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Abstract: This paper explores the potential of smart crop management based on the incorporation
of tools like digital agriculture, which considers current technological tools applied in agriculture,
such as the Internet of Things (IoT), remote sensing, and artificial intelligence (AI), to improve crop
production efficiency and sustainability. This is essential in the context of varying climatic conditions
that affect the availability of resources for agriculture. The integration of tools such as IoT and sensor
networks can allow farmers to obtain real-time data on their crops, assessing key health factors, such
as soil conditions, plant water status, presence of pests, and environmental factors, among others,
which can finally result in data-based decision-making to optimize irrigation, fertilization, and pest
control. Also, this can be enhanced by incorporating tools such as drones and unmanned aerial
vehicles (UAVs), which can increase monitoring capabilities through comprehensive field surveys
and high-precision crop growth tracking. On the other hand, big data analytics and AI are crucial
in analyzing extensive datasets to uncover patterns and trends and provide valuable insights for
improving agricultural practices. This paper highlights the key technological advancements and
applications in smart crop management, addressing challenges and barriers to the global adoption
of these current and new types of technologies and emphasizing the need for ongoing research and
collaboration to achieve sustainable and efficient crop production.

Keywords: digital agriculture; sensor networks; smart crop management; remote sensing; Internet
of Things

1. Introduction

Digital agriculture is a term that describes the application of digital technologies and
innovations in agricultural production systems, value chains, and food systems [1]. It
encompasses various concepts, such as smart farming [2] and precision agriculture [3],
among others. These concepts refer to using data, sensors, machines, drones, and satellites
to collect and analyze information on location, weather, behavior, phytosanitary status,
consumption, energy use, prices, and economic information [1]. The data are used to make
more informed and precise decisions, optimize agricultural production systems, address
social concerns, increase knowledge exchange and learning, and improve monitoring of
controversies in agricultural chains and sectors [4]. In particular, “precision agriculture”
and “precision farming” (PF) refer to an innovative approach that originated in the 1990s [5]
that uses various sensors, drones, and monitoring devices to gather data about crops. This
information is used to optimize crop production and reduce the use of resources such as
water, fertilizers, and pesticides. PF provides a more sustainable and efficient way to grow
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crops, which is crucial as the world’s population grows and food demand increases [6].
The emergence of PF can be attributed to the growing recognition of soil and crop vari-
ability, coupled with the introduction of cutting-edge technologies like global navigation
satellite systems (GNSSs), geographic information systems (GISs), and microcomputers.
Initially, the primary focus of PF was to adopt fertilizer applications based on diverse soil
conditions found within an agricultural field. However, over time, additional practices
have emerged, encompassing automatic guidance systems for agricultural vehicles and
implements, integrating autonomous machinery and processes, enhanced product trace-
ability, on-farm research initiatives, and software solutions facilitating the comprehensive
management of agricultural production systems [7]. The influence of PF extends beyond
field crop production, being used in other domains, such as water management in viticul-
ture [8,9] and horticulture [10–16], as well as in livestock production [17–19] and pasture
management [20–22]. In this sense, it is important to highlight that the adoption of PF is
hindered by prominent challenges, notably the substantial upfront investment required
for acquiring PF equipment and the associated costs of acquiring the necessary skills and
knowledge. PF tools (PFTs) demand a high level of proficiency and expertise to effectively
handle the large amount of information (commonly referred to as big data) generated
by these tools. Within contemporary agricultural innovation systems, PF represents an
information-driven management approach that characterizes a technological stage often
called digital agriculture or farming 4.0 [23]. As mentioned above, this approach comprises
several tools to generate valuable crop information [24].

Given the importance of these technologies for agricultural production, this study
aims to comprehensively explore the synergistic use of IoT, remote sensing, and artificial
intelligence (AI) in smart crop management by analyzing the use of IoT sensors and remote
sensing technologies across different agricultural settings to gather information on key
parameters, the use of tools such as drones, and the use of AI and big data analytics to gener-
ate predictive models and decision support systems that guide farmers in optimizing their
practices. Additionally, this paper will provide practical insights and recommendations for
farmers and agribusinesses to implement smart farming techniques effectively.

This information will provide a detailed analysis of how digital technologies can be in-
tegrated into agricultural practices to address current challenges such as water scarcity and
environmental sustainability. It will also offer practical insights and guidelines for farmers
and agribusinesses looking to incorporate smart crop management techniques. Lastly, the
study will highlight the importance of actual and future research and collaboration among
producers and researchers to fully comprehend digital agriculture’s potential.

For better understanding, this paper was organized in sections, which will address the
following topics: (i) the use of remote sensing technologies to monitor different characteris-
tics of crops, the different types of remote sensing platforms, and a comparison between
satellite and drone imagery, (ii) the use of monitoring devices, such as automatic weather
stations (AWSs) and yield monitoring, and the current practical uses of these devices in
scientific studies, (iii) the use of big data and AI to analyze large volumes of information,
and how these tools are applied when working with different remote sensing technologies,
(iv) the incorporation of Internet of Things (IoT) to assist farmers in decision-making,
through the use of real-time data collection and analysis, (v) the implementation of smart
irrigation systems (SIS) using digital tools and sensors, and their role in maximizing water
use efficiency (WUE), (vi) a critical analysis of the evolving field of digital agriculture, focus-
ing on integrating artificial intelligence (AI), machine learning, blockchain technology, IoT
and sensor networks, data privacy and security, and promoting adoption and education to
enhance crop production, and finally, (vii) a conclusion to summarize all what is addressed
in the paper.

2. Methodology for Literature Selection and Analysis in Digital Agriculture

In conducting this comprehensive review of transformative technologies in digital
agriculture, we employed a systematic approach to identify and select relevant articles.
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This process involved several key steps to ensure a thorough and unbiased selection of the
most pertinent literature. The search strategy began with identifying and using specific
keywords and phrases related to our review topic. These keywords included terms such as
“digital agriculture”, “smart farming”, “precision agriculture”, “Internet of Things (IoT) in
agriculture”, “remote sensing in agriculture”, “artificial intelligence (AI) in agriculture”,
“big data in agriculture”, and “crop monitoring”.

The search for relevant articles was conducted across multiple academic and scientific
databases to ensure comprehensive topic coverage. The databases used included Google
Scholar, Scopus, Web of Science, IEEE Xplore, and ScienceDirect. Specific search criteria
were applied to filter the results obtained. Regarding the time frame, we considered articles
published between 1998 and 2024 to capture the latest advancements and trends in digital
agriculture. Only articles published in English were included, and we focused on peer-
reviewed journal articles, conference papers, and review papers to ensure the quality and
reliability of the sources.

