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Abstract: The integration of vehicle-to-grid (V2G) technology into smart energy management systems
represents a significant advancement in the field of energy suppliers for Industry 4.0. V2G systems
enable a bidirectional flow of energy between electric vehicles and the power grid and can provide
ancillary services to the grid, such as peak shaving, load balancing, and emergency power supply
during power outages, grid faults, or periods of high demand. In this context, reliable prediction
of the availability of V2G as an energy source in the grid is fundamental in order to optimize
both grid stability and economic returns. This requires both an accurate modeling framework that
includes the integration and pre-processing of readily accessible data and a prediction phase over
different time horizons for the provision of different time-scale ancillary services. In this research,
we propose and compare two data-driven predictive modeling approaches to demonstrate their
suitability for dealing with quasi-periodic time series, including those dealing with mobility data,
meteorological and calendrical information, and renewable energy generation. These approaches
utilize publicly available vehicle tracking data within the floating car data paradigm, information
about meteorological conditions, and fuzzy weekend and holiday information to predict the available
aggregate capacity with high precision over different time horizons. Two data-driven predictive
modeling approaches are then applied to the selected data, and the performance is compared. The
first approach is Hankel dynamic mode decomposition with control (HDMDc), a linear state-space
representation technique, and the second is long short-term memory (LSTM), a deep learning method
based on recurrent nonlinear neural networks. In particular, HDMDc performs well on predictions up
to a time horizon of 4 h, demonstrating its effectiveness in capturing global dynamics over an entire
year of data, including weekends, holidays, and different meteorological conditions. This capability,
along with its state-space representation, enables the extraction of relationships among exogenous
inputs and target variables. Consequently, HDMDc is applicable to V2G integration in complex
environments such as smart grids, which include various energy suppliers, renewable energy sources,
buildings, and mobility data.

Keywords: vehicle-to-grid (V2G); floating car data; available aggregate capacity; model identification;
predictive model; data-driven model; linear state-space model; Hankel dynamic mode decomposition;
long short-term memory

1. Introduction

With global electric vehicle (EV) penetration projected to reach 60% by 2030 [1,2],
the integration of EVs into the vehicle-to-grid (V2G) system and smart grids (SGs) is in-
creasingly crucial. V2G technology, which enables bidirectional energy exchange between
EVs and the grid, thereby transforming EVs into mobile energy storage units, is an in-
tegral part of the latest methodological and technological frameworks for SGs. These
frameworks, including cyber-physical systems, automation, and real-time data exchange,
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are being developed under the umbrella of Industry 4.0, integrating renewable energy,
buildings, and EVs into a comprehensive energy system that is responsive to dynamic
industrial demands [3,4]. In smart energy management, which coordinates multiple energy
carriers, V2G technology can support addressing uncertainties associated with renewable
energy and load [5]—primary challenges for multi-energy microgrid operations—as well
as managing energy price uncertainties [6].

As distributed energy storage units, EVs have, in fact, the potential to provide auxiliary
services to the power grid [7–9]. However, a single vehicle cannot significantly benefit
the grid, so EVs are typically grouped into fleets or aggregators. An aggregator acts as a
consolidating entity, integrating multiple EVs to create a meaningful impact on the electrical
grid by serving as the interface between the grid operator and the fleet. Considering current
market regulations that impose a minimum capacity threshold and the limited maximum
capacity of single V2G chargers, participation in the V2G market and dispatching must be
facilitated by an aggregator. The role of an aggregator can be assumed by various business
entities, including EV fleet operators, electric utility companies, or independent organiza-
tions such as automobile manufacturers or distributed generation managers. For an electric
utility company managing a network of V2G hubs, predicting the energy provided to the
grid presents unique challenges. Unlike an EV fleet operator, the utility company does not
have a predefined schedule for EV plug-ins, complicating the prediction process.

Uncoordinated EV charging can increase load during peak hours and create local
issues in distribution networks [10,11]. In contrast, effective management of the increasing
number of EVs connected to the grid as ancillary service providers can yield significant
benefits, including frequency and voltage regulation, enhanced transient stability, peak
shaving, load balancing, and emergency power supply during outages, grid faults, or high-
demand periods. These benefits can be achieved through well-planned and coordinated
EV integration [12–15].

Given the increasing number of EVs that can support the power grid through aggrega-
tors, managing these resources has become increasingly complex. Coordinating EVs for
grid support, particularly as they connect and disconnect, presents significant challenges
and is often impractical. To ensure the reliability and economic viability of V2G systems
for providers, accurate long- and short-term forecasting of aggregate available capacity
(AAC), i.e., the amount of energy a fleet of EVs can provide when connected to the grid via
aggregator hubs, is essential. This research addresses the need for accurate AAC forecasting
to navigate the uncertainties of different energy markets. Long-term forecasting, focused on
day-ahead predictions, supports the daily energy market. In contrast, short-term forecast-
ing is critical for aggregators, who act as balancing service providers. These forecasts help
meet bidding frequency requirements in the regulation market and facilitate operations
in the intraday energy market, particularly for predefined intervals such as half-hourly
settlement periods [16,17].

Insights into AAC prediction come primarily from understanding the availability
of EVs to deliver energy via a V2G aggregator when needed. This availability can be
influenced by various factors: drivers’ behavior, location of charging infrastructure [18], and
vehicle characteristics. In the current technological framework, by integrating IoT sensors
and communication devices into the V2G infrastructure, both in geographically dispersed
EVs within the floating car data (FCD) paradigm [19] and in the V2G aggregators, real-time
vehicle tracking data on status and localization as well as grid conditions can be collected,
analyzed, and acted upon accordingly. This would enable seamless coordination between
EVs and the power grid and optimize energy storage and distribution based on real-time
requirements and conditions [20]. Meteorological data and calendar information (such as
weekends and holidays) are considered exogenous features in this study. These are variables
that are not involved in the internal dynamics of the V2G system but that can influence
the accuracy of AAC predictions. Meteorological factors, such as weather conditions and
temperature fluctuations, play a crucial role in determining the usage behavior of EVs. For
instance, unfavorable weather conditions can impact driving behavior [21] and thus affect
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the availability of EVs for grid services. Similarly, weekends and national holidays lead to
different usage patterns of EVs, as travel habits and energy consumption behavior often
deviate from typical weekday routines [22,23].

