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Abstract: The increased use of Internet of Things (IoT) devices has led to greater threats to privacy
and security. This has created a need for more effective cybersecurity applications. However, the
effectiveness of these systems is often limited by the lack of comprehensive and balanced datasets.
This research contributes to IoT security by tackling the challenges in dataset generation and providing
a valuable resource for IoT security research. Our method involves creating a testbed, building the
‘Joint Dataset’, and developing an innovative tool. The tool consists of two modules: an Exploratory
Data Analysis (EDA) module, and a Generator module. The Generator module uses a Conditional
Generative Adversarial Network (CGAN) to address data imbalance and generate high-quality
synthetic data that accurately represent real-world network traffic. To showcase the effectiveness
of the tool, the proportion of imbalance reduction in the generated dataset was computed and
benchmarked to the BOT-IOT dataset. The results demonstrated the robustness of synthetic data
generation in creating balanced datasets.

Keywords: Conditional Generative Adversarial Network (CGAN); Internet of Things (IoT); machine
learning; Traffic Analyzer Tool; synthesize datasets; network attack scenarios

1. Introduction

In recent years, technologies such as the Internet of Things (IoT), Cloud Computing,
and Artificial Intelligence (AI) have become increasingly popular. The rapid proliferation
of IoT devices, particularly in the context of smart homes, has led to a significant increase in
the number of devices connected to the Internet, resulting in a substantial rise in the volume
of data generated by these devices [1]. Smart homes utilize a variety of technologies and
standards, which can often be incompatible. However, this diversity presents new security
vulnerabilities, leaving them vulnerable and making IoT environments attractive targets
for cyberattacks.

IoT applications often rely on lightweight communication protocols and devices with
limited computing and storage capabilities. This makes it challenging to implement secu-
rity measures that require high computational power. Due to their unique characteristics,
traditional security tools such as firewalls and encryption may not perfectly fit IoT sys-
tems. For instance, it is difficult to detect attacks like DoS, MITM, and password cracking
using traditional programming methods. Security is a critical component in safeguarding
IoT environments by identifying malicious activities and preventing potential breaches.
Therefore, researchers have improved security mechanisms by employing advanced de-
tection techniques, such as machine learning based on Intrusion Detection System (IDS)
ML-based IDS methods, which utilize various algorithms to distinguish between normal
and malicious behaviors by classifying the data based on selected features [2-4]. How-
ever, previous studies often overlook the challenge of data imbalance, which tends to bias
classification models towards dominant classes with more attack samples. In smart home
environments, for example, this significantly impacts the performance of the often used
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security applications and IDS. Amongst these are firewalls and Security Information and
Event Management (SIEM) systems, which might fail to accurately detect and correlate
sporadic attack types, resulting in false detection instances or alarms. In a similar manner,
Endpoint Detection and Response (EDR) applications and anomaly detection systems,
which recognize instances of anomalies in the context of normal behavior, may disregard
less frequent but nonetheless dangerous anomalies if such cases are underrepresented in
the data. Implemented smart home behavioral analytics solutions, usually used to collect
user behavior data, might also be unsuccessful in detecting advanced insider attacks or
vulnerable devices because of the lack of various attack scenarios in the trained dataset.

To address this issue, more recent approaches emphasize generating balanced datasets,
ensuring that classification models perform accurately across all classes, leading to more
reliable detection of both common and rare attack types [1].

In recent years, Generative Adversarial Networks (GANs) have emerged as a powerful
tool for generating synthetic data samples for minor classes, particularly in addressing
class imbalance issues in datasets. In some studies, these generative models are used as
classifiers by training the discriminator differently.

This research builds on previous studies highlighting the importance of synthetic
data generation in cybersecurity. For instance, Kumar and Sinha [5] utilized a Wasserstein
CGAN model to generate synthetic IDS datasets, demonstrating significant improvements
in detection performance. Similarly, Liu et al [6] introduced GAN-FS, a GAN-based over-
sampling technique combined with feature selection, which effectively addressed class
imbalance and high dimensionality in IDS datasets. These studies underscore the potential
of GAN’s in enhancing IDS by providing high-quality synthetic datasets. The proposed
CGAN:-based tool called “Synthetic Data Generator Tool” is designed to generate realis-
tic and balanced synthetic datasets for IDSs in IoT environments. The objectives of the
proposed Synthetic Data Generator Tool are not only to address the class imbalance issue
but also to offer a comprehensive statistical dashboard for data analysis. This feature is
particularly beneficial for researchers who want to understand the underlying patterns and
distributions within their datasets. Furthermore, the tool incorporates advanced feature en-
gineering techniques to rank the importance of features, thereby aiding in the development
of more robust IDS models.

The objectives and contributions of this paper can be summarized as follows:

1.  Development of a novel Synthetic Data Generator Tool capable of generating realistic
and balanced synthetic data which can be used in cybersecurity applications to detect
network attack types.

2. Building a multi-class IoT network attack type dataset that includes six attack types
and a normal class.

3. Development of a user-controlled Synthetic Data Generator Tool capable of generating
realistic and balanced datasets which can be used in cybersecurity applications to
detect network attack types.

4.  Constructing a comprehensive pre-processing pipeline that addresses challenges in
synthetic data generation using CGANSs.

5. Evaluating the generated datasets’ balance.

The subsequent sections of this paper discuss the literature review in Section2, whereas
Section 3 details the methodology used to collect and analyze IoT network traffic data and
the design and implementation of the Synthetic Data Generator Tool. Section 4 discusses
the results of using the Synthetic Data Generator Tool and evaluating the synthetic datasets
generated by the tool. Finally, Sections 5 and 6 conclude the research and present limitations
and future work.

2. Literature Review

This section provides a comprehensive understanding of current advancements in
datasets in IoT environments; we divided the research into two subsections. Section 2.1 pro-
vides an in-depth analysis of the methodologies used to gather datasets for both benign and
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malicious activities in IoT environments. Section 2.2 examines the latest research focused
on generating synthetic datasets using GANSs, detailing how these techniques improve
dataset quality and performance by simulating diverse and representative attack scenarios.

2.1. Comprehensive Review of Public IoT Datasets

In this subsection, a comparative review of various publicly available IoT datasets is

conducted, evaluating them from multiple perspectives, such as data composition, feature
types, and applicability. The discussion aims to highlight the strengths and weaknesses of
each dataset, providing insights into their suitability for different IDS applications. Table 1
summarizes the key characteristics of these datasets.
A recently published dataset by Tomds Sureda Riera et al. [7] focuses on the classification
of web attacks using CAPEC (Common Attack Pattern Enumeration and Classification)
with machine learning techniques. This multi-label dataset contains data specific to web
attack types such as SQL Injection (SQLI), Cross-Site Scripting (XSS), and Cross-Site Re-
quest Forgery (CSRF), which are critical for evaluating IDSs in environments deploying
web servers and applications. Given the increasing frequency of web-based attacks in
IoT devices that often deploy web servers, this dataset provides valuable insights into
identifying and mitigating web attacks using advanced classification techniques. By in-
corporating this dataset, researchers can improve IDS models to handle both traditional
network attacks and complex web-based threats, which are underrepresented in many
existing loT-focused datasets.

The 5G-NIDD dataset [5] is created to assess the performance of network IDSs in
5G networks. It contains network traffic data from a fully operational 5G test network,
capturing both normal activities and nine types of cyberattacks. The dataset consists of
112 features derived from network traffic, such as flow-based features, packet details,
and statistical attributes. However, using the dataset requires significant storage and
computational resources. Additionally, the high dimensionality of features can complicate
analysis and model training.

The TON_IoT dataset [4] was designed to evaluate IoT IDSs and includes network
traffic data, operating system logs, and telemetry data from IoT devices. It captures normal
activities and various types of attacks in a realistic IoT environment. However, its large
size (~80 GB) and the variety of features from multiple sources complicate analysis and
model training.