The selection and screening of articles were carried out in several stages. Initially, a
preliminary search was conducted using the identified keywords in each database, resulting
in a broad list of potential articles. Titles and abstracts of the retrieved articles were then
screened for relevance. Articles that did not directly address the core themes of digital
agriculture, smart farming, precision agriculture, IoT, remote sensing, AI, or big data
were excluded.

The full texts of the remaining articles were then reviewed to assess their relevance and
quality. Articles were included if they provided significant insights into digital agriculture’s
technologies, applications, benefits, challenges, or future directions. Additionally, the
references of the selected articles were checked to identify any additional relevant studies
that might have been missed during the initial search.

Key information, including the study objectives, methodologies, findings, and con-
clusions, was extracted from each selected article for data extraction and synthesis. This
information was systematically recorded in a structured format to facilitate comparison
and synthesis. The data were synthesized to provide a comprehensive overview of the
current state of digital agriculture, identifying common themes, trends, technological ad-
vancements, and gaps in the existing literature. By employing this systematic and rigorous
approach, we ensured that our review encompasses the most relevant and high-quality
studies, providing a reliable and comprehensive overview of the transformative technolo-
gies in digital agriculture.

3. Remote Sensing: Using Satellite and Aerial Imagery to Monitor Crop Growth, Soil
Moisture Levels, and Other Critical Factors That Impact Crop Health

Satellite and aerial imagery have become powerful tools for monitoring crop growth,
soil moisture levels, and other critical factors that impact crop health. These technolo-
gies have transformed how farmers and agribusinesses approach agriculture, providing
valuable insights into the growth and health of crops and allowing for more informed
decision-making [25]. Satellite information can deliver varying spatial resolutions, such
as kilometers, hundreds, or tens of meters. Most of these lower-resolution products are
freely accessible but unsuitable for small-scale farming. Despite using state-of-the-art
satellite systems with remarkably high spatial resolutions of just a few meters or less, the
associated prices still need to be lowered to be widely employed in agriculture and other
areas. Recently, accessible satellite platforms like Landsat and Sentinel, including the latest
ESA’s Sentinel-2 NASA’s Landsat 9 mission, offer data specifically focused on vegetation
studies (Table 1). High-resolution measurements, short revisit time, and wide coverage are
great for efficient large-scale crop monitoring [26,27]. In addition, satellite images possess
a multi-spectral nature, meaning that these images capture information across multiple
wavelengths or spectra, such as visible, infrared, and thermal. However, satellite systems
face limitations due to the distance between the satellite and the ground, impacting data
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quality due to signal attenuation caused by various factors, such as atmospheric gases,
water vapor, and aerosols [28,29].

Table 1. Widely available satellite platforms for agriculture applications.

Satellite Cost Offered Products Agriculture Applications

Landsat Free Multispectral imaging; elevation data Crop monitoring; pest and disease detection; water
resources management; soil evaluation

Sentinel-2 Free High-resolution multispectral images Crop monitoring; vegetation change detection; land
management; fire detection

MODIS Free Low- and high-resolution image data Estimation of vegetation indices; monitoring of land
surface temperature; monitoring of droughts

WorldView-3 Paid High-resolution multispectral images Detailed field mapping; precision crop tracking;
vegetation change detection

TerraSAR-X Paid High-resolution SAR images Soil deformation detection; flood monitoring; crop
structure evaluation

RADARSAT-2 Paid High-resolution SAR images Soil moisture monitoring; vegetation change
detection; natural disaster management

Several researchers have introduced different imagery indices or mathematical for-
mulas to help distinguish between crop and non-crop areas [30,31]. However, the use of
these indices demands extensive expertise and knowledge. It involves understanding the
specific properties of different crops, their growth stages, and the environmental factors
that influence their appearance in satellite images. Additionally, these indices may be
susceptible to adversarial conditions; for example, variations in lighting conditions, atmo-
spheric disturbances, or the presence of occluding objects, like clouds or shadows, can
influence the performance of these indices in accurately identifying crop areas.

Other limiting factors in the use of satellite platforms include coarse pixel resolutions,
infrequent coverage, and slow delivery of information to users. These requirements for
expert knowledge can pose a challenge and limit the accessibility of these indices and
technology to non-experts or those without specialized training [32,33].

