
Citation: Khantouchi, R.; Gasmi, I.;

Ferrag, M.A. Eye-Net: A Low-

Complexity Distributed Denial of

Service Attack-Detection System

Based on Multilayer Perceptron. J.

Sens. Actuator Netw. 2024, 13, 45.

https://doi.org/10.3390/jsan13040045

Academic Editor: Chengwen Luo

Received: 10 July 2024

Revised: 6 August 2024

Accepted: 8 August 2024

Published: 12 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Actuator Networks
Sensor and

Article

Eye-Net: A Low-Complexity Distributed Denial of Service
Attack-Detection System Based on Multilayer Perceptron
Ramzi Khantouchi 1 , Ibtissem Gasmi 1 and Mohamed Amine Ferrag 2,*

1 Computer Science and Applied Mathematics Laboratory, Chadli Bendjdid El Tarf University,
El Tarf 36000, Algeria; r.khantouchi@univ-eltarf.dz (R.K.); gasmi-ibtissem@univ-eltarf.dz (I.G.)

2 Department of Computer Science, Guelma University, Guelma 24000, Algeria
* Correspondence: ferrag.mohamedamine@univ-guelma.dz

Abstract: Distributed Denial of Service (DDoS) attacks disrupt service availability, leading to sig-
nificant financial setbacks for individuals and businesses. This paper introduces Eye-Net, a deep
learning-based system optimized for DDoS attack detection that combines feature selection, balanc-
ing methods, Multilayer Perceptron (MLP), and quantization-aware training (QAT) techniques. An
Analysis of Variance (ANOVA) algorithm is initially applied to the dataset to identify the most dis-
tinctive features. Subsequently, the Synthetic Minority Oversampling Technique (SMOTE) balances
the dataset by augmenting samples for under-represented classes. Two distinct MLP models are
developed: one for the binary classification of flow packets as regular or DDoS traffic and another
for identifying six specific DDoS attack types. We store MLP model weights at 8-bit precision by
incorporating the quantization-aware training technique. This adjustment slashes memory use by
a factor of four and reduces computational cost similarly, making Eye-Net suitable for Internet of
Things (IoT) devices. Both models are rigorously trained and assessed using the CICDDoS2019
dataset. Test results reveal that Eye-Net excels, surpassing contemporary DDoS detection techniques
in accuracy, recall, precision, and F1 Score. The multiclass model achieves an impressive accuracy
of 96.47% with an error rate of 8.78%, while the binary model showcases an outstanding 99.99%
accuracy, maintaining a negligible error rate of 0.02%.

Keywords: neural network quantization; energy efficiency; low complexity; DDoS attacks; internet
of things (IoT)

1. Introduction

Cyberattacks are hostile actions intended to harm computer systems by obtaining
unauthorized access. Numerous threats exist, including click fraud, computer viruses,
denial of service, malvertising/ad fraud, etc. [1]. DDoS attacks are the most common and
damaging due to their straightforward yet potent offensive abilities. They are seen as a
serious threat to the current Internet community [2,3]. They utilize a network of infected
computers known as botnets to overload service providers with excessive requests to
prevent legitimate users from accessing a target system or services [4].

DDoS attacks are becoming increasingly serious and harmful to any business or
service in today’s cyber world. As reported by NETSCOUT’s ATLAS Security Engineering
& Response Team (ASERT), attackers executed about 2.9 million DDoS threats in the initial
trimester of 2021, an increase of 31% compared to the same period in 2020 [5]. If a suitable
protection mechanism is not used, a DDoS victim may lose all or part of their services and
files because the networks or processing capabilities cannot function normally [2].

Internet-based applications generate mixed packet chains as the signal moves from
the original port to its destination. So, it is relevant to use information from network
traffic flows to detect anomalous events when they happen to carry out prompt corrective
actions. Therefore, several approaches using machine learning (ML) techniques were

J. Sens. Actuator Netw. 2024, 13, 45. https://doi.org/10.3390/jsan13040045 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan13040045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0009-0009-5391-9022
https://orcid.org/0000-0002-8939-1727
https://orcid.org/0000-0002-0632-3172
https://doi.org/10.3390/jsan13040045
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan13040045?type=check_update&version=1

J. Sens. Actuator Netw. 2024, 13, 45 2 of 19

proposed to detect DDoS attacks, such as Naive Bayes [6], Decision Tree [7], Random
Forest [8], and Support Vector Machine [9]. However, traditional ML methods fail to deal
with a huge amount of data due to their limited capacity to learn the features. They may
find similarities in known threats rather than detect anomalous behavior for unidentified
malignant attacks [10]. Recently, several researchers have been motivated by the exceptional
success of deep learning (DL), and they have used DL techniques for intrusion detection,
including Multilayer Perceptron, convolutional neural networks, and recurrent neural
networks [5,11,12].

The authors of [13] studied various approaches based on classical machine learning
techniques employed in attack detection. They concluded that the existing methods fail
to identify sophisticated attacks in large-scale network environments and have several
challenges that can cause poor classification results. The authors also confirmed that deep
learning (DL) completely surpasses traditional methods.

Many studies of intrusion detection suffer from several issues, including the class
imbalance that arises once the amount of intrusion samples is much less than the number of
normal ones. Consequently, the models prefer the majority class and cannot obtain sufficient
details about the minority classes from small amounts of data [14]. The overfitting problem
occurs when the model learns noise and irrelevant features from the training data; this
reduces its generalization ability on new data [15]. Most of the proposed models do not
consider current datasets, which makes them unable to study the most recent DoS/DDoS
attacks [16]. Moreover, the trade-off between accuracy, energy efficiency, and time inference
is often not considered, which makes existing models unpractical to use, especially in
IoT environments.

To solve these issues, the present study proposes a novel intrusion detection method
called Eye-Net, which can accurately capture different types of attacks. Eye-Net consists
of four components: the data selection component, the data generation component, the
detection component, and the quantization component. The feature selection is based
on ANOVA [17]. It is applied to remove redundant and irrelevant data, alleviate the
overfitting issue, and reduce the complexity of the time needed to build the model. In the
data generation module, the SMOTE technique [18] is used to handle the class imbalance
problem. ANOVA and SMOTE techniques are applied only in the training stage. The
detection component identifies intrusion activities and classifies network traffic using
Multilayer Perceptron (MLP). On the other hand, MLP-based techniques must take into
account the resource constraints that usually occur in IoT environments. IoT devices
generally have limited computing power, memory, and energy sources. Consequently,
this study introduces a quantization-aware training technique to quantize the weights and
biases of the model from 32-bit floating-point precision to 8-bit fixed-point precision (INT8)
to reduce memory consumption, improve the time complexity of the model, and improve
the inference time, as well as make the model more energy-efficient. It also preserves the
model accuracy to maintain powerful intrusion detection capabilities for real-time security
by quantizing the weights and biases in each layer separately, starting with the first layer.
After quantizing each layer, we keep its weights and biases untrainable and retrain the
neural network to update the weights and biases of the other layers to correct the errors
caused by the quantization operation in that layer.

The main contributions of this study include the following:

1. We propose a hybrid deep learning model that combines feature selection, an over-
sampling strategy, and MLP to detect DDoS attacks with remarkable improvements
and optimum architecture.