From a methodological perspective, this study proposes using a state-space representa-
tion modeling approach, specifically dynamic mode decomposition with control (DMDc) [24],
as an alternative to widely used machine learning (ML) methods for sequence time series
forecasting, such as long short-term memory (LSTM) [25–28]. DMDc is an advanced version
of dynamic mode decomposition (DMD) that incorporates both system measurements and
exogenous or control inputs to identify input–output relationships and capture underlying
dynamics. We specifically apply an extension known as Hankel DMDc (HDMDc) [29,30],
which uses time-delayed state variables and exogenous inputs to broaden the state space. This
approach, grounded in Koopman theory, has been successfully applied to quasi-periodically
controlled systems, such as traffic corridors [31]. Specifically, we apply HDMDc and LSTM to
aggregated FCD vehicle tracking data, incorporating exogenous factors such as meteorologi-
cal data and fuzzy calendar-based information (weekends and holidays) to provide a holistic
approach and comprehensive interpretation of the results. In this paper, we present several
novel contributions to the field of V2G applications:

• We integrate and standardize different data sources, combining readily accessible FCD
data on mobility patterns with weather conditions and calendar information. This seam-
less integration enhances the accuracy and reliability of V2G applications, ensuring that
our methods can be readily adopted and replicated and thereby facilitating broader
application and validation within the V2G and energy grid research community.

• We leverage fuzzy logic to derive a continuous and integrated holiday rate metric,
a novel approach introduced as a proof of concept in [23]. This method synthesizes
inputs from calendars, weekends, and national holidays, providing a continuous and
accurate representation of holiday periods and allowing the model to learn driver
habits from a one-year dataset.

• We propose using HDMDc as a state-space representation method, contrasting with the
well-established LSTM networks and other black-box models commonly used in time
series forecasting, particularly in the V2G field. This offers a novel perspective with
potential improvements in model performance, interpretability, and transferability.

These innovations collectively advance the V2G domain by enhancing model accuracy,
accessibility, and practical applicability.

The article is divided into the following sections. In Section 2, the state of the art in
time series forecasting within the V2G domain is presented with a focus on AAC prediction
and identifying the scientific gap this work aims to address. Section 3 details the theoretical
background of the prediction models used: HDMDc and LSTM. The global system for
predictive model identification is outlined in Section 4, which includes data collection, pre-
processing, and aggregation to create appropriate time series for model identification. This
section also covers the model prediction analysis for both HDMDc and LSTM. In Section 5,
the model learning process is described, followed by the presentation and discussion of
results. This section particularly focuses on comparing the performance of the models
in predicting AAC over different time horizons using key performance indicators, in
prediction versus target time series, and in regression plots. Finally, conclusions are drawn
in Section 6.

2. Related Works

This section introduces a comprehensive literature review of existing models for
predicting electrical quantities in the V2G domain. In particular, Table 1 summarizes
previous research, classifying the works in terms of model and model class, prediction
horizon, target variable, data source, and exogenous inputs—factors external to the internal
system model but affecting the prediction.

Various models have been used in the literature to predict different V2G-related
target variables: AAC [23,27,28,32–34], energy demand [35], schedulable energy capac-
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ity (SEC) [36,37] including charging and discharging load, load forecast for energy price
determination [38], occupancy and energy charging load at V2G hubs [39], frequency con-
tainment reserve (FCR) participation [40], energy supply (ES) and peak demand (PD) [41],
as well as drivers’ habits and preferences when connecting to V2G hubs [42].

These diverse applications all relate to the integration of V2G into smart grids, en-
abling operators to optimize the scheduling of EV participation in ancillary services and to
meet demand in various markets. Such models are used for price determination in the day-
ahead market, intraday power trading, and scheduling power sources at different times of
the day to compensate for fluctuations in renewable energy and high-demand intervals.
Accordingly, different time scales and prediction horizons are involved in modeling: the
short-term scale of hours with a minimum settlement time of half an hour [23,32,33,35–38]
and the one-day-ahead forecast scale [27,28,36,37,39]. The one-day-ahead forecast is deter-
mined offline for 24 h in advance and serves the day-ahead energy market. However, such
long-term predictions are subject to significant uncertainty [37]. To mitigate this uncertainty,
rolling predictions on the order of hours are introduced to meet the needs of short-term
ancillary services.

These models are applied to various historical data sources: GPS localization and battery
management system data from EVs fleets with a limited number of vehicles [27,28,33,34,36,40,42];
charging and discharging session information based on V2G infrastructures, here referred to as
hubs [32,35,39]; simulated EV data [38,40]; and real-world extensive FCD mobility data and vehi-
cle information [23,37,41]. Most models are trained using historical data of the same target vari-
able, while some also incorporate features that are uncorrelated with the V2G system. These ad-
ditional features, referred to as exogenous inputs, include calendar information [23,32,35,38,39],
some including weekends [23,32,35] and holidays [23], meteorological [23,38] and energy mar-
ket events [27,28,34], or price [42].