Nevertheless, satellite images are currently being used for crop water management
to provide valuable information on crop water requirements, irrigation efficiency, and
detecting water stress in plants. They help optimize irrigation scheduling, monitor wa-
ter availability, and improve water resource management in agriculture. In this regard,
Ref. [34] were able to calculate the actual evapotranspiration (ETa) of an olive orchard
integrating satellite images and ground-based climate data considering the spatial variabil-
ity using the two-source Shuttleworth and Wallace (SW) model, with errors of 10% and
RMSE = 0.3 mmd−1. For the ET calculation components, including sensible heat flux (H)
and latent heat flux (LE) [35], using algorithms for partitioning soil and vegetation temper-
atures from thermal infrared data, yield errors of about 10% for LE when comparing the
remote sensing-based two-source energy balance model with observations from an Eddy
Covariance (EC) system. As can be seen, most remote sensing technologies have emerged
to replace or complement traditional in situ methodologies, which are labor-intensive and
time-consuming, making them unsuitable for high temporal and spatial resolutions [36].
This problem is overcome with satellites and unmanned aerial vehicle (UAV) platforms.
Through lightweight spectral sensors, the latter enables non-destructive and near real-time
vegetation analyses after rigorous acquisition protocols and processing methodologies,
critical to determining in-field variability, allowing farmers to make management decisions
based on current crop and soil status [37]. For example, UAVs equipped with RGB and NIR
cameras have been successfully used to count seedlings and to classify plants and weeds,
using segmentation algorithms based on different indices, such as the Triangular Greenness
Index (TGI), the Excess Green Index (ExG), or NDVI [38–40]. Also, multispectral cameras
mounted on UAVs can generate NDVI maps that manifest the crop condition and adjust
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the spraying of pesticides and fertilizers with precision for only infected areas [41]. One of
the primary benefits of satellite and aerial imagery is the ability to monitor crop growth and
health over large land areas. This technology provides a bird’s eye view of crops, allowing
farmers to assess the overall health of the crop and identify areas that may need attention,
such as those suffering from stress due to a lack of water or nutrients. This information is
critical for optimizing crop production, as it allows farmers to make targeted interventions,
reducing the overall use of inputs and improving yields. In this regard, Ref. [42] estimated
various biophysical parameters from RGB aerial low-cost images obtained from a UAV,
with correlations between leaf area index (LAI), plant height, fresh and dry biomass, and
nitrogen concentration, with R2 values ranging from 0.70 to 0.97. They could also follow the
changes in the wheat canopy pattern towards its senescence. Crop evapotranspiration has
also been measured with drones, with great success using thermal cameras and two variants
of the two-source energy balance models. When comparing ET components measured with
an EC system with the TSEB-Priestley–Taylor and the dual-temperature-difference (DTD)
models, Ref. [43] obtained correlation coefficient (r) values of 0.98 for net radiation (Rn),
between 0.58 to 0.86 for soil heat flux (G), between 0.74 to 0.96 for sensible heat flux (H),
and from 0.85 to 0.92 for latent heat flux (LE). Another major benefit of satellite and aerial
imagery is monitoring soil moisture levels. By tracking changes in soil moisture levels over
time, farmers can make informed decisions about when to irrigate their crops, reducing
the overall use of water and improving water efficiency. Additionally, soil moisture levels
can be used to predict crop yield, allowing farmers to adjust their planting and harvest
schedules accordingly. Several studies have found conclusive evidence that numerous re-
mote sensing techniques, such as optical, thermal infrared, and microwave methodologies,
can accurately measure near-surface soil moisture at a depth of approximately 5 cm [44].
Thermal infrared sensors can measure soil moisture because they directly influence soil
temperatures, raising the specific heat and thermal conductivity, but they have almost the
same disadvantages as optical sensors. Other technologies include microwave and radar
sensors, which have a strong relationship to surface soil moisture (ms), can penetrate up to
~5 cm of the surface, and are unaffected by clouds and the earth’s atmosphere. Radar is par-
ticularly interesting because it has a fine spatial resolution. However, microwaves are less
useful for agriculture as they have a low spatial resolution (~30 km) [45]. Aerial imagery is
also used to monitor crop damage from pests and diseases. Using high-resolution images,
farmers can identify areas of the field suffering from pest or disease damage, allowing them
to make informed decisions about when to apply pesticides and other treatments, which
helps farmers reduce the overall use of inputs while improving the health of their crops and
reducing the risk of contamination. In addition to their use in crop production, satellite and
aerial imagery are also used to monitor other critical factors that impact crop health, such
as land use changes and climate change’s effects. By tracking changes in land use, farmers
can assess the impact of development and urbanization on the health of their crops while
monitoring the effects of climate change, providing valuable insights into how weather
patterns impact crop growth and yield. In this sense, while satellite-derived data have been
widely used to assess larger portions of land covering a wide spectral range, their adoption
at the farm scale has not reached the anticipated levels, which can be attributed to factors
such as coarse pixel resolutions, infrequent coverage, cloud cover, and delays in delivering
information to users, among others [46,47]. However, the emergence of unmanned aircraft
systems (UASs), commonly referred to as remotely piloted aircraft, unmanned aerial vehi-
cles, or drones, has become a sensing platform that fulfills the long-standing requirements
of farm managers [48]. UASs possess smaller pixel sizes, on-demand coverage, and rapid
information delivery, addressing the demands of farm-scale data acquisition [32,33]. They
also provide near-real-time imagery with high spatial and temporal resolution, allowing
the obtaining of non-destructive data [49]. Nevertheless, it is important to note that the
choice between satellite and drone imagery depends on specific use cases, budget, data
requirements, and operational considerations. The main advantages and disadvantages of
satellite and drone imagery are detailed in Table 2.
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Table 2. Main advantages and disadvantages of satellite and drone images.

Aspect Satellite Images Drone Images

Advantages

Coverage Global coverage Localized coverage
Frequency Frequent revisits; regular data updates On-demand; immediate and specific data

Accessibility Easily accessible; no on-site presence -
Resolution Moderate- to high-resolution Very high-resolution; detailed information

Cloud Cover Tolerance - Unaffected by cloud cover; clear images
Cost Generally lower cost per image Initial investment; operational expenses

Disadvantages

Spatial Detail Limited spatial detail Smaller field of view
Temporal Detail Limited revisit frequency; gaps in data Potential limitations due to regulations

Weather Dependency Affected by weather conditions Susceptible to wind, rain, and visibility
Data Latency May take time for data to be available Real-time data but limited flight duration

Flexibility Fixed orbits; unable to target specific areas Flexibility to capture specific locations

Table 2 shows that both imagery sources offer unique advantages and disadvantages
that can be leveraged to optimize various aspects of agricultural management and decision-
making. However, the use of UAVs has increased in agricultural applications, given
that they offer numerous valuable contributions that enhance efficiency, precision, and
productivity, being used in various agricultural applications such as field assessment,
livestock monitoring, yield assessment, and weed mapping.

The choice of UAV design often depends on the specific needs of agriculture, such
as crop monitoring, field mapping, and precision spraying. Some of the types of UAVs
applied in agriculture are [49]:

• Fixed-wing UAVs: commonly require runways for takeoff and landing areas. They
can cover large areas and carry heavier payloads.

• Rotary-Wing UAVs: higher resolution given the flight height and speed. They can
cover smaller areas compared to the fixed-wing UAVs.

• Hybrid UAVs: are generated to combine the advantages of the types to overcome both
their disadvantages. They combine the vertical take-off and landing (VTOL) ability of
rotary-wing UAVs with the cruise flight of fixed-wing UAVs.

As mentioned above, different types of UAVs are used in agricultural management.
The choice of UAV type depends on factors like the size of the agricultural area, the level
of detail required in data collection, the presence of obstacles, and the specific tasks being
performed. This tool can help farmers optimize practices, reduce resource use, and enhance
agricultural productivity.

The main applications of different types of UAVs in agriculture are listed in Table 3.
Figure 1 presents a comprehensive overview of the challenges, benefits, and appli-

cations of imagery technology in agriculture. It highlights the key challenges and the
benefits of imagery for satellite and unmanned aerial vehicles (UAVs) imagery, detailing
their specific uses and the various types of UAVs used for monitoring purposes.

Satellite and aerial imagery are critical tools for monitoring crop growth, soil moisture
levels, and other critical factors that impact crop health. They provide valuable insights
into crop growth and health, helping farmers and agribusinesses make informed decisions,
optimize crop production, and improve yields. With the continued advancements in
imaging technology, it can be expected that even more impactful satellite and aerial imagery
applications will be seen in agriculture.
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Table 3. Different types of unmanned aerial systems (UASs) and their uses in agriculture.