The [0T-23 dataset [8] consists of network traffic from 23 different IoT devices, con-
taining both benign and malicious scenarios. The dataset, which is approximately 50GB in
size, offers diversity in device types and attack coverage, such as Mirai and Gafgyt attacks.
However, due to its volume and labeling complexity, analysis may require significant
computational resources, similar to other large datasets.

The MQTT-IoT dataset [9] captures network traffic from IoT environments using
the MQTT protocol, reflecting real-world communication scenarios. While the dataset
is smaller (~5 GB) than others, it still requires considerable resources for processing. It
focuses on attacks relevant to MQTT communications, which may limit its generalizability
to other IoT environments.

The Bot-IoT dataset [10] focuses on IoT botnet activities and contains data from
various botnets such as Mirai and Bashlite. This dataset, though comprehensive in its attack
coverage, includes synthetic scenarios that may not fully replicate real-world conditions.
Its large size (~69 GB) and high feature count require significant computational resources.

The UNSW-IoT dataset [11], which also has a size of approximately 50GB, was created
to evaluate IDS in IoT environments. Like IoT-23, this dataset includes a wide range of
attacks and feature sets. Both datasets, due to their large volumes and complex feature sets,
present similar challenges for analysis and resource demands.

The UNSW-IoT Trace dataset [12] is a subset of the UNSW-IoT dataset that focuses on
detailed packet-level information. It provides packet-level features such as timestamps, IP
addresses, port numbers, and protocol attributes, offering insights into IoT traffic patterns
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and behaviors under both normal and attack conditions. However, being a subset of the
larger UNSW-IoT dataset, it has a smaller scope (~10 GB) but still requires significant
computational resources for detailed analysis.

The CICIDS2017 dataset [13] is intended for use in network intrusion detection and
prevention systems. It contains various types of attacks, including DDoS, brute force, and
botnet, as well as normal traffic, to replicate real-world scenarios. The dataset comprises
80 network traffic features, but its large size (~70 GB) and high dimensionality make feature
selection and model training more complex. Additionally, class imbalance issues can affect
model performance.

The MedBIoT IoT dataset [14] contains network traffic data from IoT devices that have
been targeted by various types of cyberattacks, including those initiated by the MedBIoT, to
evaluate real-world scenarios from IoT environments, providing detailed packet-level and
flow-level features for thorough analysis. However, its significant data volume (~30 GB)
can pose challenges in processing and analysis.

The IoTID20 dataset [15] is focused on IoT device identification and anomaly detection.
It contains network traffic data from various IoT devices, offering a comprehensive dataset
for device identification and IDS testing. The dataset includes over 80 features related
to network traffic, such as flow statistics, packet sizes, and protocol-specific attributes.
However, its large dataset size (~100 GB) and high dimensionality complicate analysis and
model training, particularly for diverse device types.

In addition to the datasets discussed, the Web Attack Dataset of Sureda Riera et al. [16]
presents a valuable resource for evaluating the detection of web-based attacks. This dataset
uses machine learning techniques for the classification of web attacks based on the CAPEC
(Common Attack Pattern Enumeration and Classification) taxonomy, which is particularly
useful for assessing vulnerabilities in web applications. While IoT devices often deploy
web servers and applications, web attacks such as SQL Injection (SQLi), Cross-Site Scripting
(XSS), and Cross-Site Request Forgery (CSRF) are increasingly common. The inclusion of
such datasets would complement the current focus on Distributed Denial of Service (DDoS)
attacks and other network-based threats covered in this work. Additionally, OWASP’s
catalog of web application vulnerabilities highlights the growing need for securing loT web
applications. This reinforces the relevance of integrating web-based attack detection into
IoT environments, as web attacks have become one of the most frequent and dangerous
threats to IoT ecosystems.

Table 1. A comprehensive comparison of major IoT device datasets from different perspectives.

Dataset Year Description Size Features Labels Strengths Limitations

Multi-label dataset

classifying ~ web-

based attacks (SQLI, CAPEC attack Valuable for IDS

XSS, CSRF) using . . development
CAPEC . patterns, includ- Normal traffic . ..

CAPEC classifica- : against web  Limited to web-
Web 2022 ~5GB ing web-based and web attack .

tion; focuses on web threats in IoT, un- based attacks
Attacks . attacks (SQLI, Ilabels

server vulnerabili- XSS, CSRF) derrepresented

ties and web attacks ’ in IoT datasets

prevalent in IoT

environments

Data from a func- 112 features, Ez?flilcsjﬂc detailSe S

tional 5G test net- including flow- Normal traffic featur,e set: oen- Large size,
5G-NIDD 2022 work, capturing nor- ~5GB based, packet, and nine attack ' 8 requires signifi-

mal and malicious
activities

and statistical
attributes

types

erated dataset for
testing missing
attacks

cant resources
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Table 1. Cont.
Dataset Year Description Size Features Labels Strengths Limitations
Multiple  fea-
IoT network traffic, tures across Normal and ma- Realistic  envi- Large size, com-
TON_IoT 2020 OSlogs, and teleme- ~80GB  network traffic, . . o .. ronment, diverse  plexity of analy-
licious activities .
try data log data, and data sources sis
telemetry data
Network traf-
Network traffic f;cclu dir{eatures
from 23 IoT devices acket %:letails Normal traffic Device diversity, Large size, la-
IoT-23 2020 with both benign ~50GB Eow statis: and different comprehensive beling complex-
and malicious . types of attacks  attack coverage ity
. tics, protocol-
scenarios -
specific at-
tributes
Packet de- Normal traffic
MOQTT- Network traffic datg tails, . ﬂow and various Realistic traffic, Smaller datasefc,
IoT IDS 2020 from MQTT envi- ~5GB characteristics,  attack  types MOTT focus protocol speci-
ronments MQTT-specific  (DoS, scan, ficity
attributes brute force)
Comprehensive
IoT network traf- Different attack zttzck en:;:;:g Synthetic  sce-
Bot-IoT 2019 fic dataset capturing ~69 GB  Over50 features types and nor- 8% & narios, large
o . dataset used for .
botnet activities mal traffic . . size
modeling certain
botnet behaviors
Normal traffic
IoT network traf- Flovy-based, and - various Comprehensive  Large size, com-
UNSW- ) . statistical, attack  types .
2019 fic capturing normal ~50 GB feature set, plexity of analy-
IoT . and protocol- (DDoS, re- .. . .
and attack scenarios g . realistic traffic sis
specific features ~ connaissance,
etc.)
Packet-level fea-
UNSW- Subset of UNSW- fures including Normal traffic Detailed packet- . .
IoT Trace 2018 IoT dataset with ~10GB timestamps, IP and attack tvpes  level data Limited scope
packet-level details addresses, and yP
port numbers
Network traffic 80 network traf- Normal traffic Realistic trafficc, High  dimen-
CICIDS2017 2018 dataset for intrusion ~70 GB . etwo a and various at- comprehensive sionality, class
X fic features .
detection systems tack types data imbalance
IoT Network traffic gaiffetf-lls:\,el fig: Normal traffic Real-world sce- Large size,
Datasetby 2018 from IoT devices ~30GB ! . and different at- narios, detailed diverse attack
tures, and statis- . .
MedBIoT under attack . tack types traffic analysis types
tical measures
Network traffic for . Covers a wide
IoT device identifi- Different — de- range of IoT Large size, high
IoTID20 2017 . ~100 GB Over 80 features vice types and 5 arge s1ze, 16
cation and anomaly devices, labeled dimensionality
. anomaly types ;
detection anomalies

2.2. Recent Advances in Synthetic Dataset Generation for IoT Cybersecurity Applications

In recent years, Generative Adversarial Networks (GANSs) have gained traction as a
solution for addressing the limitations of traditional (IDS) datasets, particularly in terms
of class imbalance and data scarcity. Several GAN-based approaches have been pro-
posed to generate synthetic data for training IDS models, with varying levels of success
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and limitations. This section provides an overview of these approaches and highlights
their shortcomings.

