: SocProS 2018; Springer: Singapore, 2020; Volume 2, pp. 385–397.

4. Karampidis, K.; Kavallieratou, E.; Papadourakis, G. A review of image steganalysis techniques for digital forensics. J. Inf. Secur.
Appl. 2018, 40, 217–235. [CrossRef]

5. Hosny, K.M.; Zaki, M.A.; Lashin, N.A.; Hamza, H.M. Fast colored video encryption using block scrambling and multi-key
generation. Vis. Comput. 2022, 1–32. [CrossRef]

6. Singh, L.; Singh, A.K.; Singh, P.K. Secure data hiding techniques: A survey. Multimed. Tools Appl. 2020, 79, 15901–15921.
[CrossRef]

7. Kaur, S.; Singh, S.; Kaur, M.; Lee, H.N. A systematic review of computational image steganography approaches. Arch. Comput.
Methods Eng. 2022, 29, 4775–4797. [CrossRef]

8. Sharma, M.; Ranjan, R.K.; Bharti, V. A pseudo-random bit generator based on chaotic maps enhanced with a bit-XOR operation.
J. Inf. Secur. Appl. 2022, 69, 103299. [CrossRef]

9. Wang, Y.; Gong, J.; Wang, M.; Jiang, G. A pseudo-random number generator for integer chaotic map. J. Beijing Univ. Posts
Telecommun. 2022, 45, 58.

10. Rustad, S.; Andono, P.N.; Shidik, G.F. Digital image steganography survey and investigation (goal, assessment, method,
development, and dataset). Signal Process. 2022, 206, 108908.

11. Fridrich, J. Steganography in Digital Media: Principles, Algorithms, and Applications; Cambridge University Press: Cambridge, UK,
2009.

12. Bhavani, Y.; Kamakshi, P.; Kavya Sri, E.; Sindhu Sai, Y. A survey on image steganography techniques using least significant bit.
In Intelligent Data Communication Technologies and Internet of Things: Proceedings of ICICI 2021; Springer Nature: Singapore, 2022;
pp. 281–290.

13. Rahman, S.; Uddin, J.; Khan, H.U.; Hussain, H.; Khan, A.A.; Zakarya, M. A novel steganography technique for digital images
using the least significant bit substitution method. IEEE Access 2022, 10, 124053–124075. [CrossRef]

14. Eaton, M.; Hossameldin, A.; Birrittella, R.J.; Alsing, P.M.; Gerry, C.C.; Dong, H.; Pfister, O. Resolution of 100 photons and quantum
generation of unbiased random numbers. Nat. Photonics 2023, 17, 106–111. [CrossRef]

15. Xu, B.; Chen, Z.; Li, Z.; Yang, J.; Su, Q.; Huang, W.; Guo, H. High speed continuous variable source-independent quantum
random number generation. Quantum Sci. Technol. 2019, 4, 025013. [CrossRef]

16. Ding, J.; Chen, K.; Wang, Y.; Zhao, N.; Zhang, W.; Yu, N. Discop: Provably Secure Steganography in Practice Based on
“Distribution Copies”. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25
May 2023; pp. 2238–2255.

17. Daoui, A.; Yamni, M.; Chelloug, S.A.; Wani, M.A.; El-Latif, A.A.A. Efficient image encryption scheme using novel 1D multipara-
metric dynamical tent map and parallel computing. Mathematics 2023, 11, 1589. [CrossRef]

18. Khalil, N.; Sarhan, A.; Alshewimy, M.A. An efficient color/grayscale image encryption scheme based on hybrid chaotic maps.
Opt. Laser Technol. 2021, 143, 107326. [CrossRef]

https://drive.google.com/drive/folders/1LRdHQnxpLwI5UGFLFQTbMXfHH7KiL7wS?usp=drive_link
https://drive.google.com/drive/folders/1LRdHQnxpLwI5UGFLFQTbMXfHH7KiL7wS?usp=drive_link
http://doi.org/10.1016/j.compeleceng.2022.108205
http://dx.doi.org/10.1155/2022/7291250
http://dx.doi.org/10.1016/j.jisa.2018.04.005
http://dx.doi.org/10.1007/s00371-022-02711-y
http://dx.doi.org/10.1007/s11042-018-6407-5
http://dx.doi.org/10.1007/s11831-022-09749-0
http://dx.doi.org/10.1016/j.jisa.2022.103299
http://dx.doi.org/10.1109/ACCESS.2022.3224745
http://dx.doi.org/10.1038/s41566-022-01105-9
http://dx.doi.org/10.1088/2058-9565/ab0fd9
http://dx.doi.org/10.3390/math11071589
http://dx.doi.org/10.1016/j.optlastec.2021.107326