2. We introduce a quantization-aware training algorithm to quantize the model weights
and biases to INT8, significantly improving energy efficiency, memory usage, compu-
tational complexity, and inference time.

3. We evaluate the proposed method in terms of binary classification and multiclass
classification using the CICDDoS2019 dataset.

J. Sens. Actuator Netw. 2024, 13, 45 3 of 19

4. We incorporate quantization-aware training, feature selection, and data balancing
techniques to enhance the efficiency, accuracy, and time inference of the MLP model
in detecting DDoS attacks on IoT devices.

The rest of this paper is structured as follows: Section 2 summarizes the literature
review for intrusion detection. Section 3 describes the proposed Eye-Net model. The
dataset, the evaluation metrics, and the experimental results are highlighted in Section 4.
Section 5 discusses the limitations of Eye-Net. Finally, in the last section, our conclusions
and future work are presented. Table 1 summarizes the notations used in the paper.

Table 1. Notations.

Notation Description Notation Description Notation Description

D The model θ The model parameters lidx Layer index

θQ The quantized parameters of the model S Scaling factor b Bias vector

A Accumulator W Weight matrix P Processing unit

2. Related Work

The detection and mitigation of DDoS attacks present a significant challenge to net-
work security and have been an active area of research [5]. Over the years, a range of
DDoS detection methods has been proposed, including rule-based approaches and more
advanced machine learning techniques [19–23].

The authors of [9] used the Grid Search Cross-Validation exhaustive parameter search
method and the Radial Basis Function Kernel of the Support Vector Machine for DDoS attack
detection in SDN integrated vehicular networks. They demonstrated that the proposed model
performed better in classification accuracy and generalization than several algorithms.

The study in [16] presented a modular and flexible SDN-based architecture to detect
DoS/DDoS attacks with ML and DL models. Multiple techniques were evaluated separately
using CICDDoS2017 and CICDDoS2019 datasets to determine which performs better under
different attack types and conditions. The experiments demonstrated accuracy above
99% in classifying unseen data. The authors also evaluated their solution in a simulated
environment using Mininet and the ONOS controller. They concluded that DL provided
better detection rates than ML models. Furthermore, the Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM) kept the most significant detection rates in the inline
model evaluation. However, there was a difference between the testing network topology
and the network configuration employed during the training phase of the models, resulting
in a slight decrease in their performance. Moreover, complex GRU models were used,
which led to high computational costs.

The authors of [24] combined sequential feature selection with MLP to detect DDoS
attacks. During the training phase, they identified the optimal features and created a
feedback mechanism to reconstruct the detector when significant detection errors are
dynamically perceived. The method was tested on the NSL-KDD dataset and compared
with some papers in the literature. The experiment showed that the accuracy achieved is
97.66% with 31 features. However, the proposed model can generate a false alarm rate and
cannot find the global optimal feature subset.

The authors of [25] presented a new approach for intrusion detection in SDN. The
proposed system is a hybrid DL technique based on a convolutional neural network (CNN)
and several ML algorithms, including Random Forest (RF), k-nearest neighbor (KNN),
and SVM. Moreover, a new regularizer method, called SD-Reg, was introduced based on
the weight matrix’s standard deviation. The SD-Reg method addresses the problem of
overfitting and improves the capability of network intrusion detection systems in detecting
unseen intrusion events. The proposed technique outperformed the single DL models in
all evaluation metrics. Moreover, the experimental results demonstrated that the CNN
detects anomalies even with a few features. The combination of a CNN with the RF

J. Sens. Actuator Netw. 2024, 13, 45 4 of 19

algorithm achieved higher performance and can enhance intrusion detection accuracy.
However, the complexity and computational requirements of the proposed model could be
a disadvantage in practical applications despite its high accuracy in detecting intrusions
in SDNs.

The authors of [26] combined Neighborhood Component Analysis (NCA) with ML
and DL algorithms to categorize SDN traffic into normal or attack classes. NCA was utilized
to select the most relevant features for prediction. Stochastic Gradient Descent (SGD) was
also adopted to optimize the detection process’s parameters. The experimental results
show that Decision Trees (DTs) outperformed kNN, Artificial Neural Network (ANN),
and SVM algorithms. The researchers also highlighted the importance of feature selection
techniques in improving the precision of machine learning models for identifying attack
traffic in SDN environments.

To identify DoS attacks, the authors of [27] developed a CNN model and evaluated
its performance by comparing it with a recurrent neural network (RNN). The experiments
were conducted for binary and multiclass classification using DoS datasets from the KDD
Cup 1999 and CIC-IDS-2018. The authors transformed the symbolic data into numerical
data to unify all data formats. The numerical data samples were converted into RGB and
grayscale images; then, they trained their CNN model on both RGB and grayscale images.
The authors concluded that the model performs better when trained on RGB images than on
grayscale images in both binary and multiclass classifications. Furthermore, the comparison
with the RNN model showed that the CNN model achieved higher accuracy for both KDD
and CSE-CIC-IDS 2018 datasets.

The authors of [28] developed an intelligent DDoS attack detection model based on
the Decision Tree algorithm and an improved Gini index feature selection technique. The
UNSW-NB15 dataset was used to evaluate the model. Only 13 of the 45 security features
were used, significantly reducing the dimensionality of the data and preventing overfitting
problems. Additionally, the proposed approach performed better than baseline methods
created using advanced algorithms like Random Forest and XGBoost.

Table 2 summarizes the general aspects of the related works described above, including
the used models, the dataset, the best accuracy achieved, the number of features used, the
feature selection approach, the balancing method employed, and the model output.

Based on the studied literature, it is evident that ML techniques are increasingly being
utilized to identify DDoS attacks. The incorporation of data preprocessing and feature
selection methods has enhanced various models. However, several approaches do not
use recent datasets, limiting the examination of current DoS/DDoS attacks. Furthermore,
while some models achieve high accuracy in classification, they suffer from the drawback
of time complexity in the detection process. Thus, our study aims to develop an effective
intrusion detection system based on MLP with high accuracy and minimal computational
cost, and make it more energy-efficient to render the system well suited for deployment in
IoT devices.

Table 2. General aspects of the cited research papers.

Paper Model Dataset BestAcc % Nb Features
Feature
Selection
Approach

Balancing
Method Multiclass

[9] RBF-SVM SDN-DDoS 99.40 - PCA - No

[16]
GRU,
LSTM,
MLP, KNN, RF

CICDDoS2017

CICDDoS2019

99.47 (LSTM)
99.97 (KNN)

49

50

removed
highly
correlated
variables

- Yes

[19] KNN, SVM,
DT

Their own
dataset 99.35 (DT) 25

minimum
redundancy
maximum
relevance

- Yes

J. Sens. Actuator Netw. 2024, 13, 45 5 of 19

Table 2. Cont.