2.2.1. GAN-Based Approaches for IDS Dataset Generation

Wu et al. [17] proposed a GAN-based method for generating adversarial examples to
enhance the detection of jamming attacks in wireless networks. Their approach leverages
GAN:Ss to simulate adversarial scenarios, enabling intrusion detection systems to become
more robust to hard-to-detect network-based attacks. This study represents a step forward
in applying GANSs to generate realistic network traffic for testing IDS robustness, making it
highly relevant for IoT cybersecurity applications.

Kumar and Sinha [1] introduced a Wasserstein Conditional Generative Adversarial
Network (WCGAN) combined with an XGBoost classifier, achieving high F1 scores on
multiple datasets. However, their approach utilized a combination of real and synthetic
data for training rather than relying solely on generated samples, potentially affecting the
generalization capabilities of the generated datasets. Moreover, their feature reduction
technique, while effective in certain datasets like NSL-KDD, struggled with maintaining
high performance in others, such as UNSW-NB15, due to a lack of feature standardization
across datasets.

Ranka et al. [18] introduced a GAN-enhanced approach for malware detection, focusing
on generating synthetic data for underrepresented attack types. Their work demonstrates the
capability of GANs to augment cybersecurity datasets for multi-class classification, improving
detection rates for attacks that are traditionally hard to detect due to their scarcity in training
datasets. This method complements existing approaches by addressing the challenge of data
imbalance and showcasing GAN’s versatility in cybersecurity applications.

Strickland et al. [19] introduced an approach using Conditional GAN (CTGAN) and
CopulaGAN for synthetic dataset generation in combination with deep reinforcement learn-
ing (DRL). The study achieved a relatively high accuracy of 0.85 with CTGAN. However,
their methodology lacked feature selection, which limited the ability to optimize model
performance. Moreover, they did not reduce training and testing times, leading to potential
scalability issues in large-scale environments. One of the key limitations of this work is
that the generated synthetic data were used solely for training, while the real data were
used for testing, leaving unanswered questions about the effectiveness of the generated
data in real-world applications. Without evaluating the generated dataset independently, it
is unclear if it could fully replace real data for model training and testing.

Alabdulwahab et al. [3] employed CTGAN to generate synthetic IoT network traffic
based on pre-existing datasets such as TON-IoT, MQTT-10T-IDS2020, and BoT-IoT. While
their model effectively simulated real IoT traffic and attack scenarios, it relied on aug-
menting these pre-existing datasets rather than generating new, distinct traffic patterns.
Additionally, while they employed feature selection techniques to enhance the model’s
efficiency, their approach did not account for real-time applicability, a crucial factor in IoT
environments that require swift detection and mitigation of attacks.

Liu et al. [6] introduced GAN-FS, a novel oversampling technique combining GAN
with feature selection to address the issues of class imbalance and high dimensionality
in IDS datasets. They tested GAN-FS on the NSL-KDD, UNSW-NBL15, and CICIDS-2017
datasets, achieving significant improvements in accuracy, recall, and F-measure compared
to other methods. However, their approach also exhibited certain limitations. While fea-
ture selection improved detection performance, it did not always yield better results for
high-performing models, sometimes disrupting optimal feature combinations. Further-
more, the method’s effectiveness varied across different classifiers, with tree-based models
and neural networks benefiting more than others. GAN-FS performed well in balancing
the datasets but may not generalize across all classifier types, limiting its application in
diverse environments.

Dina et al. [20] explored the use of WCGAN combined with an XGBoost classifier to
address the problem of data imbalance in IDS datasets. Their experiments on the NSL-KDD,
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UNSW-NB15, and BoT-IoT datasets demonstrated significant improvements in precision,
recall, and F1 score when using a mixed dataset (generated and real data combined).
However, the False Alarm Rate (FAR) improvement was modest, particularly for the NSL-
KDD dataset. While their approach was effective in enhancing detection capabilities for
minority attack classes, the model’s generalizability to other types of network traffic remains
uncertain. Additionally, the computational cost of training GAN models, particularly
WCGAN, poses a significant challenge, especially in real-time IDS deployment.

2.2.2. Non-GAN-Based Toolkit for Dataset Generation

In contrast to GAN-based methods, Vasilomanolakis et al. [21] introduced the ID2T
toolkit, which creates labeled datasets for evaluating IDS models by addressing the limita-
tions of outdated or incomplete datasets. The ID2T toolkit allows users to generate datasets
with user-defined attacks, enhancing the flexibility and relevance of the synthetic data. The
toolkit architecture consists of four core modules: statistics, packet splitter, attack controller,
and merger. It utilizes two main techniques for attack generation: script-based generation
for attacks with similar parameters and pcap modification for more complex attacks.

The ID2T tool processes large network packet capture files (pcap) to generate realistic
background traffic and inject various network attacks, including resource exhaustion attacks
(e.g., TCP-SYN DoS, DDoS) and specific malware (e.g., Angler malware, Aurora exploit).
While the toolkit offers considerable flexibility for generating realistic network scenarios,
several limitations persist. The tool requires manual intervention for certain functionalities,
and the authors noted the need for new metrics to comprehensively measure the quality of
the synthetic datasets. Additionally, the toolkit requires further enhancements to automate
attack generation processes and support IPv6 environments.

While the above GAN-based methods have advanced the field of IDS dataset genera-
tion, they exhibit several limitations:

*  Dependence on Real Data: Most studies, including Kumar and Sinha [1] and Dina
et al. [20], depend on a combination of real and synthetic data for training. This
reliance can introduce bias and limit the generalizability of IDS models when exposed
to new or unseen attack patterns.

e  Limited Dataset Representation: Studies such as Alabdulwahab et al. [3] and Strickland
et al. [19] focus on generating synthetic data based on pre-existing datasets. This
approach can restrict the variety of attack scenarios simulated, as the generated data
may only replicate patterns already present in the original datasets. Consequently,
these methods may fail to capture novel or evolving IoT threats.

¢ Lack of Focus on Real-Time Applicability: Many existing studies, such as those by
Strickland et al. [19] and Alabdulwahab et al. [4], do not account for the computa-
tional demands of real-time data generation and analysis. IoT environments require
immediate response times, and the lack of optimization for speed and efficiency in
data generation limits the practical use of these methods in real-world applications.

e Feature Selection and Optimization: GAN-based methods like GAN-FS [6] integrate
feature selection but sometimes disrupt optimal feature combinations. While fea-
ture selection can improve performance in certain contexts, it does not always yield
better results, particularly for high-performing models. Additionally, methods with-
out feature selection (e.g., Strickland et al. [19]) risk inefficiencies, leading to longer
processing times.

Unlike previous studies, our research focuses on addressing the above limitations by:

*  Generating Fully Synthetic Datasets: Our approach eliminates the reliance on real data
by generating entirely synthetic datasets. This ensures that the model is trained on
balanced, unbiased data, improving its ability to generalize to new and previously
unseen loT traffic patterns.

e Attack Scenario Generation: We go beyond augmenting pre-existing datasets by
generating new IoT attack scenarios that are underrepresented in current datasets.
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This allows our model to train on a more diverse set of threats, which enhances its
applicability in real-world IoT environments.

*  Real-Time Applicability: Our method is designed with real-time IoT environments in
mind, optimizing both the generation and processing of synthetic data. This ensures
that the model can respond to network threats swiftly, making it suitable for real-time
IDS deployment.

* Integrated Feature Selection: We incorporate advanced feature selection techniques
that streamline the model’s performance, reducing the computational overhead while
maintaining or improving detection accuracy. This makes our approach more efficient
and scalable, particularly for large IoT networks.

3. Methodology

In this section, the researchers explain the methodology used to collect, analyze, and
extract the features for creating the dataset used for this research. We divide it into five
Subsections: Section 3.1 describes in detail the network configuration testbed of the smart
home. In Section 3.2 we explain the attack scenarios implemented against the IoT devices
to collect and analyze the pcapng traffic. In Section 3.3 we discuss the creation process
of our own dataset named “Joint Dataset”. In addition, in Section 3.4 we describe the
BoT-IoT dataset that is used in our experiment as a benchmark for synthetic data generation
evaluation. Finally, in Section 3.5, we describe the Synthetic Data Generator Tool, as well as
the architecture of the CGAN model used for synthetic data generation.