Type of UAS Use References

Rotary-wing Weed identification [50]
Rotary-wing Soil sampling [51]
Rotary-wing Water status estimation [36,52]
Rotary-wing Image segmentation [39]
Fixed-wing Evapotranspiration estimation [53]

Rotary-wing Vineyard vegetation characterization [54]
Rotary-wing Estimation of vineyard actual evapotranspiration [55]
Rotary-wing Plant counting [40]
Rotary-wing Water stress phenotyping [56]
Rotary-wing Wheat monitoring [57]
Rotary-wing Comparison of vegetation indices [58]
Rotary-wing Vegetation monitoring [59]
Rotary-wing Yield monitoring [60]
Fixed-wing Grapevine water status evaluation [61]
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4. Monitoring Devices: Automatic Weather Stations (AWSs) and Yield Monitors

In addition to sensors and drones, PF uses different monitoring devices such as
weather stations and yield monitors that can collect information about weather patterns,
precipitation, and the number of crops harvested, providing farmers with a complete pic-
ture of the factors affecting their crops. The information delivered by these tools can then
be used to decide about planting and harvesting times and which crops to grow in different
field areas. As shown in Figure 2, AWSs and yield monitors are essential monitoring
devices supporting PF by providing critical data for informed decision-making. In this
sense, generating short- and long-term decision-making strategies regarding agricultural
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production requires an adequate study of soil-plant-atmosphere interactions, which vary
from one geographical zone to another [62]. To study this interaction, meteorological
information is necessary [63] and very important for the generation of predictive analysis
regarding early climatic alerts that would allow for the avoidance or mitigation of certain
climatic phenomena over crops. Therefore, it is important to consider that, to maintain
sustainable production, weather conditions must be considered, and in recent decades,
these have fluctuated worldwide because of different factors, such as climate change [64].
Therefore, meteorological monitoring has become a priority for several organizations fo-
cused on research and operational activities related to climate. Additional use of this
information is related to determining water use by crops, water management, generation
of hydrological models [65], and calibration and validation of models, among others [66].
Given that an important input for this is climatic information, which has to be delivered in
a timely manner, it becomes important to have an adequate record of the information for
predictive analysis [66]. Because of the above, the knowledge of the variables affecting crop
growth, such as wind speed, air temperature, relative humidity, solar radiation, and rainfall,
along with the need to transform the observation of those variables into useful informa-
tion, is becoming a growing need [67]. This information can be observed and recorded
using an automatic weather station (AWS) device. An AWS comprises several sensors
designed to measure different meteorological parameters without human intervention, and
the information received by these sensors can be transmitted automatically [68]. Accord-
ing to the World Meteorological Organization (WMO), there are four categories of AWS:
(i) light AWS, which measures a few variables (such as air temperature and/ or relative
humidity), (ii) basic AWS, which measures basic meteorological variables, such as air
temperature, relative humidity, wind speed and direction, precipitation, and atmospheric
pressure, (iii) extended AWS which, in addition to the basic AWS, measures solar radiation,
sunshine duration, soil temperature, and evaporation, and finally, (iv) AWSs equipped
with automation of visual observations [68]. In addition to this, a different classification of
AWSs can be given regarding the presentation of data, where an AWS can be grouped into
real-time AWS (presents data in real-time) and offline AWS (only stores data) [69]. AWSs
are used worldwide and greatly aid weather prediction due to their reliability and accuracy.
However, their high cost restricts their acquisition on a larger scale, either for developing
countries [70] or consumers who need larger volumes of AWSs for different purposes. In
this sense, low-cost sensors stand out as an alternative, given that their small size character-
izes them, and they are also characterized by high mobility and low energy consumption.
They can be used in various situations and build measurement networks based on different
ideas and purposes. They can also be connected to microcontrollers to create a small
modular measuring device [71], giving them an advantage over the traditional available
devices used in AWSs.

Several studies have incorporated or developed these sensors [72–75], successfully
generating devices to overcome several needs. In addition to the use of all kinds of AWSs
to assess different parameters that affect crops, yield monitoring is a fundamental factor
in precision agriculture [76] and a crucial global challenge, as by the year 2050, the world
must be able to generate enough food to feed almost 10 billion people [60]. In this sense,
the correct yield assessment becomes crucial in agricultural production. Currently, different
types of yield monitors are being used to do this, which are agricultural technologies used
to measure and record the yield of crops. These devices provide valuable data that help
farmers optimize their operations, make informed decisions, and improve productivity.
Some of the types of yield monitors are:

• Mass Flow Sensors: devices that directly measure the flow of harvested material
through the combine’s grain elevator. It is sensitive to variations in flow rate and
ground slope [76,77].

• Optical Sensors: remote sensing devices that use light and its interaction with plants
to gather data and provide insights into crop health and potential yield. These devices
have been used to predict yields in corn [78,79], among others.
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Figure 2. Monitoring devices that enable PF, collecting valuable meteorological and crop data.

It is important to highlight that PF has already proven valuable for farmers, with many
reporting increased yields and reduced costs. Additionally, it helps reduce agriculture’s
environmental impact, allowing farmers to use resources more sustainably [80]. PF will
become even more widespread as technology improves and provides greater benefits to
farmers. Also, by gathering and analyzing crop data, farmers can make more informed
decisions, increase crop yields, and reduce the impact of agriculture on the environment.

5. Big Data and Artificial Intelligence (AI): The Use of Big Data and AI to Analyze Vast
Amounts of Data and Provide Insights into Agricultural Production Processes

Monitoring different types of variables related to optimizing crop management gener-
ates a great amount of data, currently defined as “big data”. Digital agriculture is closely
related to big data as it relies on the use of big data tools and practices to achieve sustain-
able agricultural development, involving the integration of various technologies such as
computer science, machine learning, software engineering, environmental science, and
more, with core agricultural disciplines [81], allowing the analysis of large volumes of
historical datasets and enabling the extraction of novel and useful knowledge [82]. Big
data can aid smart farming in several ways, for instance, in smart sensing and monitoring,
smart analysis and planning, smart control, and big data in the cloud [83,84]. Several
studies have incorporated this term when carrying out agricultural studies, such as the
case of [85], which incorporated high-resolution imagery to establish the relationship be-
tween soil water availability and water flow and use efficiency in a commercial vineyard
(cv. Aglianico), indicating that the ultra-high spatial resolution capabilities of UAVs and
UASs are currently producing big data that need to be analyzed on time. Another example
is a study carried out by [86], who states that under a severe climate change scenario,
agriculture must move to a “Sustainable Precision Agriculture and Environment” based on
automation that incorporates AI, Internet of Things (IoT), drones, robots, and big data.

In a study carried out by [87], a new image encryption system that combines chaotic
maps with the MapReduce framework to enhance the security and efficiency of encrypting
large batches of satellite images was developed and evaluated. This approach ensures
secure transmission and storage of satellite imagery by utilizing advanced encryption tech-
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niques, improving the efficiency and scalability of the encryption process, making it suitable
for handling large datasets, and addressing the growing demand for secure handling of
large volumes of remote sensing data in the era of big data and cloud computing.