Another distinction between the models used to predict V2G variables lies in their
classification. Previous research predominantly employs data-driven models, whereas
deterministic models are seldom used for comparative predictions, as noted in [32], due
to the energy supplier’s aversion to risk in predictions. Deterministic models are also
utilized for static analyses rather than for making predictions, particularly in the analysis of
mobility data to support V2G systems [41,42]. Dynamic nonlinear black-box models have
been used extensively compared to linear regression models. These models account for
nonlinear dynamics and are more effective in capturing the behavior of V2G systems com-
pared to dynamic linear regression models. These black-box models include a number of
techniques such as neural networks (NN) [23,32,34,36], long short-term memory networks
(LSTM) [23,28] potentiated by K-means clustering and federated learning in [35] or by
convolutional neural networks in (CNN)[27], random forest (RF) [39], gradient-boosted de-
cision tree (GBDT) [37], and extreme gradient boosting (XGBoost) [40]. The few applications
of dynamic linear autoregressive models are presented in [32,39].

In this highly complex context of predictive modeling, our work introduces innovations
in multiple aspects of the methodological framework, as shown in the summary Table 1.
The method is applied to short-term predictions covering intervals from one to four hours,
aiming to enhance performance for periods exceeding one hour. Unlike most approaches, it
utilizes generic FCD that can be easily obtained from insurance companies rather than rely-
ing on mobile phone GPS data. Additionally, for the first time, we have included exogenous
factors such as weather data and fuzzified weekend and holiday rates, which have never
been used for predictions exceeding half an hour. These features were initially analyzed
by the authors in [23] for half-hour predictions as a proof of concept, demonstrating their
effectiveness in improving predictive model performance. Notably, weather information
has never been used in predictive models applied to real-world case studies, having only
been utilized with simulated EV data [38].
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Table 1. State of the art in predictive models for V2G-related variables.

Model Prediction Data Exogenous Inputs Model Class Target

Persistence model,
Generalized linear

model, NN [32]
Half-hour-ahead Hub Calendar,

Weekends

Deterministic,
Data-driven

Dynamic Linear,
Dynamic
Nonlinear
Black-Box

AAC

NN, LSTM [23] Half-hour-ahead Generic FCD Data
Meteo, Fuzzy

Weekend and
Holiday rate

Dynamic
Nonlinear
Black-Box

AAC

MAML-CNN-
LSTM-Attention
Algorithm [33]

Hour-ahead EVs limited fleet
(Rental Car Fleet) -

Dynamic
Nonlinear
Black-Box

AAC

K-Means
clustering, LSTM
using federated

learning [35]

Hour-ahead Hub Calendar,
Weekends

Dynamic
Nonlinear
Black-Box

Energy demand

Multilayer
perceptron
(MLP) [38]

Hour-ahead
Simulated EVs and

Consumer
preferences

Calendar, Meteo
Dynamic
Nonlinear
Black-Box

Load forecast for
electricity price
determination

LSTM [36]

Offline
(day-ahead)

Rolling
(hour-ahead)

EVs fleet -
Dynamic
Nonlinear
Black-Box

SEC

GBDT [37]

Offline
(Day-ahead)

Rolling
(hour-ahead)

Generic FCD Data -
Dynamic
Nonlinear
Black-Box

SEC

CNN-LSTM
[27,28] Day-ahead EVs Limited fleet None/Market

event

Dynamic
Nonlinear
Black-Box

AAC

LSTM, NAR [34] Day-ahead EVs Limited fleet Market event
simulation

Dynamic
Nonlinear
Black-Box

AAC

RF, SARIMA [39] Day-ahead Hub Calendar

Dynamic
Nonlinear

Black-Box,
Data-Driven

Dynamic Linear

Occupancy and
charging load for

single EV

XGBoost [40] Yearly
EVs limited

fleet/Simulated
Data

-
Dynamic
Nonlinear
Black-Box

FCR participation

Analytical: Vehicle
contribution

sum [41]
-

Generic FCD Data
(Mobile Phone

GPS)
- Static

Deterministic
Daily Aggregated
V2G ES and PD

Analytical [42] -
EVs limited fleet
(Shared Mobility

on Demand)
Energy price Static

Deterministic

Driver preference
for V2G or
mobility

HDMDc—This
study

Rolling 1 to
4 hour-ahead Generic FCD Data

Meteo, Fuzzy
Weekend and

Holiday rate

Data-Driven
Dynamic Linear

State Space
AAC

The features in bold represent those shared with the HDMDc methods presented in this paper.
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The main methodological innovation of our approach lies in the introduction of a data-
driven dynamic linear state-space model: HDMDc. This approach significantly differs from
black-box models, as it allows for the identification of a global model for the system that
functions under varying operating conditions [43]. It also facilitates the extrapolation of
complex relationships between the target variable and exogenous factors, thereby enabling
energy providers to understand the model’s predictions. Furthermore, a state-space model
is amenable to model order reduction techniques, which can extract the most significant
dynamics and provide insights into the predictions made.

3. Methods: Theoretical Background

Two different approaches for prediction models were used: the HDMDc and the LSTM.
Both are well suited for predicting time series and offer high accuracy and flexibility in
modeling trends, seasonal patterns, and long-range temporal dependencies in the data. The
HDMDc is a data-driven linear identification algorithm based on the dynamic system state
space representation; it is able to capture various high-energy dynamics associated with
different time scales. The LSTM is a nonlinear black-box algorithm based on the theory of
recurrent neural networks (RNN) and is suitable for dynamic system identification thanks
to long short-term memory. The theoretical foundations of both algorithms are explained
in more detail in the following subsections.

3.1. HDMDc

The algorithm produces a discrete state-space model; hence, the notation for discrete
instances, xk, of the continuous time variable, x(t), is used, where xk = x(kTs), and Ts is the
sampling time of the model. Delay coordinates (i.e., xk−1,xk−2, etc.) are also included in the
state-space model to account for state delay in the system. This procedure allows for the
creation of the augmented state space relevant to model nonlinear phenomena. Therefore,
we define a state delay vector as

xdk = [xk−1xk−2 · · · xk−q+1]
T , (1)

where q is the number of delay coordinates (including the current time-step) of the state,
with xdk ∈ Rnx×(q−1)nx , and nx is the number of state variables.