3.1. Network Configuration

To collect realistic data for network attack types in a smart home context that uses IoT
devices, we configured a testbed. Figure 1 illustrates the configuration of the smart home
testbed used for gathering and generating genuine network traffic. The testbed comprises
four IoT devices, two smart cameras, one smart plug, and one smart lamp, strategically
positioned across five crucial areas. To ensure internet connectivity for the IoT devices, we
have set up a Kali Linux laptop as a gateway and connected the devices to the internet via
IoT apps using the Kali hotspot. This setup allows us to conduct tests on potential attacks
from both inside and outside the smart home network while also closely monitoring and
analyzing network traffic between the IoT devices and the IoT cloud.

A
@

&

&
A .
—
Kitchen = | Entrance -
6x7 m '!tﬂ &Gema Camera ‘;%
4 - h
smart plug" .
‘n} 6x5 m
__1 —
g
Living room ]
4>(5r?| & Living room 3_,
o 6x5 m
Alexa | __ Smart light

Figure 1. The IoT testbed for collecting attack traffic.

3.2. Attack Scenarios

The attack scenarios implemented in this study were designed to simulate some of the
most prevalent cyberattacks targeted at IoT devices. Each attack type was selected based
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on its relevance and impact on IoT devices in smart home environments, as well as its
frequency in real-world attack patterns.

In these scenarios, the attacks are mainly either coming from the inside or outside. In
an outside attack simulation, the attacker is not a part of the smart home network, while in
an inside attack, the attack can be initiated by compromised or malicious nodes that are
part of the network. The IoT device and attacker are connected wirelessly to the access
point, providing IPs in the range 192.168.2.2 /254.

The traffic generated between the IoT device, attacker, internet, and all network traffic
during these attacks was collected using Wireshark installed on Kali Linux as mentioned in
the network configuration, then saved in a pcapng format for later analysis.

The selected attack types for our experiment can be defined as follows:

1.  Reconnaissance Attack: Reconnaissance is the first step of any cyberattack. By gath-
ering information about available services and open ports, attackers can identify
vulnerabilities. In our experiment, we used Nmap to perform scanning and informa-
tion gathering, simulating how an attacker could probe for weaknesses in IoT devices.
To better understand potential reconnaissance attacks on these devices, we recorded
Nmap traffic, as seen in Figure 2.

2. Man-in-the-Middle (MITM) Attack: MITM attacks are highly effective in IoT environ-
ments where communication between devices and their controlling apps is frequent
and often unencrypted. Attackers can intercept or manipulate this communication
without detection. This attack was prioritized because many IoT devices lack robust
encryption, making them susceptible to this type of intrusion. In our testbed, data
were intercepted between IoT devices and the cloud, allowing us to analyze the extent
to which sensitive information could be accessed, as shown in Figure 3.

3. Deauthentication Attack: Deauthentication attacks were selected due to their ability
to disrupt IoT devices by disconnecting them from their wireless networks. Since
most IoT devices rely on Wi-Fi, such an attack causes significant service disruption;
see Figure 4. This causes the user to lose access to the internet and all network services
until they reconnect. As previously mentioned, the IoT device is wirelessly connected
to the access point, providing IPs within the range of 192.168.2.2 /254, and the attacker
(for this attack) is not connected to the access point. The attacker achieves this by
sending a fake request to the access point, causing the user’s device to disconnect.

4. UDP flood Attack: This type of denial-of-service attack targets IoT devices by over-
whelming them with UDP packets. The attack was simulated on our smart lamp,
which communicates via UDP, to test how it handles excessive network traffic. In the
following illustration, Figure 2, we can see the attacker sends a large number of User
Datagram Protocol (UDP) packets to a specific server or device. It is worth noting
that we found the Xiaomi smart lamp to be controlled via UDP. To test this, we sent
random UDP messages with a falsified source address that matched the control server.

5. SYN Flood Attack: The SYN Flood attack is another type of denial-of-service attack
that disrupts the three-way handshake process in TCP communication. This attack
was particularly effective against the web server running on the smart plug, rendering
it unresponsive; see Figure 2. During a previous Nmap scan, we found that the smart
camera was running API services and the Shelly smart plug had a web server, both of
which are vulnerable to a SYN Flood attack.

6. Password Cracking Attack: Password cracking attacks were significant in our ex-
periment because many IoT devices in smart home networks use weak or default
passwords. Our smart plug and camera both required password authentication, and
we were able to use brute force techniques to successfully gain unauthorized access.
Given that many IoT devices have weak password mechanisms, these attacks remain
a serious threat. We discovered that our smart plug has a security feature that prompts
web users to enter a password once activated. Additionally, the smart camera has an
RTSP stream feature that requires a username and password. As a result, we utilized
brute force and dictionary attacks to guess the passwords of IoT devices.
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The selected, previously defined attack types, were executed in the testbed and data
were collected in pcapng. Table 2 summarizes the attack results on the smart plug and
states whether the attack was successful from outside or inside the network. The rest of the

attack results on each IoT device are separately presented in Appendix A.
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Table 2. Attacks on smart plug (Shelly) device.
. Attack Inside/Outside
No. Attack Type Used Library Successful Results Attack

1 Nmap Nmap yes 80/tcp open HTTP Inside
Data were intercepted. However, some

2 MITM Ettercap yes of the data were readable as some Inside
devices’ data were encrypted.

. The device is no longer authenticated to .
3 Deauth Aireplay-ng yes the network Outside
slowhttptest, Device became unresponsive and .

4 DOS (tep) slowloris, slowite yes offline and required reboot. Inside

5 DOS (UDP Flood) hping3 no Device does not use udp or have udp Inside
ports open
The device has a login feature that can

6 Password crack Brute force yes be activated in the browser, which Inside

prompts the user to enter a username
and a password

3.3. Building the Dataset

As mentioned in the previous section, we collected 24 pcapng files using Wireshark
on our Kali Linux, which was set up as a hotspot. We joined these files so the name "Joint
Dataset’ is used to emphasize that the dataset combines traffic files from both normal and
attack scenarios across multiple IoT devices. Our “Joint Dataset” was then developed by
combining selected features from multiple IoT devices.

Compared to existing real-world datasets, such as IoT-23 and Bot-IoT, which provide
valuable but generalized network traffic data, the “Joint Dataset” offers several advantages
in terms of representativeness. While publicly available datasets typically focus on large-
scale, diverse environments, they often lack detailed coverage of certain attack types or
device-specific behaviors. The “Joint Dataset” focuses on critical, targeted IoT attacks
that are frequently encountered in smart home environments, such as man-in-the-middle
attacks, password cracking, and deauthentication attacks, providing more granular insights
into IoT vulnerabilities.

To create our “Joint Dataset” IoT dataset, we utilized the IoT TAHFE tool (Traffic
Analyzer Tool with Automated and Holistic Feature Extraction Capability) developed by
Subahi and Almasre [22]. This tool automatically extracts network features from a pcap
file, generating three CSV files: in-depth server/IoT per-packet analysis.csv, general IoT
traffic analysis within the network.csv, and full communication pattern mapping.csv. Such
a tool helps IoT researchers by speeding up their research efforts through automatically
extracting all network features, including network packets and flow, from a pcap file and
profiling the normal behavior of an IoT device.

We only used the “in-depth analysis” CSV file, which describes the network traffic
between the IoT device and a remote IP, to build our dataset. We combined the selected
features from all IoT devices, including benign and attack traffic, resulting in 12,779 samples.