Paper Model Dataset BestAcc % Nb Features
Feature
Selection
Approach

Balancing
Method Multiclass

[20] DCAE
CICIDS2017,
NSL-KDD,
CIC-DDoS2019

97.58
96.08
92.45

- - - No

[21]

Renyi joint
entropy, ANN,
XGB, SVM,
KNN

SDN-DDoS 99.12 (ANN) 14

filter-based
Fisher score,
wrapper,
ANOVA

- No

[22] CNN, GRU CICIDS2017 99.7 39 - - No

[23] CNN-GRU,
SVM NSL-KDD 98.45

(CNN-GRU) - PCA - No

[24] MLP NSL-KDD 97.66 31
sequential
backward
selection

- No

[25] CNN, RF,
KNN, SVM,

CSE-CIC-
IDS2018,
UNSW-NB15

99.80

99.50
9 SD-Reg SMOTE Yes

[26] ANN, DT,
KNN, SVM SDN-DDoS 100 (DT) 14 NCS - No

[27] CNN

KDD CUP
1999,
CSE-CIC-
IDS2018

99.99 41
78 - - Yes

[28] DT UNSW-NB15 98 13 Gini index - Yes

3. Proposed Method

This study introduces a DL classifier, supported by feature selection and balancing
methods called Eye-Net, for detecting and identifying DDoS attacks in IoT environments.
The main objective is to produce a low-complexity and energy-efficient model that can
accurately detect and classify DDoS attacks using ANOVA to obtain the most efficient
and distinctive features, balancing the dataset by applying the SMOTE technique and
reducing the computational cost in the deployment scenario using quantization. Eye-Net
is evaluated for both binary and multiclass classifications. The process steps include data
preprocessing and normalization stages, feature selection, data balancing for multiclass
classification, DDoS attack classification and, quantization. An overall representation of the
process’s steps for Eye-Net is presented in Figure 1, and the pseudocode is presented in
Algorithm 1.

Figure 1. General workflow of Eye-Net.

J. Sens. Actuator Netw. 2024, 13, 45 6 of 19

Algorithm 1 Eye-Net

Input:
X = {x1, x2, x3,, xn}
y = {y1, y2, y3,, yn}
NF ▷ Number of selected features
Balanced = True ▷ True is the default value
MLP Dθ

Output:
Well learned parameters θ
Quantized Parameters θQ

X = DataCleaning(X)

X = X−Xmin
Xmax−Xmin

▷ Data Normalisation
X = ANOVA(X, y, NF) ▷ Feature Selection
if Balanced = True then

X, y = SMOTE(X, y) ▷ Data Balancing
end if
θ ← initialize parameters
for each (xi, yi) in (X, y) do

y′ ← Dθ(xi, yi)
θ ← update parameters using AdamW

end for
θQ = Quantization(Dθ(x, y))

3.1. Preprocessing

Preprocessing is essential for creating an efficient model and minimizing computation-
ally intensive processes.

3.1.1. Data Cleaning

Some cleaning methods are applied to enhance the data quality before the MLP
model is trained. At this stage, irrelevant and noisy variables that fail to add distinctive
characteristics to the classification process are eliminated, such as features containing only
zeros and rows that include NaN or infinity values.

3.1.2. Feature Normalization

The data are rescaled using the MinMax normalization technique [29] according to
Equation (1) to reduce the effects of the high-value variance between the features.

Xnorm =
Xi − Xmin

Xmax − Xmin
(1)

Xi, Xmin, and Xmax represent the feature’s original, minimum, and maximum values,
respectively. Xnorm donates the normalized data ranging between 0 and 1.

3.1.3. Feature Selection

After preprocessing, the large amount of data dimensionality is reduced by applying
the ANOVA technique to determine the most appropriate features in a dataset. ANOVA is
a statistical technique that analyzes variables’ variances to determine their differences. It
is used to evaluate the statistical significance of each characteristic in the feature selection
process. The target variable is compared to each feature to determine if there is a significant
statistical relationship between them. ANOVA involves calculating the F-statistic and
corresponding p-value for each feature. The F-statistic measures the variation between
the means of different groups, while the p-value indicates the statistical significance of the
result. The features that do not satisfy the statistical significance are removed, and those
with the highest F-statistic and lowest p-value are chosen.

J. Sens. Actuator Netw. 2024, 13, 45 7 of 19

3.1.4. Data Balancing

Data balancing is achieved by applying the SMOTE technique, which generates syn-
thetic examples of the minority class by interpolating new data points between existing
minority class samples. It randomly selects a minority class sample and identifies its
k-nearest neighbors. Synthetic samples are produced by calculating the difference between
the feature vector under consideration and its nearest neighbor. This difference is then
multiplied by a randomly generated value ranging from 0 to 1 and added to the original
feature vector being examined.

3.2. Multilayer Perceptron (MLP) Classifier

This study proposes two Multilayer Perceptron (MLP) models to accurately classify
DDoS attacks into binary and multiclass categories. The proposed models contain an input
layer with m units and two hidden layers, each containing n neurons, where m and n
are integer numbers. The Rectified Linear Unit (ReLU) activation function, defined in
Equation (2), is utilized in the hidden layers. For the binary classification model, the output
layer contains one neuron, and the sigmoid function described in Equation (3) is utilized
as the activation function. In contrast, the multiclass classification model has an output
layer consisting of seven neurons corresponding to the benign class and the six attack
categories. The Softmax activation function, defined in Equation (4), is utilized as the
activation function in the output layer of the multiclass classification model.

ReLU(x) = max (0, x) (2)

Sigmoid(x) =
1

1 + e−x
(3)

So f tmax(xi) =
exp(xi)

∑n
j=0 exp(xj)

(4)

Both models are trained using the AdamW optimizer with a learning rate of 10−2

and a weight decay of 10−3, which performs better than the Adam optimizer [30]. The
binary cross-entropy cost represented in Equation (5) is used to train the binary classifica-
tion model.

BJ(θ) = − 1
m

m

∑
i=1

[y(i) log(ŷ) + (1− y(i)) log(1− ŷ)] (5)

where m represents the number of training examples, y(i) is the actual target value for the
i-th training example, and ŷ represents the predicted value.

The sparse categorical cross-entropy represented in Equation (6) is used to train the
multiclass classification model.

CJ(θ) = − 1
m

m

∑
i=1

C

∑
j=1

yij log(ŷij) (6)

m represents the number of training examples, C is the number of classes, yij is the
actual target value for the i-th training example, and ŷij is the predicted value.

3.3. Quantization

Artificial Neural Networks have proven to be a reliable general-purpose tool to inject
intelligence into many applications; however, they are computationally expensive due to
the floating-point matrix–vector multiplication operation, which makes them impractical
when they are deployed into IoT devices such as smartwatches, smart glasses, home
appliances, drones, and robots because those devices require low-latency and energy-
efficient solutions. Equation (7) represents the matrix–vector multiplication calculated in
each layer in a neural network.

J. Sens. Actuator Netw. 2024, 13, 45 8 of 19

y = W · x + b (7)

W and b represent the learned weights and biases, respectively. They are usually
stored in 16- or 32-bit precision.

Deploying neural Networks into IoT devices requires the design of sophisticated neu-
ral network accelerators to improve the inference time by performing as many calculations
as possible in parallel. Neural network accelerators have two fundamental components:
arithmetic processing units, Pn,m, and accumulators, An. Figure 2 represents a neural
network accelerator that contains n×m arithmetic processing units and n accumulators.

Figure 2. Matrix multiplication in neural network accelerator.