It is important to note that applying big data analytics in agriculture can lead to an
increase in productivity of around 10 to 15% in agricultural production [81]. However, there
are limitations when big data wants to be incorporated in the context of digital agriculture.
Several barriers must be overcome, including data quality, data integration, data privacy,
and security, lack of interoperability between different data sources, and the need for
advanced data analytics skills among farmers [88–91]. Additionally, the amount of data
generated in digital agriculture can pose challenges regarding storage, processing, and
analysis [82]. Overcoming these limitations will be crucial to fully harnessing the potential
of big data in digital agriculture and realizing the benefits for farmers and the environment.

Another important improvement for agricultural production is the incorporation of
AI, a multidisciplinary field dedicated to emulating human intelligence over robots to
exhibit human-like cognitive abilities, such as learning and problem-solving. AI enhances
decision-making processes, boosting crop cultivation and livestock management efficiency
and generating agriculture automation [92]. AI surveillance systems offer valuable insights
for crop monitoring, pest detection, and soil issue diagnosis, empowering farmers to make
informed decisions about when to plant seeds to achieve the highest possible yield [93,94].

The main features and aspects of big data and artificial intelligence (AI) applied in
agriculture are listed in Table 4.

Table 4. Main features/aspects of big data and artificial intelligence (AI) applied in agriculture.

Feature/Aspect Big Data in Agriculture Artificial Intelligence (AI) in
Agriculture

Primary Purpose Collection, storage, and analysis of large datasets
from various agricultural sources

Use of algorithms and models to make
predictions, decisions, or automate tasks

based on data

Key Applications Soil and crop monitoring, weather prediction,
yield prediction, resource optimization

Disease and pest detection, precision
irrigation, automated harvesting,

crop recommendation

Data Sources Satellite imagery, sensors (soil, weather, etc.),
drones, farmer records

Same as big data, plus machine learning
training sets, historical data

for predictions

Tools and Technologies Hadoop, Spark, NoSQL databases, cloud storage
Neural networks, machine learning

algorithms, computer vision, natural
language processing

Benefits Real-time monitoring, data-driven
decision-making, improved resource management

Automation of tasks, early detection of
issues, personalized recommendations,

increased efficiency

Challenges Data storage and management, data integration
from diverse sources, ensuring data quality

Need for quality training data, model
interpretability, over-reliance on

technology, ethical concerns

Impact on Labor
May reduce the need for manual data collection

and analysis but requires expertise in data
management

Can reduce manual labor in tasks like
harvesting but requires expertise in AI

and machine learning

Future Potential Continued growth with the rise of IoT devices in
agriculture and increased data generation

Expansion into more areas of agriculture,
integration with robotics, and more

advanced predictive models

With the increasing demand for food and the need for sustainable agriculture, there is
also a growing need for more efficient supply chains that can quickly respond to changes
in demand and market conditions. Big data and AI play a critical role in this area, as
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they allow agribusinesses to track and analyze data on crop production, transportation,
and distribution, providing valuable insights into areas needing improvement. A visual
representation of the multifaceted ways digital technologies are transforming modern
agriculture is presented in Figure 3. This information helps agribusinesses make informed
decisions to optimize their supply chains, reduce waste, and increase profitability.
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Figure 3. The role of digital technologies in modern agriculture.

6. IoT in Agriculture: The Use of Internet of Things (IoT) for Real-Time Data Collection
and Analysis

The Internet of Things (IoT) has revolutionized many industries, and agriculture is no
exception. IoT in agriculture has allowed for the connection of sensors, devices, and other
technologies in the field to collect and analyze real-time data. This has resulted in a more
efficient, sustainable, and productive farming industry. The term “Internet of Things” was
first envisioned by Kevin Ashton in 1999 as a technological universe composed of objects
or things working as single units or as a collaborative network of multiple devices. The
basic structure of an IoT unit is based on three layers: the sensing or perception layer, the
data transfer or network layer, and the storage and manipulation or application layer [95].
IoT technologies belong to the so-called agriculture 4.0, in which data become vital to assist
farmers in decision-making, allowing them to use their resources more efficiently (land,
water, fertilizers, etc.) [96].

IoT in agriculture starts with installing sensors and other devices on the farm, which
can monitor various aspects, such as soil moisture, temperature, and humidity levels.
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In contrast, other devices can track the movement of livestock, the use of water, and
the quality of the crops [97]. The data collected by these sensors are then transmitted
to a central hub to be analyzed in real-time. However, for this to work, IoT requires
interoperability at all levels to promote heterogeneous systems equipped with sensor
networks to work together [98], which is the case for many agricultural applications.
Moreover, the development of the Internet of Underground Things (IoUT) and wireless
underground sensor networks (WUSNs) has further enhanced the ability to monitor and
manage agricultural resources by including buried sensor nodes to measure and transmit
environmental data, addressing challenges in communication and energy consumption
that are specific to underground environments [99,100].

The technological progression of conventional agriculture towards precision and micro-
PF has been significantly driven by recent enhancements in sensor technology, coupled
with the shrinking size of electronic components, a substantial reduction in their cost [101],
and more efficient system interactions [102]. Still, a key factor that should be considered in
spreading its use is the visualization of the data, which is now carried out in a non-intuitive
or decontextualized way. This is how some authors have proposed alternatives to make
the visualization of data from IoT more interactive by integrating, for example, augmented
reality technologies to support IoT data visualization, allowing farmers to visualize and
interpret data directly with the target crops through virtual contents [102].

In addition, real-time data collection [103] and analysis benefit farmers. For example, it
allows them to monitor soil moisture levels [104] and adjust irrigation systems, accordingly,
reducing water waste and increasing crop yields. Farmers can also use the data collected
by IoT devices to track livestock movements and ensure their health and welfare. However,
real-time data collection requires data transmission technologies between sensors and the
cloud [102,105]. Numerous wired and wireless connectivity alternatives exist, offering
diverse ranges, theoretical bandwidths, and topologies (Table 5).

Table 5. Wired and wireless connectivity alternatives.