J. Sens. Actuator Netw. 2023, 12, 73 25 of 26

19. Hazell, P.; Mather, P.; Longstaff, A.; Fletcher, S. Digital System Performance Enhancement of a Tent Map-Based ADC for
Monitoring Photovoltaic Systems. Electronics 2020, 9, 1554. [CrossRef]

20. Kanwal, S.; Inam, S.; Othman, M.T.B.; Waqar, A.; Ibrahim, M.; Nawaz, F.; Hamam, H. An effective color image encryption based
on Henon map, tent chaotic map, and orthogonal matrices. Sensors 2020, 22, 4359. [CrossRef]

21. Zheng, J.; Hu, H. A highly secure stream cipher based on analog-digital hybrid chaotic system. Inf. Sci. 2022, 587, 226–246.
[CrossRef]

22. Maolood, A.T.; Gbashi, E.K.; Mahmood, E.S. Novel lightweight video encryption method based on ChaCha20 stream cipher and
hybrid chaotic map. Int. J. Electr. Comput. Eng. 2022, 12, 4988–5000. [CrossRef]

23. Alawida, M.; Teh, J.S.; Mehmood, A.; Shoufan, A. A chaos-based block cipher based on an enhanced logistic map and simultaneous
confusion-diffusion operations. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 8136–8151. [CrossRef]

24. Amdouni, R.; Gafsi, M.; Guessmi, R.; Hajjaji, M.A.; Mtibaa, A.; Bourennane, E.B. High-performance hardware architecture of a
robust encryption block-cipher algorithm based on different chaotic maps and DNA sequence encoding. Integration 2022, 87,
346–363. [CrossRef]

25. El-Meligy, N.E.; Diab, T.O.; Mohra, A.S.; Hassan, A.Y.; El-Sobky, W.I. A novel dynamic mathematical model applied in hash
function based on DNA algorithm and chaotic maps. Mathematics 2022, 10, 1333. [CrossRef]

26. Zellagui, A.; Hadj-Said, N.; Ali-Pacha, A. A new hash function inspired by sponge construction using chaotic maps. J. Discret.
Math. Sci. Cryptogr. 2022, 1–31. [CrossRef]

27. Liu, J.; Wang, Y.; Han, Q.; Gao, J. A sensitive image encryption algorithm based on a higher-dimensional chaotic map and
steganography. Int. J. Bifurc. Chaos 2022, 32, 2250004. [CrossRef]

28. Bhandari, M.; Panday, S.; Bhatta, C.P.; Panday, S.P. Image steganography approach based ant colony optimization with triangular
chaotic map. In Proceedings of the 2022 2nd International Conference on Innovative Practices in Technology and Management
(ICIPTM), Gautam Buddha Nagar, India, 23–25 February 2022; Volume 2, pp. 429–434.

29. Wang, K.; Gao, T.; You, D.; Wu, X.; Kan, H. A secure dual-color image watermarking scheme based 2D DWT, SVD and Chaotic
map. Multimed. Tools Appl. 2022, 81, 6159–6190. [CrossRef]

30. Hosny, K.M.; Darwish, M.M. Robust color image watermarking using multiple fractional-order moments and chaotic map.
Multimed. Tools Appl. 2022, 81, 24347–24375. [CrossRef]

31. Murillo-Escobar, M.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R. A novel pseudorandom number generator
based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 2017, 87, 407–425. [CrossRef]

32. Wang, L.; Cheng, H. Pseudo-random number generator based on logistic chaotic system. Entropy 2019, 21, 960. [CrossRef]
33. Hemdan, A.M.; Faragallah, O.S.; Elshakankiry, O.; Elmhalaway, A. A fast hybrid image cryptosystem based on random generator

and modified logistic map. Multimed. Tools Appl. 2019, 78, 16177–16193. [CrossRef]
34. Chen, S.L.; Hwang, T.; Lin, W.W. Randomness enhancement using digitalized modified logistic map. IEEE Trans. Circuits Syst. II

Express Briefs 2010, 57, 996–1000.
35. Liu, J.; Liang, Z.; Luo, Y.; Cao, L.; Zhang, S.; Wang, Y.; Yang, S. A hardware pseudo-random number generator using stochastic

computing and logistic map. Micromachines 2020, 12, 31. [CrossRef]
36. García-Martínez, M.; Campos-Cantón, E. Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 2015,

82, 2119–2131. [CrossRef]
37. García-Martínez, M.; Ontañón-García, L.; Campos-Cantón, E.; Čelikovskỳ, S. Hyperchaotic encryption based on multi-scroll

piecewise linear systems. Appl. Math. Comput. 2015, 270, 413–424. [CrossRef]
38. Stoyanov, B.; Kordov, K. Novel secure pseudo-random number generation scheme based on two tinkerbell maps. Adv. Stud.