The calculation in the neural network accelerator starts by loading the accumulators
An with the bias values bn, followed by the weight values Wn,m and the input values xm.
Next, it computes their product in the respective arithmetic processing units Pn,m. The
results are added in the respective accumulator An according to Equation (8):

An = bn +
i=m

∑
i=1

Wn,i × xi (8)

The operation represented in Equation (8) is also known as Multiply–Accumulate
(MAC). MAC operations and data transfer consume a lot of energy in neural network
inference due to the floating-point 32-bit representation of the weights and biases. A
significant benefit can be achieved if the weights and biases represented on a lower-bit
fixed point such as int8 lead to reducing the amount of data transfer, size, and energy
consumption of MAC operation because the cost of arithmetic operations usually scales
linearly to quadratically with the number of bits used. Furthermore, the fixed-point
addition is more efficient than the floating-point counterpart [31].

In this study, a quantization-aware training technique is introduced to decrease the
computational complexity of Eye-Net and make it suitable to operate on IoT devices by
converting its weights and biases from 32-bit floating-point to 8-bit fixed-point representa-
tion. A floating-point vector can be expressed approximately by an integer vector divided
by a non-zero integer scalar value, as shown in Equation (9):

X ≈ Xint
Sx

(9)

The integer vector Xint can be obtained by rounding to the nearest results of the multi-
plication of the floating-point vector X by the integer scalar Sx, as shown in Equation (10):

J. Sens. Actuator Netw. 2024, 13, 45 9 of 19

Xint =
⌊
Sx · X

⌉
(10)

where
⌊
·
⌉

is the round-to-nearest operator. The values of the vector Xint lie in the range
[−2b−1, 2b−1− 1], where b represents the number of bits used to represent the integer values.
By quantizing the weights and biases according to Equations (9) and (10), the accumulation
equation can be written as follows:

An ≈
bint

n + ∑i=m
i=1 Wint

n,i × xi

S

≈
⌊
S× bn

⌉
+ ∑i=m

i=1
⌊
S×Wn,i

⌉
× xi

S

(11)

Equation (11) shows two significant problems. The first problem is the division
operation by the scalar S after each accumulation, which scales linearly with the number of
neurons in a neural network and consequently affects the hardware efficiency and energy
consumption. For example, a neural network with 7 thousand neurons requires 7 thousand
divisions by the scalar S. To solve this issue, the choice of the scalar S was restricted to the
power of two values, S = 2k, where k is an integer number. Dividing by the power of two
values is just a simple bit-shifting operation, making it energy-efficient. The accumulation
equation can be written as shown in Equation (12):

An ≈
⌊
2k × bn

⌉
+ ∑i=m

i=1
⌊
2k ×Wn,i

⌉
× xi

2k (12)

On the other hand, the round-to-nearest operation employed in quantization in-
troduces noise to the accumulated values, significantly degrading the neural network’s
performance. To solve this issue, the weights and biases in each layer should be quantized
separately layer by layer, starting with the first layer; then, its weights and biases should
be kept untrainable and one should retrain the neural network to update the weights and
biases of the other layers to correct the error caused by the quantization operation in that
layer. Those steps should be applied to each layer in the neural network until all the neural
network layers are quantized as represented in the Algorithm 2.

Algorithm 2 Quantization

Input: D, θ, i, X, y, lidx ← 1
Output: θint8
function QUANTIZE_WEIGHTS(D, θ, lidx, i)

tempθ ← θ

q←
⌊

2i ·θ[lidx]
⌉

2i

tempθ [lidx]← q
D.layers[lidx].trainable← False
lidx ← lidx + 1
return tempθ , lidx

end function
θint8, lidx ← QUANTIZE_WEIGHTS(D, θ, lidx, i)
for _ in len(D.layers) do

θint8 ← train(D, θint8, X, y)
θint8, lidx ← QUANTIZE_WEIGHTS(D, θint8, lidx, i)

end for

D, θ, (X,y), lidx , and θint8 represent the Tensorflow model, the model’s weights
and biases, the training data, the layer index, and the quantized model weights and
biases, respectively.

J. Sens. Actuator Netw. 2024, 13, 45 10 of 19

3.4. Complexity Analysis

Eye-Net’s complexity is calculated by the sum of every stage’s computational com-
plexity, including data cleaning, normalization, feature selection, balancing, classification,
and quantization. Let n be the size of the dataset and f the number of features. The data
cleaning step’s complexity depends on the dataset’s size. In the worst case, it can be approx-
imately equal to O(n), where each sample requires cleaning. The computational complexity
of the data normalization step is also O(n). On the other hand, the feature selection step
employs ANOVA, which has a time complexity of O(nl). The number of features in this
study is fixed; hence, this step’s time complexity is O(n). In the data balancing step, the
time complexity of SMOTE is O(mlog2m), where m represents the number of samples.
SMOTE identifies the k-nearest neighbor samples and generates new synthetic samples
for each minority sample, resulting in time complexities of O(m) and O(1), respectively.
The computational complexity of the classifier is linear, primarily determined by the fixed
sequence of vector–matrix multiplication in the MLP classifier, which operates with a com-
plexity of O(p), where p represents the number of rows in the matrix. The quantization’s
complexity is equal to the complexity of MLP multiplied by the number of layers l. As
the model’s number of layers is fixed, the complexity of this phase is O(p). During the
training phase of Eye-Net, its complexity is O(p log2 p). However, it becomes linear with
O(p) complexity during deployment, wherein only the classifier is utilized.

4. Experiments and Results
4.1. Dataset

The CICDDoS2019 dataset developed by [32] was used in this study. It was created
using the open-source CICFlowMeter, which extracted 86 variables from the network
traffic flow. It comprises 12 different types of modern DDoS attacks that can be executed
using TCP/UDP application layer protocols. These attacks are mainly divided into two
categories: reflection and exploitation (as shown in Figure 3. Reflection attacks are DDoS
methods where the attacker tricks a server into sending a large volume of traffic to a target
by spoofing the target’s IP address in the requests, while exploitation attacks involve using
vulnerabilities in software or systems to disrupt services and overwhelm the target with
malicious traffic. Both hide the attacker’s identity and flood the victim’s resources with
response packets by sending packets to reflector servers using the victim’s IP address as
the source IP address.

Figure 3. Classification of DDoS attack types.

J. Sens. Actuator Netw. 2024, 13, 45 11 of 19

4.2. Evaluation Metrics

Standard metrics, such as accuracy (Equation (13)), recall (Equation (14)), precision
(Equation (15)), and F1 Score (Equation (16)), are used to evaluate the performance of the
proposed model. The accuracy indicates the model’s rate of correct predictions. Recall
represents true positives successfully predicted by the model, whereas precision represents
positives correctly predicted by the model. The F1 Score shows the stability between
recall and Sensitivity. A Confusion Matrix is also used to determine the model’s learning
requirements and to understand how it makes correct and wrong predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)

F1Score = 2× Precision× Recall
Precision + Recall

(16)

TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False
Negative, respectively.