Our dataset consisted of a total of 12,779 instances, with 148 normal traffic examples
and five categories of attack: MITM (Man-in-the-Middle), UDP-DOS (User Datagram
Protocol Denial of Service), browser password cracking, deauthentication attacks, DOS-
SYN (Denial of Service-SYN Flood), and reconnaissance. It is a multi-class dataset that,
unlike traditional IoT intrusion detection datasets, does not only consider binary outputs
(normal/attack), which often limit the feasibility of using of such datasets in real-world
scenarios. Moreover, a multi-class dataset is essential for our research focus, i.e. developing
a robust synthetic data generation model that is capable of realistically creating attack type
instances that can be used in ML or IDS applications
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In the process of creating our dataset, we focused on identifying important features
to label the attacks. After analyzing each attack mechanism and network traffic behavior
during attacks, we concluded the following;:

1.  The Protocol feature can define a deauth attack due to its fixed protocol usage.

2. The combination of “Protocol” and “Flow volume” features can identify deauth
attacks and MITM attacks, as MITM attacks consist of four ICMP packets.

3. The “IoT_Respond_401" feature identifies false web and RTSP login credentials to
identify password-cracking attacks.

4. The “IsServer” feature helps identify a trusted destination.

5. The combination of “Protocol”, “No_of_received_packets_per_minutes”, and “No_of_
sent_packets_per_minutes” helps identify DOS-SYN attacks.

It is important to note that our dataset was imbalanced, with the majority classes
being DOS and reconnaissance. This is typical as DOS attacks, for example, are launched
from thousands of destinations simultaneously, while other attacks are from a single IP.
Additionally, reconnaissance attacks can be launched against thousands of ports simul-
taneously. We acknowledge that developing ML and DL models to predict attack types
would be challenging, especially ones intended to be used in IDS systems. There is a great
need for our dataset to be balanced so that it can be used effectively in other predictive
systems. Therefore, training a CGAN to accurately generate synthetic data while being
conditioned by the types of network attacks, particularly minority ones, such as Man in
the Middle (MitM) and denial of service (DoS), is highly in demand in the case of our
multi-class Joint Dataset.

3.4. Benchmark Dataset

In ore der to evaluate our “Joint Dataset” created for this research, we select the
BoT-IoT sub-dataset [23,24] as a benchmark datset. The BoT-IoT sub-dataset consists of
733,705 records, which were originally extracted from a 7-million-record dataset that was
created in the Cyber Range Lab of UNSW Canberra Cyber. This “Joint Dataset” was
developed to support research in network security, with a special focus on attacks in IoT
environments. Datapoints corresponding to four attack types and a normal state were
extracted and compiled into a benchmark dataset for our experiment. Tables 3 and 4
describe the categorical and numerical values of the BoT-IoT sub-dataset. The classes being
represented are:

1.  DDoS (Distributed Denial of Service): This class simulates attacks where multiple sys-
tems overwhelm a target or its surrounding infrastructure with a flood of Internet traffic.

2. DoS (Denial of Service): Similar to DDoS but typically involves a single attacking system,
focusing on overwhelming or crashing the target by flooding it with excessive requests.

3. Reconnaissance: These activities are exploratory in nature, aiming to gather informa-
tion about a network to identify potential vulnerabilities for future attacks.

4.  Theft: This class includes scenarios involving unauthorized access and extraction of
sensitive data, representing data breaches.

5. Normal: Represents normal network activities to provide a baseline for detecting
anomalous behavior and differentiating between benign and malicious traffic.

3.5. Designing the Synthetic Data Generator Tool

The tool is based on a CGAN and is used to create balanced datasets from multi-class
imbalanced network attack type datasets. It consists of two main modules: the Exploratory
Data Analysis (EDA) module and an IoT Network Traffic Synthetic Data Generator module.

In Figure 5, you can see that the first module allows users to upload their multi-class
network attack type data, conduct Exploratory Data Analysis (EDA), and perform initial
feature engineering, whereas the second module consists of a CGAN model pipeline that
includes steps for extensive pre-processing, feature selection, and generating synthetic data.
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Table 3. Statistical summary of the categorical features in Joint Dataset.

Feature Count Unique Values Top Value Top Value Count
pkSeqlD 733,705 733,705 2 1
proto 733,705 5 udp 399,618
saddr 733,705 16 192.168.100.147 189,606
sport 733,705 65,538  0x0303 1794
daddr 733,705 45 192.168.100.3 475,171
dport 733,705 4111 80 714781
seq 733,705 249,513 380 12
N_IN_Conn_P_SrcIP 733,705 100 100 369,260
state_number 733,705 11 4 399,567
N_IN_Conn_P_DstIP 733,705 100 100 573,744
category 733,705 5 DDoS 385,309

Table 4. Statistical summary of the numerical features in Joint Dataset.

Feature = Count Mean Std Min 25% 50% 75% Max Number of Samples
stddev 733,705 0.887894 0.804013 0 0.030132 0.795481 1.745595 2.496758 733,705
min 733,705 1.018868 1.484235 0 0 0 2163444  4.98047 733,705
mean 733,705 2233429 1.517572 0 0.182193 2.691715 3.566569 4.981785 733,705
drate 733,705 0.506298 74.33018 0 0 0 0 58823.53 733,705
srate 733,705 2262398 403.4081 0 0.156231 0.283784 0.488849 333333.3 733,705
max 733,705 3.023 1.860725 0 0281688 4.011386 4.296505 4.999999 733,705

3.5.1. Synthetic Data Generator Tool Algorithm

The tool was developed using Python and utilized libraries such as TensorFlow to
construct the CGAN model. Streamlit was also used to create the interactive user interface.
The CGAN model’s algorithm can be represented as follows:

Input:Dataset D with categorical C and numerical columns N, class column class, latent
dimension latent_dim.
Output: Synthetic dataset D

1. Initialization:

¢  Construct label encoders for C and a standard scaler for N.
¢ Define generator G and discriminator D architectures.

2. Prepossessing:
e Impute and encode C; impute and scale N using median and mode strategies.
3. Model Construction:

*  Generator G: Combine noise vector z and embedded categorical labels to generate
synthetic N.
*  Discriminator D: Classify combined real or synthetic N and embedded labels.

4.  Training:
*  Alternate training of D and G using batches of real and generated data.

5. Synthesis:



J. Sens. Actuator Netw. 2024, 13, 62 14 of 30

*  Generate and decode synthetic samples for each class, ensuring feature fidelity
and balance.

6.  Output: Return D; matching the distribution and characteristics of D.

EDA Page CGAN Page
Input CSV / \
file
Input CSV
Central file
GENERATOR DISCRIMINATOR
tendenc
Feature N GENERRTED
istributi Engineering o
Distribution k
— “‘:::u
Feature J
Correlations Synthtic data
and
importance

Evaluation
Synthtic data /

—

Figure 5. The overview of the tool prototype.

3.5.2. GUI of the Proposed Synthetic Data Generator Tool:

As depicted in Figure 6, the landing page of our system offers two primary modules,
allowing the IoT researcher to select either Exploratory Data Analysis (EDA) or IoT Network
Traffic Synthetic Data Generator.

A\ Not Secure  44.208.112.11:8501

App Landing Page

This app includes various functionalities.

Choose from the options below:

loT Network Traffic Synthetic Data Generator

Exploratory Data Analysis

Figure 6. The main page of the CGAN-based tool.

Users can download and access the tool through this link https:/ /github.com/Alanoud-
Subahi/CGAN-based-Tool (accessed on 20 July 2024).

A- Exploratory Data Analysis (EDA) Module: When the IoT researcher selects the
second option, the EDA module provides the statistics module, which parses the data,
either the original datasets or the generated ones, outputs information with respect to the
input, and computes various statistics.

This module has an interactive interface for data visualization and analysis. It allows
users to visualize the distribution of numerical features using histograms and assess the
balance of categorical features through frequency plots. Basic statistical descriptions of the
dataset are also displayed to provide immediate insight into its composition. This module
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aims to assist researchers in understanding underlying patterns and distributions that may
influence the performance of machine learning models (Figure 7).