Protocol Connectivity Topology Range Data Rate References

Ethernet (IEEE 802.3)

Wired

Star 100 m (twisted pair)
100 km (fiber optic) Up to 1.6 Tbit/s [106]

Controller Area Network
(CAN) Bus Up to 1000 m Up to 1 Mbit/s [107]

Universal Serial Bus (USB) Star 5 m 80 Gbit/s [108]

Wi-Fi (IEEE 802.11)

Wireless

Star or Mesh 50 m Up to 9.6 Gbit/s [109,110]

Zigbee Star or Mesh 10 to 100 m 250 kbit/s [111]

LoRa Star or Mesh 5 to 20 km 0.3 to 27 kbit/s [112]

Narrowband IoT (NB-IoT) Cellular 1 to 10 km 20 kbit/s [113,114]

LTE-M Cellular Up to 10 km 1 Mbit/s [114]

Sigfox Star 10 to 20 km 100 bit/s [115]

Another important aspect of IoT in agriculture is the ability to monitor and track
the quality of crops in real-time. This can be accomplished using sensors to monitor the
chemical composition of the soil, the size and quality of the crops, and other factors that
affect crop growth. This information can be used to make informed decisions about when
to harvest the crops and ensure that the crops meet quality standards before being sold [97].
An example of this is the study carried out by [116], who developed an effective and
affordable Internet of Things (IoT) scale system to measure crop water use, specifically
evapotranspiration (ET), using weighing lysimeters, focusing on creating a system that
utilizes open-source technologies and components to provide accurate and real-time moni-
toring of ET data, which can be transmitted to the Internet for remote access. The developed
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IoT scale system successfully measured crop evapotranspiration (ET) with high accuracy
and reliability during indoor and outdoor experiments (r² = 1.0 for indoor and r² = 0.9994
for outdoor).

Another study carried out by [117] developed and automated a photovoltaic-powered
soil moisture sensor (SMS) for water management in irrigation, where the developed soil
moisture sensor showed a strong correlation with the traditional gravimetric method of
measuring soil moisture. Specifically, the sensor achieved a determination coefficient (R²)
0.70 and a Pearson correlation (r) 0.84. This indicates that the sensor is reliable and accurate
in estimating soil moisture. The sensor’s data were also consistent with gravimetric data,
with root mean square error (RMSE) values of 3.95 and 4.01.

Another fundamental element in carrying out the monitoring of crops and the core
component of the IoT type of sensors are embedded sensors. With the advancement of
technology, circuits have not only been miniaturized, but they have also increased their
computational power and have integrated data transmission capabilities at a lower cost,
providing greater access [118]. IoT systems’ connectivity to the Internet (cloud) is related to
communication protocols and continuous crop monitoring. Services such as 3G/4G and
5G are fundamental to provide connectivity between IoT devices and the cloud, enabling
systems to share data, perform more accurate off-site data analytics, cloud storage, and
AI-powered devices, and inform and alert farmers in real-time with low latency. Although
cellular connectivity holds significant potential in the agriculture sector, certain limitations
make it difficult to optimize utilization. Among these limitations, geographical coverage
stands out as a prominent constraint. The sparse population density in such regions often
leads to adequate network infrastructure, resulting in strong or consistent signal strength.
This connectivity issue can compromise the fluent data transmission between IoT devices
and central systems, affecting real-time monitoring, data collection, and remote-control
functionalities [119–121].

In addition to monitoring and optimizing existing processes, IoT in agriculture can
predict future conditions and make proactive adjustments. For example, historical data
collected by weather sensors can be used to predict future weather patterns and inform
planting decisions. Another example is sustainability, which can be enhanced by monitoring
soil moisture levels, allowing farmers to reduce the water they use [120,122], resulting in
more efficient use of resources and improved crop yields. For instance, in a study carried
out by [123], they developed and implemented an IoT-assisted, context-aware fertilizer
recommendation system which was designed to provide precise fertilizer recommendations
based on real-time soil fertility data, crop type, and soil type, using machine learning
models over various crop types such as maize, sugarcane, cotton, tobacco, paddy, barley,
wheat, millets, oil seeds, pulses, and groundnuts. The generated mapping architecture
facilitated real-time soil fertility mapping using modern sensors to capture data on key
soil nutrients (nitrogen, phosphorus, and potassium). Also, the results indicate that the
IoT-based approach closely aligns with traditional methods, demonstrating its effectiveness.

For predicting reference evapotranspiration (ET0), a hybrid ensemble machine learn-
ing model using IoT-based crop field-sensed climatic data was developed by [124]. The
study focused on simplifying the ET0 determination process, which is essential for efficient
water utilization and smart irrigation management in agriculture. This indicates that incor-
porating IoT tools is increasingly used in agricultural practices to improve sustainability.

Figure 4 illustrates the intricate ecosystem of the IoT in agriculture, highlighting the
flow of data between interconnected devices, the cloud, and decision support systems.
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Figure 4. Overview of the Internet of Things (IoT) ecosystem in agriculture, highlighting structure,
data transmission, benefits, and specific applications.

7. Smart Irrigation Systems: Using Digital Tools and Sensors to Manage Water Usage in
Agriculture, Reducing Waste and Maximizing Efficiency

Smart irrigation systems (SISs) are a technology-based solution to the challenge of
efficient water management in agriculture. SISs use digital tools and sensors to monitor
and manage water use, resulting in a more sustainable and efficient use of this precious
resource [80,125]. In this sense, water use efficiency (WUE), which is defined as the crop
yield per volume of water used [126], has gained research attention and policy focus world-
wide due to climate change and water scarcity [127–129]. Traditionally, farmers have relied
on manual methods and guesswork to determine the water needs of their crops. However,
with the advent of the SIS, farmers can now monitor plant requirements in real-time and
adjust their irrigation systems accordingly. This helps to reduce water waste and ensure
that crops receive the optimal amount of water for maximum growth. Monitoring meth-
ods in smart irrigation can be soil-based, weather-based, or plant-based. Soil moisture
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monitoring considers measuring either soil water potential or soil water content, utilizing
direct (gravimetric sampling) and indirect methods (electromagnetic properties, heat con-
ductivity, neutron count, water potential, or electrical resistance) to comprehend moisture
dynamics within the plant root zone and its association with irrigation and plant water
uptake [130–132]. Weather-based methods consider monitoring several meteorological
variables to obtain the reference evapotranspiration (ETo) because the water lost by plants
depends on relative humidity, wind, solar radiation, and temperature. These variables
are usually monitored with an automatic weather station (AWS), and in most agricultural
applications, the ET is calculated using the FAO-56 Penman-Monteith equation [133,134].
However, the preferred method for irrigation management is plant-based monitoring or
plant stress sensing because the plant integrates the effects from the soil and the atmosphere.
There are several methodologies to assess plant water status, including leaf or stem water
potential, stomatal conductance, thermal sensing, sap flow, tissue water content (RWC),
and stem diameter (dendrometry) [135,136].