Theor. Phys. 2015, 9, 411–421. [CrossRef]
39. Tutueva, A.; Pesterev, D.; Karimov, A.; Butusov, D.; Ostrovskii, V. Adaptive Chirikov map for pseudo-random number generation

in chaos-based stream encryption. In Proceedings of the 2019 25th Conference of Open Innovations Association (FRUCT),
Helsinki, Finland, 5–8 November 2019; pp. 333–338.

40. Cardoso, M.B.; da Silva, S.S.; Nardo, L.G.; Passos, R.M.; Nepomuceno, E.G.; Arias-Garcia, J. A new PRNG hardware architecture
based on an exponential chaotic map. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS),
Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5.

41. Yu, F.; Li, L.; He, B.; Liu, L.; Qian, S.; Huang, Y.; Cai, S.; Song, Y.; Tang, Q.; Wan, Q.; et al. Design and FPGA implementation of a
pseudorandom number generator based on a four-wing memristive hyperchaotic system and Bernoulli map. IEEE Access 2019,
7, 181884–181898. [CrossRef]

42. Rezk, A.A.; Madian, A.H.; Radwan, A.G.; Soliman, A.M. Reconfigurable chaotic pseudo random number generator based on
FPGA. AEU-Int. J. Electron. Commun. 2019, 98, 174–180. [CrossRef]

43. Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Aldea, C.; Celma, S. Chaos-based bitwise dynamical pseudorandom
number generator on FPGA. IEEE Trans. Instrum. Meas. 2018, 68, 291–293. [CrossRef]

44. Hobincu, R.; Datcu, O. FPGA implementation of a chaos based PRNG targetting secret communication. In Proceedings of
the 2018 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 8–9 November 2018;
pp. 1–4.

45. Kaçar, S. Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system. Optik 2016,
127, 9551–9561. [CrossRef]

http://dx.doi.org/10.3390/electronics9091554
http://dx.doi.org/10.3390/s22124359
http://dx.doi.org/10.1016/j.ins.2021.12.030
http://dx.doi.org/10.11591/ijece.v12i5.pp4988-5000
http://dx.doi.org/10.1016/j.jksuci.2022.07.025
http://dx.doi.org/10.1016/j.vlsi.2022.08.002
http://dx.doi.org/10.3390/math10081333
http://dx.doi.org/10.1080/09720529.2021.1961900
http://dx.doi.org/10.1142/S0218127422500043
http://dx.doi.org/10.1007/s11042-021-11725-y
http://dx.doi.org/10.1007/s11042-022-12282-8
http://dx.doi.org/10.1007/s11071-016-3051-3
http://dx.doi.org/10.3390/e21100960
http://dx.doi.org/10.1007/s11042-018-6948-7
http://dx.doi.org/10.3390/mi12010031
http://dx.doi.org/10.1007/s11071-015-2303-y
http://dx.doi.org/10.1016/j.amc.2015.08.037
http://dx.doi.org/10.12988/astp.2015.5342
http://dx.doi.org/10.1109/ACCESS.2019.2956573
http://dx.doi.org/10.1016/j.aeue.2018.10.024
http://dx.doi.org/10.1109/TIM.2018.2877859
http://dx.doi.org/10.1016/j.ijleo.2016.07.044

J. Sens. Actuator Netw. 2023, 12, 73 26 of 26

46. Volos, C.K. Chaotic random bit generator realized with a microcontroller. J. Comput. Model. 2013, 3, 115–136.
47. Bao, H.; Hua, Z.; Wang, N.; Zhu, L.; Chen, M.; Bao, B. Initials-boosted coexisting chaos in a 2-D sine map and its hardware

implementation. IEEE Trans. Ind. Inform. 2020, 17, 1132–1140. [CrossRef]
48. Nesa, N.; Ghosh, T.; Banerjee, I. Design of a chaos-based encryption scheme for sensor data using a novel logarithmic chaotic

map. J. Inf. Secur. Appl. 2019, 47, 320–328. [CrossRef]
49. Liu, Z.; Wang, Y.; Zhao, Y.; Zhang, L.Y. A stream cipher algorithm based on 2D coupled map lattice and partitioned cellular

automata. Nonlinear Dyn. 2020, 101, 1383–1396. [CrossRef]
50. Wang, X.; Bao, X. A novel block cryptosystem based on the coupled chaotic map lattice. Nonlinear Dyn. 2013, 72, 707–715.

[CrossRef]
51. Peng, Z.; Yu, W.; Wang, J.; Zhou, Z.; Chen, J.; Zhong, G. Secure communication based on microcontroller unit with a novel

five-dimensional hyperchaotic system. Arab. J. Sci. Eng. 2021, 47, 813–828. [CrossRef]
52. Som, S.; Dutta, S.; Singha, R.; Kotal, A.; Palit, S. Confusion and diffusion of color images with multiple chaotic maps and

chaos-based pseudorandom binary number generator. Nonlinear Dyn. 2015, 80, 615–627. [CrossRef]
53. Xu, H.; Tong, X.; Meng, X. An efficient chaos pseudo-random number generator applied to video encryption. Optik 2016,

127, 9305–9319. [CrossRef]
54. Yeniçeri, R.; Kilinç, S.; Yalçin, M.E. Attack on a chaos-based random number generator using anticipating synchronization. Int. J.