Send_receive_ratio No_of_received_packets_per_minute No_of_sent. per_minute
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Figure 7. EDA of the dataset analysis.

B- IoT Network Traffic Synthetic Data Generator: The way the CGAN model is
designed, in our research, observes some of the most challenging aspects of synthetic data
generation when using GANSs, as well as when dealing with tabular datasets that include
both categorical and numerical features. Research has documented several challenges
when using CGANSs for generating synthetic tabular data that include both numerical and
categorical features, including data pre-processing of mixed features, handling of categorial
features, maintaining model stability (mode collapse issues) through robust generators and
discriminator structures, conditional generation based on dataset classes, and observing
data ranges for numerical data generation [25,26]. To address these issues in the CGAN
model proposed for this task, the researchers ensured the following steps are performed:

1.  Pre-processing: the user uploads his or her CSV dataset using the GUI (Figure 8).
Proper data pre-processing with a special focus on mixed data types is ensured, as it
is considered one of the main challenges in using CGANS for tabular data generation.
This is important to ensure these diverse data types are represented accurately in the
generated data. Our tool, which implements the CGAN model, allows the user to
initially select the class column, the categorical and numerical features, as well as the
numerical features that should be generated as non-decimal values (Figure 9). These
user-selected features are then handled using techniques such as label encoding for



J. Sens. Actuator Netw. 2024, 13, 62 16 of 30

categorical values and scaling for numerical ones to help overcome issues related to
non-Gaussian distributions, making it suitable for the CGAN pipeline. Without these
pre-processing steps, the model might be unsuccessful in capturing the relationships
between the data features, leading to poor-quality synthetic data generation.

This preprocessing pipeline considers the impact of missing values on the quality
of generated data, so imputation is used to handle them before feeding the data into a
CGAN using simple imputation strategies to ensure the data remain representative and
unbiased [27]. At this preprocessing stage as well, the minimum and maximum of each
numerical value are stored for further processing. To capture numerical data distribution
and reproduce it in the CGAN-generated synthetic data, Kernel Density Estimation (KDE)
is implemented to fit each numerical feature.

A Not Secure  44.208.112.11:8502 Q)

_loT Network Traffic Synthetic Data
Generator

Upload your CSV file

Di file h
rag and drop file here Browse files

Figure 8. Select the dataset as CSV file.

« o £ Mot Secure 44 208.112.11:8502 a ¥ & O @

1oT Network Traffic Synthetic Data
Generator

Data Configuration
Select the class label column

Send_receive_ratio ~

Dest_port_no
loT_port_no
Protocol
Dest_TCP_Flags
16T_TCP_Flags

1OT_Respond_401

Attack_Type ——

Figure 9. Example of user selection.

2. Feature Selection: To enhance the model’s performance, a feature selection step is
incorporated to identify the most important numerical features for synthetic data
generation. This step is also controlled by the user from the tool’s interface. The
objective is to reduce the dimensionality of the data and overcome issues related to
computational efficiency.

The ANOVA F-test (f_classif) is used for feature selection, where it identifies the most
important features that significantly contribute to the variability in the dataset in relation
to the target variable Figure 10.
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Model Configuration

Number of epoch

Figure 10. ANOVA F-test with the threshold to select the best number of features.

Once the data are pre-processed and feature selection is enabled, the “SelectKBest”
function from “scikit-learn” is used in conjunction with the (f_classif) score function to
perform the ANOVA F-test. As a first step, the F-test calculates the F-score for all features
to quantify the linear dependency connecting every feature to the target variable. Then,
each feature is ranked based on the computed F-scores. Features with higher scores possess
stronger relationships with the target variable. When selecting this test to be implemented,
the user can set the “Number of Best Features to Select” which is the top ‘k’. Features with
the highest F-scores are then included as input to the model.

For this feature selection, user-controlled step, the researchers tested mutual infor-
mation as well because of its reported ability to capture non-linear relationships between
dataset features and a target variable, ultimately offering a more detailed understanding of
feature importance. Nonetheless, after testing it, the researchers opted out of implementing
it as it demands careful tuning of binning strategies, which led to difficulties in implemen-
tation. This is especially important as the tool is intended to offer users a consistent and
interpretable solution that will not be majorly affected by varying feature distributions
in the dataset. In addition, mutual information’s estimates can be unreliable specifically
in small datasets, as it does not offer a easy to understand ranking of features, thus com-
plicating the selection process. These implementation challenges led the researchers to
use the ANOVA F-test due to its simplicity, computational efficiency, and clear feature
ranking process.

3. Model Architecture: Primarily, the model consists of a generator and discriminator
networks, which are trained alternately to ensure that both models work competitively,
mitigating issues related to mode collapse. The generator has three dense layers
with 128 and 256 neurons, implementing ReLU activations. This structure provides
sufficient capacity for the generator to capture the complexity and high-dimensionality
of relationships between noise, categorical, and numerical features. Layers for batch
normalization and dropout layers are added as well to ensure training stability and
prevent overfitting. The generator works by combining two input layers: one for
random noise and the other for categorical labels. The categorical labels are embedded
into a dense vector using an embedding layer. This layer maps each category to a
high-dimensional space. Both the noise vector and the previously created embeddings
are then concatenated to create a combined input, which is fed to several dense layers
with ReLU activation. As seen in Figure 11, the architecture facilitates the generation
of realistic and balanced synthetic data that imitate the statistical distribution of the
original multi-class dataset.
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Figure 11. The generator and discriminator networks.

The actual structure of the CGAN model also considers a number of recurrent chal-
lenges in handling tabular data with mixed types, like in the case of the datasets reflecting
IoT network attack types. The generator is structured in such a way as to handle mixed data
types by incorporating embedding layers that represent encoded categorical variables. The
objective is to transform high-cardinality categorical features into dense vectors to reduce
dimensionality and capture the relationships between them, enhancing the generator’s
ability to produce realistic synthetic datasets. These embeddings are also combined with
normalized noise vectors, ensuring the accurate representation of numerical data. Ulti-
mately, this method enables the generator to learn the relations between the noise and the
labels, facilitating the generation of data specific to the given class labels. Moreover, the gen-
erator contains dense layers with dropout and batch normalization to prevent overfitting
and contribute to the stabilization of training, thus attempting to overcome the challenge of
non-Gaussian and multimodal distributions in numerical data, especially since the users of
our tool might use datasets that inherently have these issues. An inverse transform step at
the end ensures that the numerical values are within their original data scale.

The discriminator network architecture consists of dense layers with 256 and
128 neurons, which slightly imitates that of the generator in terms of complexity but
with attention to reducing it to avoid overfitting. The objective is to maintain a balance in
which the discriminator’s complexity helps it distinguish real from synthetic data with-
out overpowering the generator. To ensure that the discriminator does not become too
confident in the classification of synthetic data as fake, dropout is used. In this way, the
discriminator ensures that it evaluates the real and synthetic data and differentiates them.
It consists of dense and dropout layers for regularization. The dense layers with ReLU
activation learn the distribution of both data types, numerical and categorial. The inclusion
of a dropout layer with a 0.5 dropout rate helps prevent overfitting, a common issue in
GANSs, by randomly omitting some units during training, which forces the network to gen-
eralize better. The final dropout layer with a sigmoid activation function probabilistically
discriminates real from synthetic input, allowing for better convergence during training.
Basically, the discriminator is conditioned on the categorical labels so that the network can
capture the nuances of different classes. This helps overcome the mode collapse issue in
which the generator might generate a limited varieties of outputs.

Through using the CGAN model, the researchers were basically utilizing its con-
ditional structure to address the complex nature of data generation from a multi-class
attack-type dataset. The class labels are, for example, embedded into the generator and
discriminator networks so that the model output values are not only realistic but also rep-
resentative of specifically labeled attack types. The generator takes these class-conditioned
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values to learn the distinctive statistical features of each class, while the discriminator
assesses whether the generated values coincide with the actual distribution of these classes.