4.3. Results

To evaluate Eye-Net, the CICDDoS2019 dataset was used in the experiments. At first,
we performed data cleaning by deleting the rows that contained ‘NaN’ or ‘infinity’ values.
Eight features (Flow ID, SourceIP, SourcePort, DestinationIP, DestinationPort, Protocol,
Timestamp, SimillarHTTP) that do not contribute to the training and nine features (Bwd
PSH Flags, Fwd URG Flags, Bwd URG Flags, Fwd Bytes/Bulk Avg, Fwd Bulk Rate Avg,
Fwd Packet/Bulk Avg, Bwd Bytes/Bulk Avg, Bwd Packet/Bulk Avg, Bwd Bulk Rate Avg)
with ’infinity’ values were removed from the dataset because they contain only the value
of ‘0’. Then, feature normalization was applied to the remaining 69 features to speed up
the training process. The ANOVA feature selection method was applied multiple times
to the normalized data with different numbers of features {10, 15, 20, 25, 30} to determine
the optimal number of features to reduce the complexity of the models and preserve their
performance. Table 3 represents the selected features in the feature selection step. Multiple
datasets were created: five datasets for the binary classification and another five for the
multiclass classification. In the binary classification datasets, the class label “BENIGN”
was designated as “0”, while other attack types were designated as “1”. The attacks were
labeled from ”1” to ”6” for the multiclass classification datasets. The NetBios and Portmap
attacks were merged due to the high similarity between their feature values. SMOTE was
applied to the minority classes in the multiclass classification datasets. To train our models,
all datasets were partitioned into 80% for training and 20% for testing purposes.

Table 3. The selected features for Eye-Net.

Feature Description Feature Description Feature Description Feature Description

Total
Length
of Fwd
Packets

Total packets in the
forward direction

Fwd Packet
Length Max

Maximum size of
packet in forward di-
rection

CWE Flag
Count

Number of
packets with
CWE

Down/Up
Ratio

Download and
upload ratio

Fwd Packet
Length Min

Minimum size of
packet in forward di-
rection

Fwd Packet
Length
Mean

Mean size of packet
in forward direction

Average
Packet Size

Average size of
packet

Avg Fwd
Segment
Size

Average for-
ward direction
segment size

J. Sens. Actuator Netw. 2024, 13, 45 12 of 19

Table 3. Cont.

Feature Description Feature Description Feature Description Feature Description

Fwd Packet
Length Std

Standard deviation
size of packet in for-
ward direction

Bwd Packet
Length Max

Maximum size of
packet in backward
direction

Avg Bwd
Segment
Size

Average back-
ward direction
segment size

Subflow
Fwd Bytes

The average
number of bytes
in a subflow
in the forward
direction

Bwd Packet
Length Min

Minimum size of
packet in backward
direction

Bwd Packet
Length
Mean

Mean size of packet
in backward direc-
tion

Init Win
bytes for-
ward

Initial Window
Size in Bytes
Forward

Inbound Direction traffic
moves between
networks

Bwd Packet
Length Std

Standard deviation
size of packet in
backward direction

Flow
Bytes/s

Number of flow
bytes per second

ACK Flag
Count

Number of
packets with
ACK

URG Flag
Count

Number of pack-
ets with URG

Flow Pack-
ets/s

Number of flow
packets per second

Fwd PSH
Flags

Number of times the
PSH flag was set in
packets

Packet
Length
Variance

Packet Length
Variance

RST Flag
Count

Number of pack-
ets with RST

Fwd Packet-
s/s

Number of forward
packets per second

Bwd Packet-
s/s

Number of back-
ward packets per
second

Packet
Length
Mean

Mean size of
packet length

Packet
Length Std

Standard de-
viation size of
packet length

Min Packet
Length

Minimum size of
packet length

Max Packet
Length

Maximum size of
packet length

4.3.1. Results of the Binary Classification

Several models with various architectures were trained on the five datasets of the
binary classification. The names of models were coded as BF-N, where B refers to binary, F
refers to the number of input features, and N refers to the number of neurons in each hidden
layer. Each model was trained for 30 epochs. Table 4 shows that all models reach excellent
performance, ranging from 0.02% to 0.09% in error rate and from 99.97% to 99.99% in terms
of accuracy, recall, precision, and F1 Score. The best model, B30-64, achieved nearly 100%
accuracy and an error rate close to 0%, as demonstrated in Figure 4. To provide detailed
information regarding the model’s performance in the classification task, a normalized
confusion matrix is also presented in Figure 5. The normalized confusion matrix indicated
that B30-64 can accurately classify the flow packets during the testing phase.

(a) Error of the model (b) Accuracy of the model

Figure 4. The performance of the B30-64 model.

Table 4 also shows that the B30-32 and B25-64 models exhibit similar performance to
B30-64 with a slight loss in error rate. B30-32 and B25-64 use fewer parameters than B30-64,
especially B30-32, which uses one-third of the parameters used in B30-64, making B30-32
much better than B30-64 in terms of energy efficiency. The quantization was applied to
the B30-64 model using scalar factor S = 24. The performance of B30-64 was evaluated
after quantizing the weights and biases of B30-64 to INT8. The quantized version of B30-64
showed the same performance as its counterpart. The quantized model B30-64Q was also
compared with recent state-of-the-art DDoS attack detection systems regarding the number

J. Sens. Actuator Netw. 2024, 13, 45 13 of 19

of features used, error rate, precision, recall, F1 Score, and accuracy. Table 5 shows that
B30-64 outperforms the state-of-the-art DDoS attack detection systems in all performance
metrics, reaching 99.99% accuracy. At the same time, the error rate, precision, recall, and
F1 score all remain very competitive at 0.02%, 99.99%, 99.99%, and 99.99%, respectively.
The authors of [13,33–35] used large input feature vectors as well as more extensive and
complex models compared to ours. However, they still cannot outperform our model.

Table 4. Performance of the different MLP models in binary classification.

Model Loss Accuracy Val-Loss Val-Accuracy Precision Recall F1 Score N Parms

B10-16 0.0011 0.9997 0.0009 0.9997

0.9999

0.9997 0.9998 465

B10-32 0.0009 0.9997 0.0008 0.9997 0.9997 0.9998 1441

B10-64 0.0008 0.9997 0.0007 0.9998 0.9998 0.9998 4929

B15-16 0.0008 0.9998 0.0008 0.9998 0.9998 0.9998 545

B15-32 0.0005 0.9998 0.0005 0.9998 0.9998 0.9998 1601

B15-64 0.0007 0.9998 0.0007 0.9998 0.9998 0.9998 5249

B20-16 0.0007 0.9998 0.0007 0.9998 0.9998 0.9998 625

B20-32 0.0006 0.9998 0.0006 0.9998 0.9998 0.9998 1761

B20-64 0.0006 0.9998 0.0006 0.9998 0.9999 0.9999 5569

B25-16 0.0006 0.9998 0.0006 0.9998 0.9999 0.9999 705

B25-32 0.0005 0.9998 0.0005 0.9998 0.9999 0.9999 1921

B25-64 0.0003 0.9999 0.0003 0.9999 0.9999 0.9999 5889

B30-16 0.0005 0.9998 0.0005 0.9998 0.9999 0.9999 785

B30-32 0.0003 0.9999 0.0003 0.9999 0.9999 0.9999 2081

B30-64 0.0003 0.9999 0.0002 0.9999 0.9999 0.9999 6209

B30-32-60 0.0003 0.9999 0.0003 0.9999 0.9999 0.9999 2081

B25-64-60 0.0003 0.9999 0.0003 0.9998 0.9999 0.9999 5889

Figure 5. Normalized confusion matrix of B30-64.