The input delay vector is defined as

udk = [uk−1 uk−2 · · · uk−qu+1]
T , (2)

where qu is the number of delay coordinates (including the current time-step) of the inputs,
with udk ∈ R(qu−1)nu , and nu is the number of the exogenous input variables.

The discrete state-space function is defined as

xk+1 = Axk + Adxdk + Buk + Bdudk, (3)

where A ∈ Rnx×nx is the state matrix, Ad ∈ Rnx×(q−1)nx is the state delay system matrix,
B ∈ Rnx×nu is the input matrix, and Bd ∈ Rnx×(qu−1)nu is the delay input matrix. The system
output is assumed to be equal to the state, i.e., the output matrix is assumed to be the
identity matrix. When dealing with system identification in which only an input/output
time series is available, this assumption implies that nx should be chosen as the size of
the process output vector. The training time series consist of discrete measurements of the
outputs (i.e., yk = xk) and corresponding inputs (i.e., uk).

The training data, exploring the augmented state space, thanks to the delay shifts, are
organized in the following matrices:

X =
[

xq xq+1 · · · x(q−1)+w

]
(4)

X′ =
[
xq+1 xq+2 · · · xq+w

]
(5)
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Xd =


xq−1 xq · · · x(q−1)+w−1

...
...

...
. . .

...
x2 x3 · · · xw+1
x1 x2 · · · xw

 (6)

X′
d =


xq xq+1 xq+2 · · · x(q−1)+w
...

...
...

. . .
...

x3 x4 · · · xw+2
x2 x3 · · · xw+1

 (7)

Γ =
[
uq uq+1 · · · u(q−1)+w

]
(8)

Γd =


uq−1 uq+0 · · · u(q−1)+w−1

...
...

...
. . .

...
u(q−qu)+2 u(q−qu)+3 · · · x(q−qu)+w+1
u(q−qu)+1 x(q−qu)+2 · · · u(q−qu)+w

 (9)

where w represents the time snapshots and is the number of columns in the matrices, X′

is the matrix X shifted forward by one time-step, Xd is the matrix with delay states, and
Γ is the matrix of inputs. Moreover, to incorporate the dynamic effect of control inputs, an
extended matrix of the exogenous inputs with time shifts (i.e., Γd) is created and included
in the model. Equation (3) can now be combined with the matrices in Equations (4)–(9)
to produce [

X′

X′
d

]
= AX + AdXd + BΓ + BdΓd (10)

Note that the primary objective of HDMDc is to determine the best-fit model matrices,
A, Ad, B, and Bd given the data in X′, X, Xd, Γ, and Γd [24].

Considering the definition of the Hankel matrix H for a generic single measurement
time series hk and applying a d time shift:

H =


hd hd+1 hd+2 · · · h(d−1)+w

hd−1 hd hd+1 · · · h(d−2)+w
...

...
...

. . .
...

h1 h2 h3 · · · hw

 (11)

we can introduce the synoptic notation:

XH =

[
X
Xd

]
, X′

H =

[
X′

X′
d

]
, ΓH =

[
Γ
Γd

]
,

AH =
[
A Ad

]
, BH =

[
B Bd

] (12)

with XH ∈ Rqnx×w and ΓH ∈ Rqunu×w being the Hankel matrices for the time series xk and
uk, respectively. The AH and BH are the transformation matrices for the augmented state
and inputs, with AH ∈ Rqnx×qnx and BH ∈ Rqnx×qunu .

Considering the matrix Ω ∈ R(qnx+qunu)×w as the composition of the delayed inputs
and outputs, and G as the global transformation matrix described in Equation (13):

Ω =

[
XH
ΓH

]
, G =

[
AH BH

]
, (13)

we obtain
X′

H = GΩ. (14)



J. Sens. Actuator Netw. 2024, 13, 49 8 of 23

a truncated singular value decomposition (SVD) of the Ω matrix results in the follow-
ing approximation:

Ω ≈ ŨpΣ̃pṼT
p , (15)

where the notation˜represents rank-p truncation of the corresponding matrix, Ũ ∈ R(qnx+qunu)×p,
Σ̃ ∈ Rp×p, and Ṽ ∈ Rw×p. Then, the approximation of G can be computed as

G ≈ X′
HṼpΣ̃−1

p ŨT
p . (16)

For reconstructing the approximate state matrices ÃH and B̃H , the matrix Ũp can be
split in two separate components—Ũp1 related to the state and Ũp2 to the exogenous inputs:

ŨT
p =

[
ŨT

p1 ŨT
p2

]
, (17)

where Ũp1 ∈ Rqnx×p and Ũp2 ∈ Rqunu×p.
The complete G matrix can therefore be split into

G ≈
[
ĀH B̄H

]
=

[
X′

HṼpΣ̃−1
p ŨT

p1 X′
HṼpΣ̃−1

p ŨT
p2

]
. (18)

Due to the high dimensionality of the matrices, in order to obtain further optimization
in the computation of the reconstructed system, a truncated SVD of the X′

H matrix results
in the following approximation:

X′
H ≈ ÛrΣ̂rV̂T

r , (19)

where the notation ˆ represents rank-r truncation, Ûr ∈ Rqnx×r, Σ̂r ∈ Rr×r, and V̂r ∈ Rw×r,
and typically we consider r < p. Considering the projection of the operators ĀH and B̄H
on the low-dimensional space, we obtain

ÃH = ÛT
r ĀHÛr = ÛT

r X′
HṼpΣ̃−1

p ŨT
p1Ûr, (20)

B̃H = ÛT
r B̄H = ÛT

r X′
HṼpΣ̃−1

p ŨT
p2, (21)

with ÃH ∈ Rr×r and B̃H ∈ Rr×qunu

A graphic view of the HDMDc algorithm is shown in Figure 1.

Figure 1. HDMDc block diagram.