4. Training: The training process targets the enhancement of the generator and discrimi-
nator models” performance through adopting an adversarial training framework.

The learning rate, set to 0.0002 for the Adam optimizer, is applied to both the generator
and discriminator with the purpose of achieving stable convergence. The assumption, as
research demonstrates, is that a lower learning rate assists in the gradual weight updates,
hence overcoming issues related to overshooting minima during optimization. Similarly,
this learning rate helps in reducing the expected mode collapse, instances where the
generator outputs a limited range of values. For the combined model, the learning rate
is set to half of the one used for the discriminator to ensure that the generator learns at a
slower pace, gradually fooling the discriminator.

The learning rate of the discriminator is set slightly higher than that of the generator.
This facilitates the discriminator providing useful gradients that can be used in the genera-
tor’s training. This ensures the training balance so that neither network surpasses the other.
A dual-phase training is performed in mini-batches of the real dataset to optimize compu-
tational efficiency with the objective of classifying these samples as real (with outputs close
to 1). Then, it should classify the generated synthetic data samples as fake (with outputs
close to 0).

The training process is designed to consider solutions when the research reported
the challenges faced when implementing GANSs. Generally, the instability of the training
process, which ultimately results in non-convergence, is one issue. Utilizing the Adam
optimizer with meticulously selected learning rates for both the generator and discriminator
helps maintain stable updates and does not allow for oscillations [28,29].

5. Data Generation: The actual process of data generation entails ensuring that the gen-
erated data adhere to the distributions and characteristics of the original multi-class
dataset, reproducing values for both numerical and categorical features (Figure 12).
This function is performed post-training, utilizing the generator’s learned parameters
to generate new data points. The user of the tool selects the number of samples to
be generated, then downloads the output as CSV files for both datasets (with feature
selection and without) (Figure 13).

The function is designed to ensure that the selected number of samples are evenly
distributed across the distinct categories present in the class column (in this case, the attack
type). The adequate representation of each class is thus guaranteed in the synthetic dataset.
This is intended to address the imbalance issues which might exist in the original data.
We designed the model in such a way that for each class, random noise vectors are to be
sampled from a standard normal distribution of the dataset, ensuring the realization of the
stochastic input required to generate diverse data points.
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Figure 13. Synthetic and balanced IoT dataset ready to downloaded on the user device using CGAN.

4. Results and Discussion

In this section, we present the results of applying the Synthetic Data Generator Tool to
our “Joint Dataset” to create a balanced dataset. Furthermore, we evaluate how effectively
the synthetic dataset mitigates class imbalance.

4.1. Implementation

In this experiment, we used the Synthetic Data Generator Tool to generate a multi-class
attack type balanced dataset from both our previously created dataset “Joint Dataset” and
the BOT-IoT Dataset, with and without feature selection. We set the model configuration to
100 epochs of training, and requested the generation of 100,000 samples. We investigated the
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computation usage and cost for the two scenarios of feature selection and without feature
selection. When feature selection was implemented, the total training time for our Joint
Dataset was lower at 180.04 s in comparison to 195.17 s without feature selection, which
indicated that feature selection resulted in reduced training time due to faster convergence.
The peak memory usage continued to be similar in both scenarios, with 32.25 MB for the
feature selection scenario and 32.51 MB without it. This demonstrates that while feature
selection can assist in reducing the training time by simplifying the input space, it rarely
impacts memory usage because the model architecture and batch sizes are the same.

Due to the slight differences in computational cost, we focused on the generated
datasets without feature selection to test the generated data adherence to the balance criteria
we set, considering the presence of all features being previously collected or benchmarked.

4.2. Class Imbalance Evaluation

To assess the effectiveness of the synthetic dataset in addressing the class imbalance
present in the “Joint Dataset” dataset, we employed a method that involved calculating the
deviation of each class’s proportion from an ideal, perfectly balanced distribution. This
method allowed us to quantitatively measure how far each class in both the original and
synthetic datasets deviated from what would be expected if the classes were equally repre-
sented. By comparing these deviations, we could then determine the extent to which the
synthetic dataset corrected the imbalances found in the “Joint Dataset”. We benchmarked
the results of synthetic data generation for both the Joint and BOT-IoT datasets.

Joint Dataset: In our “Joint Dataset”, a number of classes (attack types) demonstrated
significantly indicative deviations from the ideal value, representing a very clear imbalance.
For instance, the ‘reconnaissance’ class with the highest deviation of 0.3047 and a proportion
value of 30.47% demonstrates an imbalanced dataset. In a similar manner, the ‘SYN Flood’
class showed a deviation of 0.2719, and the 'MITM’ and "deauth’ classes both had deviations
above 0.1422, which indicates that these classes are a minority in the dataset. Table 5
compares the “Joint Dataset” to its synthetic version

Table 5. Comparison of original and synthetic datasets across various attack types.

Attack Type
Joint Dataset Nomal ~MITM  Deauth  (ooswiord™ Reeome gyNpiooq DO
Original Number of Samples 148 4 8 8 5718 5299 1590
Original Deviation 0.131272  0.142544 0.142231 0.142231 0.304736 0.271937 0.018395
Synthetic Number of Samples 1428 1428 1428 1428 1428 1428 1428
Synthetic Deviation 0 0 0 0 0 0 0

Imbalance Reduction Proportion  0.131272 0.142544 0.142231 0.142231 0.304736 0.271937 0.018395

In contrast, the synthetic dataset achieved a perfect balance across all classes, as
indicated by the fact that the Synthetic Deviation for every class was reduced to 0. This
outcome shows that the synthetic data effectively adjusted the proportions of each class
to match the ideal distribution, correcting any imbalance (Figure 14). Consequently, the
Imbalance Reduction was equal to the Original Deviation for each class. For example, the
‘reconnaissance’ class, which initially had a 30.47% deviation, was perfectly balanced in
the synthetic dataset, resulting in a full reduction of the imbalance. Similarly, the classes
‘SYN Flood’, ‘MITM’, “deauth’, and ‘password-cracking’ all saw their deviations entirely
corrected, reflecting the synthetic dataset’s success in achieving a uniformly distributed
representation.
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BOT-IoT Dataset: In the BOT-IoT Dataset, class imbalances were also significant, with
the ‘DDoS’ attack type showing the highest deviation at 0.3252, suggesting a considerable
overrepresentation compared to an ideal balanced distribution. Other classes like ‘DoS’
and ‘Theft’ also showed substantial deviations, with the “Theft’ class being the most
underrepresented, having a deviation close to 0.2000, see Table 6.

Table 6. Comparison of BOT-IOT original and synthetic datasets across various attack types.

Attack Type
Bot Dataset DDoS DoS Normal  Reconnai- Theft
ssance
Number of Samples 385309 330112 18163 107 14
Original Deviation 0.325155  0.249925  0.199854  0.175245  0.199980
Synthetic Number of Samples 20,000 20,000 20,000 20,000 20,000
Synthetic Deviation 0 0 0 0 0

Imbalance Reduction Proportion  0.325155  0.249925  0.199854  0.175245  0.199981

The synthetic version of the BOT-IoT dataset effectively neutralized these imbalances,
achieving a synthetic deviation of O for all classes, reflecting an ideal balanced state. This
correction allowed for an exact match to the ideal distribution, with the imbalance reduction
proportion mirroring the original deviation for each class (Figure 15). The ‘DDoS’ class, for
example, saw a complete elimination of its initial deviation, indicating that the synthetic
dataset provides a well-balanced platform for model training and further analysis.

Overall, the results demonstrate that the synthetic datasets not only mitigated the class
imbalances but completely resolved them, leading to datasets where all classes are equally
represented (Figures 16 and 17). This balanced representation is crucial for downstream
tasks, such as machine learning, where class imbalance can lead to biased models and
inaccurate predictions. By ensuring that each class is equally represented, the synthetic
datasets enhance the overall quality and reliability of the data, making them superior
alternatives to the original, imbalanced datasets.
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4.3. Evaluation of the Ranges of Numerical Features in Both Datasets

One of the main aspects of the synthetic dataset that the researchers wanted to inves-
tigate qualitatively is its features’ replication of the ranges of the real dataset, especially
when considering the numerical values. Therefore, to evaluate that the generated numerical
values are within the ranges of the original data, we compared the minimum-maximum
ranges of each feature. Table 7 presents the comparison:

Table 7. Summary statistics for selected features.