Table 5. Comparison of B30-64 with state-of-the-art DDOS attack detection systems.

Paper Method Number of Features Loss Precision Recall F1 Score Accuracy

[13] RNN-Autoencoder 77 <0.0025 0.9950 0.99 0.99 0.99
[33] DNN 69 >0.10 0.9999 0.9998 0.9998 0.9997

[34] EDSA, DNN using
autoencoder 80 <0.01 0.91 0.981 0.9441 0.98

[35] Bidirectional LSTM-GMM 80 - 0.895 0.953 0.923 0.942
Eye-Net MLP (B30-64Q) 30 0.0002 0.9999 0.9999 0.9999 0.9999

J. Sens. Actuator Netw. 2024, 13, 45 14 of 19

4.3.2. Results of the Multiclass Classification

Several models with various architectures were trained on the five datasets of multi-
class classification. The names of models were coded as MF-N, where M refers to multiclass,
F refers to the number of input features, and N is the number of neurons in each hidden
layer. Each model was trained for 30 epochs. Before training and evaluating the different
architectures of the MLP classifier, the M30-64 model was selected to illustrate the impor-
tance of the balancing step. Two scenarios were considered: the first consisted of training
the model without balancing the dataset, while the second involved balancing the dataset
using the SMOTE technique and unifying Portmap and NetBIOS classes into one label.

In the first scenario, M30-64 was trained to classify the eight labels presented in the
multiclass dataset containing 30 features without balancing. The M30-64 model performed
poorly in all evaluation metrics, as shown in Table 6. Figure 6a represents the normalized
confusion matrix during testing. It is observed that the model failed to classify flow packets
related to UD-PLag and Portmap DDoS attacks. The misclassification of UDPLag is due to
the insufficient number of samples available in the imbalanced dataset. On the other hand,
the model identified flow packets of Portmap attacks as NetBIOS attacks because of the
high similarity in the feature space between these two attacks, as shown in Figure 7.

Table 6. The performance of the M30-64 model with and without SMOTE.

Model Loss Accuracy Val-Loss Val-Accuracy Precision Recall F1 Score

M30-64 without SMOTE 0.1089 0.9691 0.1100 0.9559 0.7526 0.7257 0.7228
M30-64 with SMOTE 0.0743 0.9775 0.0709 0.9807 0.9772 0.9822 0.9796

(a) (b)

Figure 6. Normalized confusion matrix for multiclass classification of M30-64. (a) Normalized
Confusion matrix for multiclass classification without oversampling of M30-64. (b) Normalized
confusion matrix for multiclass classification with oversampling of M30-64.

Consequently, in the second scenario, the SMOTE balancing technique was applied to
the dataset used in the first scenario to avoid any implicit biases. Additionally, we decided
to unify NetBIOS and Portmap attacks into the same class. The model was then retrained.

Table 6 shows that the performance of M30-64 significantly improved compared to
the first scenario. M30-64 achieved 7.09% and 98.07% in terms of error rate and accuracy,
respectively, as demonstrated in Figure 8. Moreover, the normalized confusion matrix
in Figure 6b demonstrates that M30-64 can accurately classify the flow packets into their
appropriate classes.

Various architectures of the MLP classifier were trained and evaluated to identify
the optimal configuration that produces the best results. Table 7 highlights that M30-64
performs better than the other models under different metrics. On the other hand, the
quantization was applied to the M30-64 model using scalar factor S = 23. Table 8 shows
that the performance of the quantized version of M30-64 slightly decreased compared

J. Sens. Actuator Netw. 2024, 13, 45 15 of 19

to its counterpart with the floating-point weights and biases. The normalized confusion
matrix in Figure 9 indicates that the quantized M30-64Q model can accurately classify the
flow packets into their appropriate classes except for the UDP class, where the accuracy
decreased by 13% compared to that of M30-64 for the same class.

Figure 7. The similarity between Portmap and Netbios features.

J. Sens. Actuator Netw. 2024, 13, 45 16 of 19

(a) Error of the model (b) Accuracy of the model

Figure 8. The performance of the M30-64 model.

Table 7. Performance of the different MLP models in multiclass classification.

Model Loss Accuracy Val-Loss Val-
Accuracy Precision Recall F1 Score N Parms

M10-16 0.1816 0.9449 0.2232 0.8842 0.7717 0.8152 0.7922 567
M10-32 0.1318 0.9591 0.1257 0.9605 0.9590 0.9640 0.9612 1639
M10-64 0.1131 0.9642 0.1117 0.9705 0.9696 0.9710 0.9701 5319
M15-16 0.1403 0.9593 0.1318 0.9630 0.9627 0.9656 0.9638 647
M15-32 0.1064 0.9677 0.0986 0.9693 0.9667 0.9717 0.9691 1799
M15-64 0.0900 0.9728 0.0838 0.9727 0.9667 0.9717 0.9691 5639
M20-16 0.1359 0.9588 0.1539 0.9620 0.9667 0.9717 0.9691 727
M20-32 0.0994 0.9694 0.0983 0.9756 0.9735 0.9760 0.9747 1959
M20-64 0.0836 0.9747 0.0778 0.9785 0.9753 0.9798 0.9774 5959
M25-16 0.1241 0.9626 0.1254 0.9662 0.9680 0.9559 0.9613 807
M25-32 0.1007 0.9696 0.0933 0.9721 0.9694 0.9736 0.9714 2119
M25-64 0.0829 0.9751 0.0785 0.9802 0.9774 0.9807 0.9789 6279
M30-16 0.1115 0.9646 0.1238 0.9621 0.9611 0.9653 0.9627 887
M30-32 0.0872 0.9724 0.0901 0.9724 0.9702 0.9734 0.9717 2279
M30-64 0.0743 0.9775 0.0709 0.9807 0.9772 0.9822 0.9796 6599

Table 8. Comparison between M30-64 and its quantized version, M30-64Q.

Model Loss Accuracy Precision Recall F1 Score

M30-64 0.0709 0.9807 0.9772 0.9822 0.9796
M30-64Q 0.0878 0.9647 0.9673 0.9637 0.9643

Figure 9. Normalized confusion matrix after quantization of M30-64Q.

J. Sens. Actuator Netw. 2024, 13, 45 17 of 19

The results of the M30-64Q model were compared with recent state-of-the-art DDoS
attack detection systems in terms of the number of used features and evaluation metrics.
Table 9 shows that Eye-Net outperforms the state-of-the-art DDoS attack detection systems
for different evaluation metrics, achieving 96.47% accuracy. The error rate, precision, recall,
and F1 score remain highly competitive at 8.78%, 96.73%, 96.73%, and 96.43%, respectively,
except for the approaches proposed in [36,37], which are slightly superior to M30-64Q.
However, our model is much better regarding energy efficiency, memory consumption, and
inference time because the competitor method requires a feature extraction step to classify
flow packets. The weights and biases are represented in 32-bit floating-point precision,
making the method unsuitable for deployment in real-world applications, especially in
IoT environments.