Various monitoring methods, such as soil moisture sensors, weather stations, and
plant sensors, gather comprehensive data on environmental conditions and crop water
requirements. This data-driven approach enables precise irrigation scheduling and water
management, resulting in optimized water usage, improved crop yields, and reduced
environmental impact, as shown in Figure 5. One of the key components of an SIS is using
sensors, which can be placed in the soil to monitor moisture levels and around the crop to
monitor weather-related data, and then sending this data to a central hub. The hub then
uses this information to adjust the irrigation system automatically, considering the soil
water balance (transpiration, evaporation, rainfall, infiltration, surface runoff, subsurface
flow, and deep percolation), ensuring that the crops receive the right amount of water at
the right time [137–139]. In addition, the SIS can be programmed to consider other factors,
such as weather patterns, crop type, and soil type, to provide a more customized and
efficient water management solution [140]. For example, using low-power sensors and
electronics, Ref. [141] built a smart IoT baes prototype system based on microprocessors and
a single-board computer (SBC) coupled with soil moisture, air humidity, air temperature,
and UV light sensors so the farmer can then access this data and decide where and how
much to irrigate.

Another important aspect of SISs is the use of digital tools and software. These tools
can be used to manage and analyze the data collected by the sensors, providing farmers
with valuable insights into their irrigation practices and data to identify trends and patterns,
which can then be used to adjust the irrigation system to improve efficiency. For example,
Ref. [142] developed a low-cost wireless monitoring and decision support system for water
saving in agriculture based on the combination of wireless sensors, actuation network
technology, and with consideration of soil and crop models, providing a context-aware
and optimized irrigation schedule to reduce the waste of water and to maximize the crop
yield according to water demand conditions. Ref. [143] developed an irrigation model
using machine learning (ML) to be used with tomato and eggplant, based on information
provided by soil moisture sensors, reducing water use by 46%. They also developed
software to represent graphical data collected by the monitoring system and webcam views
from a surveillance system installed around the plants. On a much larger scale, Ref. [144],
using TinyOS software architecture, created an application to manage an autonomous
precision irrigation system based on wireless underground sensor networks in a center
pivot irrigation system.

Integrating IoT and 6G with a prediction algorithm based on weather history data and
current soil moisture, Ref. [145] developed an intelligent system that irrigates the fields
according to the environmental conditions, achieving an accuracy of 86%, a sensitivity
of 89%, and a precision of 91%. The authors wrote a web service in PHP with a REST
API to send and display the information collected by the field gadget to the user. A web
administration was created in Arduino to collect climate data from various sources, such
as Open Weather and Accuracy Weather, to predict weather conditions and store them in
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MySQL. Finally, utilizing support AI calculations, the algorithm is used to predict the soil
moisture based on the field and climate information for the forthcoming days. In Grapevine,
researchers from Idaho in the United States [146] implemented a decision support system
(DSS) for precise irrigation on two small commercial vineyards using the crop water stress
index (CWSI) obtained through an AI neural network model using real-time sensor data
inputs. The irrigation DSS was hosted on-site using edge computing implemented in a
field data logger, which contains a webpage accessible via a cellular modem that shows a
12-day history of daily CWSI, the fraction of available soil water, and weather condition
information. This system was evaluated throughout four seasons, indicating that the
average daily CWSI and irrigation volumes were similar between years, suggesting that
the system effectively assessed the irrigation needs of the vineyards. In the same industry,
but with regulated deficit irrigation (RDI), Ref. [147] developed a DSS consisting of two
models based on artificial neural networks (ANN) for soil moisture prediction and RDI
scheduling. For the soil moisture model, weather variables, crop coefficient, and irrigation
amount were used as inputs. Initial soil moisture, weather variables, crop coefficient,
and desired soil moisture target were inputs to the RDI scheduling model. The results
showed that the model for soil moisture could predict this parameter in the following week
with an r-squared of 0.93 and RMSE of 0.86% m3m−3. The RDI scheduling model could
estimate the weekly irrigation needs with an r-squared of 0.94 and RMSE of 8.85 L per
drip irrigation emitter, demonstrating the applicability of this system in a real operation
scenario. In [148], the authors designed an intelligent irrigation system through an AI-based
digital application called AIDSII. It uses CNN-LSTM models to analyze environmental, soil,
weather, and crop data, providing real-time monitoring capabilities, offering comprehensive
feedback through mobile (Android) and web technologies, and control capabilities, turning
on and off sprinkler system valves. The software allows for conserving water resources,
reducing wastage, and boosting crop productivity and quality.
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Figure 5. Framework for Smart Irrigation Systems (SISs) in agriculture, highlighting data utilization,
monitoring methods, and benefits.

In recent years, irrigation scheduling systems have used artificial intelligence (AI)
algorithms to analyze and understand soil moisture dynamics in the context of seasonal
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changes in atmospheric demands and plant needs [149–152]. Among the most relevant
study fields of artificial intelligence (AI) for agriculture, machine learning (ML) is con-
sidered one of the most important because using algorithms allows computers to learn
and process databases, making predictions with them [153], which is vital for generating
automatic irrigation scheduling recommendations. Many applications of ML techniques
have emerged in recent years. An intelligent irrigation system developed by [154] forecasts
crop water requirements using an ML algorithm, where the system considers deploying
temperature, humidity, and soil moisture sensors within an agricultural field, which trans-
mit the data via a microprocessor to an IoT device integrated with cloud capabilities. The
system’s predictive capability is performed through a decision tree algorithm, where the
results obtained are sent through a mail alert to the farmers.

In another study, Ref. [155] proposed an IoT-based, low-cost, intelligent module
for smart irrigation systems using neural networks (NN). The system uses sensors that
constantly monitor temperature, humidity, and soil moisture and are connected to the IoT
module, which uses NN-based decision-making that sends commands to the irrigation
unit, turning ON/OFF water for the required zones. Also using NN, Ref. [156] developed a
smart irrigation system using a wireless sensor network (WSN) composed of soil moisture
(MC) probes, soil temperature measuring devices, environmental temperature sensors,
environmental humidity sensing devices, CO2 sensors, and daylight intensity devices. The
system calculates the optimum irrigation usage using neural network-based prediction
of soil water requirement to manipulate specific valves for maintaining uniform water
application.

In addition to improving water efficiency, SISs also have the potential to conserve water and
reduce the negative impact of irrigation on the environment [157,158]. For example, by using a
SIS, farmers can reduce the water they use, helping conserve this precious resource [159,160].
Also, SISs can help prevent soil erosion and protect groundwater resources by ensuring the right
amount of water is applied to the soil at the right time [161–163]. SISs can also have a positive
impact on crop yields and quality. By providing crops with the optimal amount of water, SISs
can help to improve their growth and productivity [164–166]. In addition, by reducing water
waste, SISs can help lower costs and improve farmers’ profitability [167,168].