3.2. LSTM

An LSTM network is a type of RNN that processes input data by iterating over time
steps and updating the RNN state. The RNN state retains information from all preceding
time steps. LSTM combines short-term memory with long-term memory through gate
control, eliminating the standard RNN’s disappearing gradient problem and exploding
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gradient problem [44]. The utilization of a sequence-to-sequence LSTM neural network
allows one to predict future values in a time series or sequence based on preceding time
steps as input [26]. A simple LSTM architecture was applied: a sequence input layer,
with its size depending on the number of input data features; LSTM hidden layers with
ReLU activation and dropout implementation to avoid overfitting; a fully connected layer
with the size of one, for AAChubr prediction; and finally, a regression layer. The hyperpa-
rameters to be optimized are the LSTM depth (LSTMDepth), the number of hidden units
(NumHiddenUnits), and the dropout probability (DropoutLayer).

A graphic view of the LSTM architecture is shown in Figure 2.

Figure 2. Sequence-to-sequence LSTM block diagram.

4. System Model

The proposed prediction model framework consists of several parts, as shown in Figure 3.
The two blocks on the left refer to the data collection and pre-processing for the vehicle dataset
and the extraction of the exogenous inputs. The first block comprises the acquisition of the
FCD data and its description in terms of origin–destination (OD) with the aim of extracting the
trips and stops and thus determining the state of charge (SoC%) for each individual vehicle.
A spatio-temporal aggregation is then performed to obtain the AAC time series, which is
used as the target variable for the prediction models. In particular, the spatial aggregation
was performed in a geographical area within a radius r from the selected hub, while the
temporal aggregation was performed in half-hour (hh) intervals to match the time scale of
the intraday energy market as in most literature examples [23,27,28,32]. The second block is
dedicated to extracting exogenous inputs, aiming to obtain continuous time series with
hh sampling time. This includes fuzzy data for national holidays and weekends as well
as meteorological data on precipitation, temperature, and wind speed. The core block
consists of predictive models based on HDMDc and LSTM, enabling rolling predictions
with different time horizons. A summary of the main variables involved is provided in
Table 2.

Table 2. Predictive model framework variables.

Variable Description Units

u1 = Precipitation Meteo exogenous inputs mm

u2 = Temperature Meteo exogenous inputs ◦C

u3 = Wind Speed Meteo exogenous inputs km/h

u4 = Fuzzy holiday rate Calendar exogenous inputs
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Table 2. Cont.

Variable Description Units

Hub V2G Infrastructure

r Hub area radius km

SoC State of Charge %

AChh
v Available capacity for the single vehicle in half-h hh kWh

hubr Area within r radius from the Hub

x = AAChubr Target variable AAC for the hubr area kWh

Figure 3. AAC prediction model framework.

4.1. Data Collection and Pre-Processing

The data collection and pre-processing stages were fundamental components of this
research. Emphasis was placed on working with data obtained in real-world conditions:
vehicle tracking FCD data in the domains of traffic analysis, logistics, and mobility; weather
data available both as historical archives and forecasts; and well-known data such as
calendar information and holidays. These data have undergone pre-processing to create a
standardized format suitable for applying the algorithms under evaluation.

4.1.1. Vehicle Dataset

The vehicle energy dataset (VED) [45] is an open-access dataset of fuel- and energy-
related information collected from 383 individual vehicles in Ann Arbor, MI, USA. It
includes GPS records of vehicle routes and time-series data on fuel consumption, energy
consumption, speed, and auxiliary energy use. The dataset covers a wide range of vehicles:
264 internal combustion engines (ICEs), 92 hybrid electric vehicles (HEVs), and 27 plug-in
hybrid electric vehicles/electric vehicles (PHEV/EVs), operating in real-world conditions
for one year from November 2017 to November 2018. Specifically, the following dynamic
features can be selected: date, vehicle identifier, trip identifier, duration, latitude, and
longitude. In addition, the HV battery SoC% is provided for the PHEVs and EVs. In order
to create a benchmark dataset and considering the future projection for the EVs market,
an assumption was made: the ICEs and HEVs were assumed to be EVs contributing to
the V2G logic. For simplicity, they were assumed to be EVs of the same make and model
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(Nissan Leaf with a 40 kWh battery capacity). SoC for ICEs and HEVs was calculated as an
indirect measure of distance traveled and charging stop intervals.

A first pre-processing step consisted of extracting an OD representation of the FCD
data. In particular, stops with a duration of more than 30 min and trips from an origin
to a destination were extracted from the VED data series. An initial visualization of the
pre-processed data was made by plotting the stops on the global geographical area to
identify points suitable as V2G hubs.

Figure 4 shows the density of stops during different daily intervals (0–6 a.m., 6 a.m.–12 a.m.,
12 a.m.–6 p.m., and 6 p.m.–12 p.m.) and integrated over the entire data time interval. The
color scale represents the duration of the stops in hours, assuming a minimum stop duration
of 30 min. A candidate point of interest was selected and here referred to as Hub1, thanks
to the high vehicle stop density and the location in the city center and university area, as
shown in Figure 5.

Figure 4. Stop maps in different time intervals of the day integrated over the entire data time interval.
The color bar shows the duration of the stops. The stop events started in the following time windows:
(a) from 0 a.m. to 6 a.m., (b) from 6 a.m. to 12 a.m., (c) from 12 a.m. to 6 p.m., and (d) from 6 p.m. to
12 p.m.
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Figure 5. Selection of the aggregation hub in the Ann Arbor Area: satellite view of Hub1 area in the
city center and university zone.