Table 9. Comparison of M30-64 and M30-64Q with state-of-the-art DDOS attack detection systems.

Paper Method Number of Features Loss Precision Recall F1 Score Accuracy

[33] DNN 69 <0.12 0.8049 0.9515 0.8721 0.9457
[38] DNN 72 - 0.9421 0.9403 0.9412 0.9421
[39] CNN 86 - 0.90 0.90 0.90 0.9590
[36] AE-MLP 78 - 0.9791 0.9848 0.9818 0.9834
[37] MLP-CNN - - 0.999 0.9998 0.9994 0.9995

Eye-Net MLP (M30-64) 30 0.0709 0.9772 0.9822 0.9796 0.9807
Eye-Net MLP (M30-64Q) 30 0.0878 0.9673 0.9637 0.9643 0.9647

5. Limitations

Eye-Net has two drawbacks despite its considerable potential and excellent perfor-
mance. The first limitation is that Eye-Net only classifies six types of DDoS attacks in
the multiclass classification. This restriction means that it may not adequately detect or
categorize emerging or less common types of DDoS attacks. As new attack vectors are
continually developed, the system’s ability to stay updated and adapt to these changes
becomes crucial. Currently, Eye-Net’s scope does not extend beyond the predefined six
types. The second disadvantage is not considering the quantization of the input vector
to a lower-bit precision, such as utilizing an INT8 fixed-point representation. This omis-
sion results in higher memory usage and more energy consumption than a quantized
input vector.

6. Conclusions and Future Work

Distributed Denial of Service (DDoS) attacks present a significant danger to the avail-
ability and integrity of online services. A deep learning-based DDoS detection system
called Eye-Net has been developed to address this issue. It employs an optimized and
low-complexity Multilayer Perceptron (MLP) architecture to accurately identify and classify
DDoS attacks. The ANOVA algorithm is applied to select distinctive features, and Synthetic
Minority Oversampling (SMOTE) is performed to generate samples for minority classes.
Eye-Net also employs quantization to the MLP classifier to represent its weights and biases
in a lower-bit fixed-point precision, making it suitable for deployment in edge devices. Ex-
perimental results on the CICDDoS2019 dataset show that Eye-Net achieved high accuracy
and provided the best trade-off between performance and energy efficiency compared to
the state-of-the-art DDoS detection methods in binary and multiclass classifications.

While the current study highlights the accuracy and robustness of the Eye-Net system
for DDoS attack detection, future work will focus on several key areas to further optimize
and expand its capabilities. We plan to conduct a comprehensive analysis of the time,
energy, and resource consumption associated with deploying Eye-Net, particularly within
the context of IoT environments. This analysis will include measurements of inference
time, energy usage, and memory footprint on typical IoT hardware. Additionally, we aim
to enhance the multiclass classification performance of Eye-Net and expand its detection
capabilities to include a broader range of DDoS attack types.

J. Sens. Actuator Netw. 2024, 13, 45 18 of 19

To improve the model’s operational efficiency, we will explore quantizing the input
vector to a lower-bit representation, reducing energy consumption during data transfer,
and making Eye-Net more suitable for resource-constrained environments. Furthermore,
we will consider incorporating additional features and information sources to further
boost Eye-Net’s accuracy and effectiveness. These enhancements will ensure that Eye-Net
not only maintains its high detection performance but also becomes more adaptable and
efficient for real-world IoT applications.

Author Contributions: R.K.: Conceptualization, Methodology, Formal analysis, Investigation, Imple-
mentation, Validation, Writing—original draft. I.G.: Conceptualization, Investigation, Supervision,
Writing, Reviewing and editing. M.A.F.: Reading, Writing, Reviewing and editing, Validation. All
authors have read and agreed to the published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Polat, H.; Türkoglu, M.; Polat, O.; Sengür, A. A novel approach for accurate detection of the DDoS attacks in SDN-based SCADA

systems based on deep recurrent neural networks. Expert Syst. Appl. 2022, 197, 116748 . [CrossRef]
2. Halladay, J.; Cullen, D.; Briner, N.; Warren, J.; Fye, K.; Basnet, R.; Bergen, J.; Doleck, T. Detection and Characterization of DDoS

Attacks Using Time-Based Features. IEEE Access 2022, 10, 49794–49807. [CrossRef]
3. Choi, J.; Choi, C.; Ko, B.; Kim, P. A method of DDoS attack detection using HTTP packet pattern and rule engine in cloud

computing environment. Soft Comput. 2014, 18, 1697–1703. [CrossRef]
4. Quezada, V.; Astudillo-Salinas, F.; Tello-Oquendo, L.; Bernal, P. Real-time bot infection detection system using DNS fingerprinting

and machine-learning. Comput. Netw. 2023, 228, 109725. [CrossRef]
5. Mittal, M.; Kumar, K.; Behal, S. Deep learning approaches for detecting DDoS attacks: A systematic review. Soft Comput. 2023, 27,

13039–13075. [CrossRef]
6. Mehmood, A.; Mukherjee, M.; Ahmed, S.H.; Song, H.; Malik, K.M. NBC-MAIDS: Naïve Bayesian classification technique in

multi-agent system-enriched IDS for securing IoT against DDoS attacks. J. Supercomput. 2018, 74, 5156–5170. [CrossRef]
7. Khare, M.; Oak, R. Real-Time distributed denial-of-service (DDoS) attack detection using decision trees for server performance

maintenance. In Performance Management of Integrated Systems and Its Applications in Software Engineering; Springer: Berlin/Heidel-
berg, Germany, 2020; pp. 1–9. Available online: https://link.springer.com/chapter/10.1007/978-981-13-8253-6_1 (accessed on
1 July 2024).

8. Chen, L.; Zhang, Y.; Zhao, Q.; Geng, G.; Yan, Z. Detection of DNS DDoS Attacks with Random Forest Algorithm on Spark.
Procedia Comput. Sci. 2018, 134, 310–315. [CrossRef]

9. Anyanwu, G.O.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. RBF-SVM kernel-based model for detecting DDoS attacks in SDN
integrated vehicular network. Ad Hoc Netw. 2023, 140, 103026. [CrossRef]

10. Zhang, L.; Jiang, S.P.; Shen, X.; Gupta, B.B.; Tian, Z. PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in IIoT
Networks Using Generative Adversarial Networks. arXiv 2021, arXiv:abs/2110.03445.

11. Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [CrossRef]

12. Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407.
13. Elsayed, M.S.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Ddosnet: A deep-learning model for detecting network attacks. In Proceedings

of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork,
Ireland, 31 August–3 September 2020; IEEE: Washington, DC, USA, 2020; pp. 391–396.