Bifurc. Chaos 2015, 25, 1550021. [CrossRef]
55. Lambić, D.; Janković, A.; Ahmad, M. Security analysis of the efficient chaos pseudo-random number generator applied to video

encryption. J. Electron. Test. 2018, 34, 709–715. [CrossRef]
56. Ergün, S. Cryptanalysis and improvement of a chaos based random number generator. In Proceedings of the 2016 International

Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 29–30 November 2016; pp. 199–202.
57. Luo, Y.; Zhang, D.; Liu, J.; Liu, Y.; Cao, Y.; Ding, X. Cryptanalysis of chaos-based cryptosystem from the hardware perspective.

Int. J. Bifurc. Chaos 2018, 28, 1850114. [CrossRef]
58. Zia, U.; McCartney, M.; Scotney, B.; Martinez, J.; Sajjad, A. A novel pseudo-random number generator for IoT based on a coupled

map lattice system using the generalised symmetric map. SN Appl. Sci. 2022, 4, 48. [CrossRef]
59. Kanso, A. Self-shrinking chaotic stream ciphers. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 822–836. [CrossRef]
60. Matthews, R. On the derivation of a “chaotic” encryption algorithm. Cryptologia 1989, 13, 29–42. [CrossRef]
61. Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [CrossRef] [PubMed]
62. Beck, C.; Schögl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1995.
63. Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2002.
64. Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006.
65. Zhang, Z. A Multi-Threaded Cryptographic Pseudorandom Number Generator Test Suite. Ph.D. Thesis, Naval Postgraduate

School, Monterey, CA, USA, 2016.
66. Habutsu, T.; Nishio, Y.; Sasase, I.; Mori, S. A secret key cryptosystem by iterating a chaotic map. In Advances in Cryptology—

EUROCRYPT’91: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Brighton, UK, 8–11 April 1991;
Proceedings 10; Springer: Berlin/Heidelberg, Germany, 1991; pp. 127–140.

67. Alvarez, E.; Fernández, A.; Garcıa, P.; Jiménez, J.; Marcano, A. New approach to chaotic encryption. Phys. Lett. A 1999,
263, 373–375. [CrossRef]

68. Beham, E. Cryptanalysis of the Chaotic-map Cryptosystem. In Advances in Cryptology—EUROCRYPT’91: Proceedings of the
Workshop on the Theory and Application of Cryptographic Techniques, Brighton, UK, 8–11 April 1991; Springer: Berlin/Heidelberg,
Germany, 1991.

69. Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G. Cryptanalysis of a chaotic encryption system. Phys. Lett. A 2000, 276, 191–196.
[CrossRef]

70. Barker, E.; Kelsey, J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised); US
Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA,
2007.

71. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom.
1985, 16, 285–317. [CrossRef]

72. Brown, R.; Eddelbuettel, D.; Bauer, D.D. Dieharder: A Random Number Test Suite; Duke University Physics Department Durham:
Durham, NC, USA, 2018.

73. Patidar, V.; Sud, K. A novel pseudo random bit generator based on chaotic standard map and its testing. Electron. J. Theor. Phys.
2009, 6, 327–344.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2020.2992438
http://dx.doi.org/10.1016/j.jisa.2019.05.017
http://dx.doi.org/10.1007/s11071-020-05804-2
http://dx.doi.org/10.1007/s11071-012-0747-x
http://dx.doi.org/10.1007/s13369-021-05450-9
http://dx.doi.org/10.1007/s11071-015-1893-8
http://dx.doi.org/10.1016/j.ijleo.2016.07.024
http://dx.doi.org/10.1142/S0218127415500212
http://dx.doi.org/10.1007/s10836-018-5767-0
http://dx.doi.org/10.1142/S0218127418501146
http://dx.doi.org/10.1007/s42452-021-04919-4
http://dx.doi.org/10.1016/j.cnsns.2010.04.039
http://dx.doi.org/10.1080/0161-118991863745
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://www.ncbi.nlm.nih.gov/pubmed/10042089
http://dx.doi.org/10.1016/S0375-9601(99)00747-1
http://dx.doi.org/10.1016/S0375-9601(00)00642-3
http://dx.doi.org/10.1016/0167-2789(85)90011-9

	Introduction
	Related Works
	Preliminaries
	Proposed Scheme—State-Based Tent-Map (SBTM)
	Experiments and Results
	Contributions to Sensor and Actuator Networks
	Conclusions and Future Work
	References