A second pre-processing phase consisted of calculating the SoC% for the non-electric
vehicles according to [27,28]. This calculation was based on the following simplified
assumptions: the vehicles’ discharge during the trips according to the distance traveled;
when the vehicles stop, they feed energy into the grid if they are available for V2G, or they
recharge at a rate that depends on the connection time if they are not available for V2G.
The parameters used are as follows:

• Maximum battery charge at the start of the simulation: SoC = 100%
• The minimum state of charge that must be maintained is set as a fixed value to cover

the remaining part of the travel chain: SoCmin = 50%
• The vehicles are considered available to supply energy to the grid when they are close

to the hub and SoC > SoCmin
• The energy consumption per kilometer traveled by a vehicle: 0.2 km/kWh
• Rapid charging hour rating of a vehicle, typically using DC power, in the period

from 7 a.m. to 7 p.m.: 50 kW
• Slow-charging hour rating of a vehicle in the time interval from 7 p.m. to 7 a.m.: 6 kW
• Efficiency of the charging process taking losses into account: 90%
• Power rating of the export to the grid: 50 kW

In the third pre-processing step, the SoC values were used to create a dataset aggre-
gated in the space and time domain and to obtain time series to be used for predictive
model identification. The aggregation in space refers to the assumption that the vehicles
parked within a specific radius r from a selected V2G hub would connect to it. A vehicle
parked within r from the hub in an hh interval, and respecting the SoCmin requirement,
is considered available (avr) to feed energy into the V2G system in that interval. In par-
ticular, the real or simulated SoC is used to determine the available capacity of a single
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vehicle (ACv). This is defined as the capacity of each vehicle to provide energy to the grid
in an hh period.

AChh
v = Max(SoChh−1

v − SoCmin, 0) ∗ BC (22)

where the BC is the battery capacity. Equation (22) is considered for the available vehicles.
The target feature to be predicted AAChh

hubr , i.e., the AAC in an hh interval and within r
distance from the hub. It is defined in Equation (23):

AAChh
hubr = ∑

avr
AChh

v (23)

As a result of such procedures, AAChh
hubr time series with an hh sampling rate can be

determined with respect to the V2G hub and be fed into the dynamic prediction model.

4.1.2. Meteorological Dataset

The meteorological data can be extracted from the MeteoStat database using the
Python API [46] based on the GPS coordinates of the geographical area under study. The
information on precipitation in mm, temperature in ◦C, and wind speed in km/h can be
extracted on an hourly basis for the period under investigation. The pre-processing of
the meteorological information involved the imputing of the missing data, which were
replaced with the average of the signal in the same week, and the resampling to the hh
sampling interval.

4.1.3. National Holidays Dataset

State office closings for state holidays are considered additional information to be
integrated into the input dataset. They are regulated by the Michigan Department of Civil
Service Regulation 5a.08. Public Act 124 of 1865 is the Michigan law governing official
state holidays [47,48]. Non-business days, as in Table 3, were considered in conjunction
with weekend information to obtain a comprehensive holiday rate to be incorporated
into the model.

Table 3. Office of Retirement Services (ORS) non-business days.

Non-Business Day Date

Weekends Saturdays and Sundays
Thanksgiving Day 23 November 2017

Day after Thanksgiving 24 November 2017
Christmas (Eve and Day) 24–25 December 2017
New Year (Eve and Day) 31 December 2017–1 January 2018

Martin Luther King, Jr. Day 15 January 2018
President’s Day 19 February 2018
Memorial Day 28 May 2018

Juneteenth 19 June 2018
Independence Day 4 July 2018

Labor Day 3 September 2018
Columbus Day 8 October 2018
Veterans Day 12 November 2018

A fuzzy model is applied in order to obtain a unified holiday rate resulting from the
fuzzification of national holidays and weekend information for each day of the year [23].

The information about holidays and weekends is represented by a discontinuous time
series, which is not suitable for the identification of dynamic models. The goal of fuzzifying
such inputs is to obtain a continuous time series, with hh time interval, that contains
both weekend and holiday information. Fuzzy membership functions were developed to
account for the effects that weekends and holidays might have on drivers’ habits on the days
before and after these periods. The weekend and holiday membership functions, shown
graphically in Figure 6a,b, respectively, were applied to the time series of calendar dates.
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When the weekend membership function is applied to a calendar day, it outputs a degree of
truth, ranging from 0 to 1, indicating the likelihood of the day being a weekend. Similarly,
applying the holiday membership function to a calendar day results in a continuous value
between 0 and 1, representing the degree of truth for the day being a holiday. To create a
single continuous dynamic feature that integrates both weekend and holiday information,
the maximum value of these membership functions was taken.

Figure 6. Membership function for the fuzzification of the holiday rate: (a) weekend membership;
(b) national holiday membership functions.

4.2. Model Prediction Analysis

Considering the prediction steps kp, the multi-step-ahead prediction is performed
by iterating the one-step-ahead prediction kp times in a closed loop. This involves using
the previously predicted value as an autoregressive term and feeding the inputs from
the previous step into the model at each iteration, as shown in Equation (24), since the
meteorological forecast and calendrical information are considered available within this
time interval. During each iteration, any negative predicted values are replaced with zero
and then fed into the model for the subsequent iteration.

xk+kp = f (x̃k, x̃k+1, · · · , x̃k+kp−1, uk, uk+1, · · · , uk+kp−1), (24)
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where f is a general representation of the relationship between the rolling prediction at
time kp-step-ahead and the previously predicted samples and the previous samples of the
exogenous inputs.

4.2.1. HDMDc

The one-step-ahead predicted discrete time-series based on the Hankel transforma-
tion of the original time series (i.e., x̃H

k and uH
k ) and based on the identified matrices

in Equations (20) and (21), and these are represented as in Equation (25):

x̃H
k+1 = ÃH x̃H

k + B̃HuH
k , (25)

with xH
k = Ûr x̃H

k . The original time series xk is then extracted from xH
k considering only the

rows with index i = n · q + 1 where n = 0, 1, . . . , (nx − 1).