14. Huang, S.; Lei, K. IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc
networks. Ad Hoc Netw. 2020, 105, 102177. [CrossRef]

15. Nie, L.; Wu, Y.; Wang, X.; Guo, L.; Wang, G.; Gao, X.; Li, S. Intrusion Detection for Secure Social Internet of Things Based on
Collaborative Edge Computing: A Generative Adversarial Network-Based Approach. IEEE Trans. Comput. Soc. Syst. 2022,
9, 134–145. [CrossRef]

16. Yungaicela-Naula, N.M.; Vargas-Rosales, C.; Perez-Diaz, J.A. SDN-Based Architecture for Transport and Application Layer DDoS
Attack Detection by Using Machine and Deep Learning. IEEE Access 2021, 9, 108495–108512. [CrossRef]

17. Elssied, N.O.F.; Ibrahim, O.; Osman, A.H. A novel feature selection based on one-way anova f-test for e-mail spam classification.
Res. J. Appl. Sci. Eng. Technol. 2014, 7, 625–638. [CrossRef]

18. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

http://doi.org/10.1016/j.eswa.2022.116748
http://dx.doi.org/10.1109/ACCESS.2022.3173319
http://dx.doi.org/10.1007/s00500-014-1250-8
http://dx.doi.org/10.1016/j.comnet.2023.109725
http://dx.doi.org/10.1007/s00500-021-06608-1
http://dx.doi.org/10.1007/s11227-018-2413-7
https://link.springer.com/chapter/10.1007/978-981-13-8253-6_1
http://dx.doi.org/10.1016/j.procs.2018.07.177
http://dx.doi.org/10.1016/j.adhoc.2022.103026
http://dx.doi.org/10.1016/j.jisa.2019.102419
http://dx.doi.org/10.1016/j.adhoc.2020.102177
http://dx.doi.org/10.1109/TCSS.2021.3063538
http://dx.doi.org/10.1109/ACCESS.2021.3101650
http://dx.doi.org/10.19026/rjaset.7.299
http://dx.doi.org/10.1613/jair.953

J. Sens. Actuator Netw. 2024, 13, 45 19 of 19

19. Türkoğlu, M.; Polat, H.; Koçak, C.; Polat, O. Recognition of DDoS attacks on SD-VANET based on combination of hyperparameter
optimization and feature selection. Expert Syst. Appl. 2022, 203, 117500. [CrossRef]

20. Aktar, S.; Nur, A.Y. Towards DDoS attack detection using deep learning approach. Comput. Secur. 2023, 129, 103251. [CrossRef]
21. Wang, Y.; Wang, X.; Ariffin, M.M.; Abolfathi, M.; Alqhatani, A.; Almutairi, L. Attack detection analysis in software-defined

networks using various machine learning method. Comput. Electr. Eng. 2023, 108, 108655. [CrossRef]
22. Diaba, S.Y.; Elmusrati, M. Proposed algorithm for smart grid DDoS detection based on deep learning. Neural Netw. 2023,

159, 175–184. [CrossRef]
23. Ahmad, I.; Wan, Z.; Ahmad, A. A big data analytics for DDOS attack detection using optimized ensemble framework in Internet

of Things. Internet Things 2023, 23, 100825. [CrossRef]
24. Wang, M.; Lu, Y.; Qin, J. A dynamic MLP-based DDoS attack detection method using feature selection and feedback. Comput.

Secur. 2020, 88, 101645. [CrossRef]
25. ElSayed, M.S.; Le-Khac, N.A.; Albahar, M.A.; Jurcut, A. A novel hybrid model for intrusion detection systems in SDNs based on

CNN and a new regularization technique. J. Netw. Comput. Appl. 2021, 191, 103160. [CrossRef]
26. Tonkal, Ö.; Polat, H.; Başaran, E.; Cömert, Z.; Kocaoğlu, R. Machine learning approach equipped with neighbourhood component

analysis for DDoS attack detection in software-defined networking. Electronics 2021, 10, 1227. [CrossRef]
27. Kim, J.; Kim, J.; Kim, H.; Shim, M.; Choi, E. CNN-based network intrusion detection against denial-of-service attacks. Electronics

2020, 9, 916. [CrossRef]
28. Bouke, M.A.; Abdullah, A.; ALshatebi, S.H.; Abdullah, M.T.; El Atigh, H. An intelligent DDoS attack detection tree-based model

using Gini index feature selection method. Microprocess. Microsyst. 2023, 98, 104823. [CrossRef]
29. Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462.
30. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
31. Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International Solid-

State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; IEEE: Washington,
DC, USA, 2014; pp. 10–14.

32. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; IEEE: Washington, DC, USA, 2019; pp. 1–8.

33. Cil, A.E.; Yildiz, K.; Buldu, A. Detection of DDoS attacks with feed forward based deep neural network model. Expert Syst. Appl.
2021, 169, 114520. [CrossRef]

34. Sindian, S.; Samer, S. An enhanced deep autoencoder-based approach for DDoS attack detection. Wseas Trans. Syst. Control 2020,
15, 716–725. [CrossRef]

35. Shieh, C.S.; Lin, W.W.; Nguyen, T.T.; Chen, C.H.; Horng, M.F.; Miu, D. Detection of unknown ddos attacks with deep learning
and gaussian mixture model. Appl. Sci. 2021, 11, 5213. [CrossRef]

36. Wei, Y.; Jang-Jaccard, J.; Sabrina, F.; Singh, A.; Xu, W.; Camtepe, S. Ae-mlp: A hybrid deep learning approach for ddos detection
and classification. IEEE Access 2021, 9, 146810–146821. [CrossRef]

37. Setitra, M.A.; Fan, M.; Agbley, B.L.Y.; Bensalem, Z.E.A. Optimized MLP-CNN Model to Enhance Detecting DDoS Attacks in SDN
Environment. Network 2023, 3, 538–562. [CrossRef]

38. Chartuni, A.; Márquez, J. Multi-Classifier of DDoS Attacks in Computer Networks Built on Neural Networks. Appl. Sci. 2021,
11, 10609. [CrossRef]

39. Ferrag, M.A.; Shu, L.; Djallel, H.; Choo, K.K.R. Deep learning-based intrusion detection for distributed denial of service attack in
Agriculture 4.0. Electronics 2021, 10, 1257. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2022.117500
http://dx.doi.org/10.1016/j.cose.2023.103251
http://dx.doi.org/10.1016/j.compeleceng.2023.108655
http://dx.doi.org/10.1016/j.neunet.2022.12.011
http://dx.doi.org/10.1016/j.iot.2023.100825
http://dx.doi.org/10.1016/j.cose.2019.101645
http://dx.doi.org/10.1016/j.jnca.2021.103160
http://dx.doi.org/10.3390/electronics10111227
http://dx.doi.org/10.3390/electronics9060916
http://dx.doi.org/10.1016/j.micpro.2023.104823
http://dx.doi.org/10.1016/j.eswa.2020.114520
http://dx.doi.org/10.37394/23203.2020.15.72
http://dx.doi.org/10.3390/app11115213
http://dx.doi.org/10.1109/ACCESS.2021.3123791
http://dx.doi.org/10.3390/network3040024
http://dx.doi.org/10.3390/app112210609
http://dx.doi.org/10.3390/electronics10111257

	Introduction
	Related Work
	Proposed Method
	Preprocessing
	Data Cleaning
	Feature Normalization
	Feature Selection
	Data Balancing

	Multilayer Perceptron (MLP) Classifier
	Quantization
	Complexity Analysis

	Experiments and Results
	Dataset
	Evaluation Metrics
	Results
	Results of the Binary Classification
	Results of the Multiclass Classification

	Limitations
	Conclusions and Future Work
	References