8. Ongoing and Future Work

The field of digital agriculture for crop production is continuously evolving, and
several areas of ongoing and future work hold great potential for further advancements, in-
cluding the integration of artificial intelligence (AI) and machine learning (ML). Integrating
AI and ML algorithms in digital agriculture can enhance the capabilities of data analytics
and decision-making processes. Also, by including AI and ML techniques, farmers can
obtain deeper insights from the collected data, predict crop yields, optimize resource alloca-
tion, and detect anomalies or diseases in real-time [169,170]. Ongoing research is focused on
developing advanced AI and ML models tailored to the specific needs of crop production.
Also, blockchain technology can potentially revolutionize the traceability and transparency
of the food supply chain. By implementing blockchain-based systems, farmers can securely
record and share data related to crop production, including information on seed quality,
fertilizers, pesticides, and harvesting practices [171,172]. This technology can enhance trust
among consumers and enable them to make informed choices about the food’s origin and
quality. Ongoing work is exploring the application of blockchain in digital agriculture
and its potential benefits, including food safety and food security [173]. Finally, integrat-
ing Internet of Things (IoT) devices and sensor networks in agriculture enables real-time
monitoring of various parameters, such as soil moisture, temperature, humidity, and crop
health [174–176], focusing on developing low-cost and energy-efficient sensors, improving
connectivity in remote areas, and optimizing data transmission and storage.

However, even when the future of digital agriculture is promising, the challenges must
also be considered. Given that poor data quality can lead to incorrect decision-making,
integrating data from diverse sources, such as IoT sensors, satellite imagery, and UA, into
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a unified system remains challenging, exacerbated by the need for standardized data for-
mats and interoperability between different systems. The initial investment required for
high-resolution satellite imagery, sophisticated UAVs, and PF equipment can be prohibitive
for small-scale farmers. Additionally, more access to these technologies in remote and
underdeveloped regions is needed to maintain widespread adoption. Also, effective use of
digital agriculture tools requires substantial technical capacities, requiring the training of
farmers to interpret complex data and operate advanced machinery [177,178]. Therefore,
ongoing education and capacity-building initiatives are essential to equip farmers with
the necessary skills to use these technologies effectively. Finally, the extensive gathering of
agricultural data raises significant privacy concerns, and protecting this data from unau-
thorized access and breaches is crucial [179,180]; therefore, developing robust regulatory
frameworks to address data privacy and security issues is essential.

Advancing in these areas, considering all these advantages and challenges will al-
low digital agriculture for crop production to continue focusing on integrating artificial
intelligence (AI) and machine learning, exploring the potential of blockchain technology,
enhancing the capabilities of IoT and sensor networks, addressing data privacy and security
concerns, and promoting the adoption and education of digital agriculture technologies.
By advancing in these areas, the agricultural industry can unlock the full potential of
digital agriculture and pave the way for a more sustainable and efficient future of crop
production [181].

9. Conclusions

Digital agriculture has emerged as a transformative approach to crop production,
leveraging advanced technologies to optimize farming practices and enhance sustainabil-
ity across various cultivation systems, including soilless culture, open-field, greenhouse,
and vertical farming. The importance of data-driven decision-making and integrating
big data analytics in precision agriculture has been explored. Digital tools, such as sen-
sors, drones, and artificial intelligence (AI), have revolutionized the agricultural industry,
offering opportunities to improve efficiency, productivity, and resource management.

Remote sensing technologies, such as satellite and aerial imagery, have been high-
lighted for their significance in monitoring crop growth, soil conditions, and other critical
factors that impact crop health. The availability of satellite platforms like Landsat and
Sentinel has enabled efficient large-scale crop monitoring. At the same time, unmanned
aerial vehicles (UAVs) have provided non-destructive and near real-time vegetation anal-
ysis, further enhancing monitoring capabilities in agriculture. These technologies offer
valuable insights that empower farmers to make informed decisions regarding irrigation,
fertilization, and pest control, optimizing resource utilization and improving efficiency in
crop production.

Digital agriculture extends beyond crop monitoring, encompassing several areas, such
as yield monitoring, smart irrigation, and supply chain management. Yield monitors,
including mass flow and optical sensors, enable precise yield assessment, aiding farmers
in optimizing operations and making informed decisions to enhance productivity. Smart
irrigation systems (SISs), utilizing digital tools and sensors, ensure efficient water use by
monitoring soil moisture levels and adjusting irrigation systems accordingly. Integrating
IoT and AI in SISs allows precise irrigation control, resulting in water savings, improved
crop yields, and reduced environmental impact. Additionally, big data and AI-driven
supply chain management enable agribusinesses to optimize their supply chains, reduce
waste, and increase profitability by tracking and analyzing crop production, transportation,
and distribution data.

While digital agriculture offers numerous benefits, challenges remain for widespread
adoption. Data quality, privacy concerns, and the need for farmers to acquire advanced data
analytics skills are important considerations. Initial investment costs and the requirement
for continuous training and education can hinder the widespread implementation of these
technologies. Additionally, the development and adoption of these technologies are unique
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across all areas. For instance, remote sensing technologies, particularly satellite and aerial
imagery, have reached a high level of maturity and are widely employed for crop monitor-
ing and assessment. The availability of high-resolution imagery and advanced analytics has
enabled precise monitoring of crop health, soil conditions, and other crucial parameters.

On the other hand, some areas within digital agriculture still have room for improve-
ment. While promising, integrating artificial intelligence (AI) and machine learning (ML)
in agriculture is still in its early stages. Developing more sophisticated AI and ML mod-
els tailored to specific agricultural needs, such as disease detection and yield prediction,
requires further research and refinement. Additionally, the widespread adoption of IoT
devices and sensor networks in agriculture faces challenges related to cost, connectivity in
remote areas, and data management.

Furthermore, although blockchain technology has great potential for enhancing trace-
ability and transparency in the food supply chain, its application in agriculture is still
nascent. Developing standardized protocols and infrastructure for blockchain implementa-
tion in agriculture requires further stakeholder exploration and collaboration.

Addressing these technological development and adoption disparities is crucial for
realizing digital agriculture’s full potential. Continued research, investment, and collabo-
ration among researchers, farmers, technology providers, and policymakers are essential
to driving innovation, overcoming challenges, and ensuring that the benefits of digital
agriculture are accessible to all stakeholders in the agricultural sector.

Digital agriculture has the potential to revolutionize crop production by improving
decision-making, increasing productivity, and promoting sustainable farming practices.
Integrating IoT, AI, and big data technologies in various agricultural domains, such as crop
monitoring, irrigation, and supply chain management, presents a promising future for
the industry. By addressing the challenges and fostering collaboration, digital agriculture
can pave the way for a more sustainable and resilient food system, ensuring food security
and addressing environmental challenges in the coming decades. Digital agriculture has
the potential to transform crop production and plays a crucial role in achieving a more
sustainable and resilient food system for future generations.
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