4.2.2. LSTM

The one-step-ahead time-series based on the LSTM transformation is based on a
optimized structure of the network and can be represented in Equation (26) as

xk+1 = fLSTM(xk, uk), (26)

with fLSTM being the simplified nonlinear representation of the input–output relationship
in LSTM.

5. Results and Discussion

In this section, we first describe the models’ learning procedures, detailing the identi-
fication and prediction processes, and outlining the test cases. These test cases are subse-
quently elaborated upon in the results subsections for both HDMDc and LSTM.

5.1. Learning Procedure

The data were divided into training (50%), validation (25%), and test data (25%).
Specifically, in order to avoid seasonal bias and unbalanced datasets, the first two weeks
per month were selected as training, then the following two weeks were divided, one for
validation and one as test data. Such a choice ensures that all seasons, weekends, and
national holidays are included in both the training and test phases, providing a thorough
representation of diverse meteorological conditions and capturing these temporal variations
across all datasets. As described in Section 4, the exogenous inputs are the fuzzified holiday
rate and the meteorological information (precipitation, temperature, and wind speed).
Figure 7 shows such inputs for two selected weeks: (a) from Wednesday, 3 October to
Tuesday, 10 October 2018 from the training dataset and (b) from 17 to 24 January 2018 from
the test dataset. The time series AAChubr refers to the selected Hub1 with a radius r = 1, as
in Section 4.1.1 in Figure 5. It is provided as target and autoregressive term in the model
identification process. In particular, the training and validation sessions were performed
for one-step-ahead prediction, i.e., at each time step in the input sequences, the models
learn to predict the value of the subsequent time step.

Parameters choice, training, and test cases are here discussed for the two different
predictive methods, HDMDc and LSTM, in Sections 5.2 and 5.3, respectively. Both models’
performances in the training and test dataset are shown for different prediction steps
(1 h (kp = 2), 2 h (kp = 4), 3 h (kp = 6), 4 h (kp = 8)) and compared in terms of KPIs,
i.e., mean square error (MAE), root mean square error (RMSE) and correlation coefficient
(R), predicted time series and, specifically for the HDMDc, also regression plots.
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Figure 7. Exogenous inputs: left y-axis—holiday rate (blue); right y-axis—precipitation in mm (red),
temperature in °C (green), and wind speed in km/h (magenta). (a) Selection of a training set week
(Wednesday 3 to Tuesday 10 October 2018). (b) Selection of a test set week (Wednesday 17 to Tuesday
24 January 2018).

5.2. HDMDc

As a first step, the state and input variables have been extended by adding a series of
delay coordinates to the state and inputs as described in Section 3. These delays, q and qu,
as in the Equations (1) and (2), were both chosen to be equal to each other [43], with
a value of 48 corresponding to 24 h. This choice was made based on considerations of
the daily periodicity of the data for both the state and the inputs. The system order nx
therefore increased from 1, given by the single state variable AAC, to qnx = 48, as in
Equation (12). The number of exogenous inputs increased from nu = 4 to qunu = 192.
As a second step, once the model structure was determined, the HDMDc model was
identified using the training dataset, and the state-space model matrices were obtained
as in the Equations (20) and (21). Rolling kp-step-ahead prediction of the AAC signal was
therefore performed by iterating Equation (25) for both the training and test datasets. The
chosen set of prediction steps was kp = 2, 4, 6, 8, corresponding to 1, 2, 3, and 4 h.

The key performance indicators are listed in Table 4 for both the training and test
datasets. HDMDc performs well on both datasets for predictions up to 4 h. For long
prediction horizons, the HDMDc shows some limitations: It underestimates the target AAC
but maintains a good correlation (>0.859) to the target. This observation, which can be
derived from the macroscopic key performance indicators, is confirmed by the comparison
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between the predicted AAC time series and the experimental target value, as shown in
Figure 8 for two selected weekly examples: (a) the training dataset and (b) the test datasets.
The rising/falling slopes and peak shapes are also maintained for long prediction horizons,
albeit on a lower scale. The same content, extended to the entire test dataset, is visible in
the regression plots in Figure 9c,d, where the scatter is closely related to the regression
line, even if underestimated. This could not be a critical issue from the energy provider’s
perspective, since the primary interest is predicting the minimum AAC to sell to the energy
market to avoid penalties.

These detailed observations provide valuable insights: the training dataset is well-
designed, covering multiple system behaviors and indicating that the exogenous input
features are relevant for predicting AAC [23]. The HDMDc effectively captures the global
dynamics of the system without overfitting, consistent with Koopman theory. This theory
allows for identifying a global model that operates properly across multiple system oper-
ating points, highlighting the advantage of the data-driven linear state-space model over
nonlinear black-box models, as described in Section 2. These characteristics make the inte-
gration of exogenous input data sources and HDMDc a reliable candidate for automated
prediction processes, supporting decision-making for energy providers and managing
multiple energy sources in smart grids.

Figure 8. HDMDc time series prediction with different time horizons: 1 h, 2 h, 3 h, and 4 h.
(a) Selection of a training set week (Wednesday 3 to Tuesday 10 October 2018). (b) Selection of a test
set week (Wednesday 17 to Tuesday 24 January 2018).
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Table 4. HDMDc performances in the Training and Test Dataset.

Train Test

Prediction MAE RMSE R MAE RMSE R

1 h 0.75 1.14 0.995 0.82 1.24 0.995
2 h 1.78 2.65 0.971 1.89 2.86 0.972
3 h 2.55 3.79 0.929 2.69 4.07 0.934
4 h 3.27 4.82 0.859 3.47 5.20 0.869

Figure 9. HDMDc regression plots for prediction with different time horizons of the test dataset:
(a) 1 h, (b) 2 h, (c) 3 h, and (d) 4 h.

5.3. LSTM

In a first step, model optimization to determine the hyperparameters was performed
utilizing a Bayesian algorithm using the training and validation datasets. The optimiza-
tion was based on the minimization of the correlation coefficient (R) as a metric. The
hyperparameter ranges were set to

• the LSTM depth between 1 and 3
• the number of hidden units between 50 and 350
• the dropout probability between 0.1 and 0.7
• initial learn rate between 0.01 and 0.1
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The hyperparameters optimized in terms of R for the validation datasets were found
to be 1 LSTM layers, 176 hidden units per layer, a 0.56 dropout layer, and a 0.034 initial
learn rate.

In a second step, after the model structure was determined and identified by the
optimization procedure, the LSTM model was used to reconstruct the AAC signal for the
kp-step-ahead prediction by closed loop iteration for both the training and test datasets. As
mentioned above, the negative values of the prediction were replaced by zero and used as
an autoregressive sample for the subsequent prediction step.

Finally, the performance of LSMR prediction over the different selected time horizons
was evaluated and compared. The key performance indicators are listed in Table 5 for the
training and test datasets.The LSTM model performs acceptably on the training datasets for
predictions up to 2 h and maintains a correlation of R = 0.852. However, its performance
deteriorates rapidly for longer prediction horizons. In the test dataset, the model fails to
achieve satisfactory performance and shows a poor correlation coefficient (R = 0.647) for a
prediction horizon of 1 hour, with a rapid decline for longer horizons. This observation
derived from the macroscopic KPI is confirmed by the comparison between the predicted
AAC time series and the experimental target values. Figure 10 show the predicted timeseries
for two selected weekly examples: (a) the training dataset and (b) the test dataset. Among
the nonlinear black-box models, the LSTM shows capability in managing integrated data
sources and provides good performance for short-term predictions, as the authors have
shown in a previous work [23], but as a limitation, it loses accuracy for longer predictions.

Figure 10. LSTM time series prediction with different time horizons: 1 h, 2 h, 3 h, and 4 h. (a) Selection
of a training set week (Wednesday 3 to Tuesday 10 October 2018). (b) Selection of a test set week
(Wednesday 17 to Tuesday 24 January 2018).



J. Sens. Actuator Netw. 2024, 13, 49 20 of 23

Table 5. LSTM (1 layers, 176 hidden units, 0.56 dropout layer, 0.034 initial learn rate) performances
on the training and test dataset.

Train Test

Prediction MAE RMSE R MAE RMSE R

1 h 2.28 4.28 0.852 3.67 6.53 0.647
2 h 3.21 4.93 0.80 4.63 7.29 0.54
3 h 4.20 5.79 0.739 5.68 8.06 0.456
4 h 5.10 6.65 0.677 6.57 8.78 0.385

6. Conclusions

This paper highlights the critical importance of forecasting energy availability for ef-
fective V2G implementation and underscores the role of interpretable yet computationally
feasible methods like HDMDc in addressing this challenge. By employing such method-
ologies, stakeholders can better manage energy resources, optimize grid operations, and
accelerate the transition towards a sustainable energy future.

The proposed methodological framework includes an initial pre-processing step aimed
at obtaining timeseries that can be fed into the model identification process. In particular,
the innovative contribution to the current body of literature resides in the integration
of FCD tracking data, meteorological, and calendar variables through a fuzzy input set
that includes national holidays and weekends. By pre-processing and integrating such
contextual components, our methodology provides a more comprehensive insight into the
intricate relationships within the V2G system.

The core of this work lies in the implementation and comparison of two different
data-driven dynamic approaches for AAC rolling prediction over finite time horizons:
the linear state space model based on HDMDc and the nonlinear black-box approach
based on LSTM.

First, the design of the dataset, accounting for weekends, holidays, and various
meteorological conditions and spanning one year, effectively captures multiple behaviors
of the system due to intra- and inter-period variability. The good performance of HDMDc,
along with previous studies [23], underscores the relevance of exogenous inputs in the
AAC prediction process.

Regarding the two approaches, HDMDc demonstrates satisfactory performance and
reliability over long prediction horizons, although it may exhibit some underestimation in
long-term predictions. Nevertheless, it maintains a good and acceptable correlation within
the application domain, which is crucial for energy providers who prioritize accurate
prediction of minimum values. In contrast, LSTM’s effectiveness is limited to short-term
predictions. This difference can be attributed to the inherent capabilities of the methods:
although LSTM networks are effective for stochastic time series prediction due to the long-
short-term memory effect, HDMDc, as a data-driven spatio-temporal method, decomposes
a system into modes with varying temporal behaviors. This allows HDMDc to capture
the global dynamics without overfitting, thereby extending its effectiveness over longer
time horizons prediction. In addition, the state-space representation is prone to model
order reduction and is able to reveal complex relationships between external features and
electrical target variables moving towards model interpretation.

In conclusion, combining preliminary data processing, HDMDc, and LSTM predictive
models within a robust methodological framework offers a comprehensive solution for
predicting energy availability for V2G integration in complex environments.

HDMDc, in particular, has demonstrated its effectiveness as a data-driven state-space
representation, providing several advantages and potential future research directions. This
model could be trained on selected V2G hubs and then applied to different V2G hubs
within the same category, based on the type of area activity (e.g., residential, commercial,
industrial, or recreational), suggesting the transferability of the prediction framework.
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Future research could also focus on developing a comprehensive decision support
framework for smart energy systems that integrate multiple energy sources such as re-
newables, buildings, electric vehicles, and mobility, while accounting for uncertainties in
electricity prices and energy market events.
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The following abbreviations are used in this manuscript:

V2G Vehicle-to-Grid
SG Smart Grids
AAC Available Aggregate Capacity
IoT Internet of Things
FCD Floating Car Data
OD Origin-Destination
ICE Internal Combustion Engine
HEV Hybrid Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
EV Electric vehicle
SoC State of Charge
hh Half Hour
HDMDc Hankel Dynamic Mode Decomposition with Control
LSTM Long Short-Term Memory
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