Feature Count Mean Std Min 25% 50% 75% Max Number of Samples
Dest_port_no 9996 41,659.04  12,909.2 53 36,0655 43,553 51,254 60,988 9996
IoT_port_no 9996 10,112.15 15,022.46 1 1152 4001 9101 65389 9996
Dest_TCP_Flags 9996  1161.495 2844.339 0 2 11 18 8180 9996
IoT_TCP_Flags 9996  22.59104 32.59825 0 2 12 18 100 9996
IOT_Respond_401 9996  0.493597  0.499984 0 0 0 1 1 9996

A straightforward comparison of the real and synthetic datasets value ranges for the
numerical features reveals that almost all features, except for “drate” largely replicate
the ranges. However, it is demonstrated as well that while the synthetic dataset closely
reproduces the variability observed in the original data, there are slight differences at the
lower end of the ranges, which we believe is normal and acceptable within the context
of synthetic data generation as such data initiates the often-observable incongruities in
real datasets.

4.4. Evaluation of Categorical Features

To evaluate the representation of categorical features between the original Joint Dataset
and synthetic one, we employed two primary methods: descriptive statistics and cumula-
tive difference analysis. The descriptive statistics provided a detailed summary of each cat-
egorical feature’s distribution in both datasets, including measures such as mean, standard
deviation, and range. This allowed us to assess how closely the synthetic data replicated
the original dataset’s distribution for each feature. Additionally, we conducted a cumu-
lative difference analysis to quantify the overall deviation between the two datasets. By
calculating the absolute differences in category proportions and summing these across all
categories within each feature, we derived a cumulative difference value. This value serves
as a metric to evaluate how well the synthetic data align with the original, particularly in
terms of capturing the variability and distribution of categorical features.

The evaluation of Joint Dataset categorical features using these methods revealed vary-
ing degrees of alignment between the original and synthetic datasets, reflecting both the
effectiveness and limitations of the synthetic generation process. The original dataset, de-
rived from a real-world scenario, was characterized by missing values and class imbalance,
which likely influenced the representation of categorical features. These imperfections
in the original data posed a significant challenge for the synthetic generation process
(Table Summary Statistics of categorical features). The cumulative difference was as well
computed (Figure 18).

Features like ‘Dest_port_no’, ‘IsServer’, and ‘IOT_Respond_401" exhibited lower cu-
mulative differences, indicating that the synthetic dataset closely mirrors the original
distributions of these categories. For example, the Dest_port_no feature showed a mean
of 41,659.04 in the synthetic data compared to 42,422.96 in the original dataset, with a
consistent range across both datasets. The relatively low cumulative difference for these
features suggests that the synthetic data effectively captured the original distributions, even
in the presence of missing values and class imbalance.
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In contrast, features such as ‘IP’, “Dest_TCP_Flags’, and 'Protocol’ demonstrated higher
cumulative differences, signaling significant deviations between the original and synthetic
datasets. For instance, the ‘Dest_TCP_Flags’ feature in the synthetic dataset had a mean of
1161.50 and a standard deviation of 2844.34, compared to the original dataset’s mean of 3.49
and standard deviation of 109.75. Similarly, the ‘IP’ feature showed the highest cumulative
difference, indicating that the synthetic dataset struggled to replicate the original data’s
distribution accurately. These differences suggest that the synthetic dataset may have
introduced more variability, possibly as a corrective measure for the underrepresentation
and imbalance present in the original data, particularly in complex features or those heavily
affected by missing values.

Overall, while the synthetic dataset successfully addresses many of the original
dataset’s deficiencies, such as class imbalance and missing data, it also introduces new vari-
ations that were not present in the original data. This analysis underscores the complexity
of generating synthetic data that not only replicates but also potentially improves upon the
original data’s representation, especially when the original data are plagued by real-world
imperfections. The results highlight both the strengths and limitations of the synthetic
data, demonstrating its effectiveness in certain areas while also revealing where further
refinement may be necessary to achieve a more accurate and nuanced representation.
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Figure 18. The Joint Dataset categorical features cumulative difference.

4.5. Evaluation of Numerical Features

To assess the alignment between the Joint Dataset and synthetic dataset in terms of the
numerical features’ representation, we applied the cumulative difference measure, as well
as the mean absolute error (MAE), root mean squared error (RMSE), and the correlation
coefficient. as for the cumulative difference, it is expected to reflect the absolute difference
in mean values when comparing the Joint and synthetic datasets per feature. The MAE
and RMSE measures are used to compute the average and squared deviations, respectively,
allowing us access to insights about how individual data values differ between the datasets.
in addition, the correlation coefficient is used to assess the strength and direction of the
linear relationship between the Joint and synthetic datasets, with values close to 1 or —1,
indicating strong positive or negative correlations, respectively; see Table 8.

Some synthetic data features showed a relatively good replication of the Joint Dataset,
as indicated by lower cumulative differences and acceptable correlation coefficients. For
instance, the ‘Send_receive_ratio’ feature has a cumulative difference of 3.08, scoring an
MAE of 3.14 and RMSE of 3.18. In spite of the fact that the correlation coefficient value is
low (0.01), the small difference in mean values suggests that the synthetic data capture the
overall scale of this feature reasonably well, even if the linear relationship is weak. In a
similar way, the feature ‘Flow_duration’ has a low cumulative difference of 2.58, and its
MAE and RMSE values are also low (2.59 and 2.60, respectively). Nonetheless, this feature
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has a negative correlation (—0.031), indicating that while the synthetic dataset captures
the mean value closely, the direction of the relationship between the Joint and synthetic
datasets may differ.

Features like ‘Avg_dest_SSL_payload’ and ‘Min_loT_SSL_payload” also exhibit mod-
erate cumulative differences (234.16 and 122.74, respectively), with scored MAE and RMSE
values that are relatively low. These metrics suggest that the synthetic data capture the
general distribution of these features reasonably well, though the correlation coefficients
remain low or slightly negative, which demonstrates that the linear relationship is not
strongly preserved.

Table 8. Evaluation of numerical features.

Feature Cumulative Difference MAE RMSE Correlation
Send_receive_ratio 3.082799 3.137454 3.183326 0.010839
No_of_received_packets_per_minutes 672.1486 672.1486 674.19 0.016176
No_of_sent_packets_per_minutes 1809.712 1810.018 1815.296 —0.00774
Avg TTL 48.10356 48.38865 49.17743 0.00193
Flow_volume 879907.2 879982.6 882675.5 0.013071
Flow_duration 2.580025 2.589503 2.603747 —0.03076
Dest_ip_avg_packet_length 214.148  214.301 216.9572 —0.00157
Src_ip_avg_packet_length 716.8348 716.9825 718.8302 0.000316
Flow_rate 1746863 1746863 1751104 —0.01433
Max_dest_SSL_payload 728.1321 728.3052 733.4881 0.012872
Min_dest_SSL_payload 155.2861  155.441 156.3907 —0.00866
Avg dest_SSL_payload 2341595 234.2863 236.5934 —0.00195
Std_dest_SSL_payload 129.1881 131.8779 133.9625 —0.00594
Max_IoT_SSL_payload 746.4051 747.3188 749.6432 —0.00565
Min_IoT_SSL_payload 122.7403 122.7745 123.4037 —0.00796
Avg IoT_SSL_payload 660.2485 660.3813  662.3838 0.008442
Std_IoT_SSL_payload 313.2357 31348 314.5114 —0.00133

However, there are features which exhibited discrepancies between the Joint and syn-
thetic datasets, as indicated by higher cumulative differences, MAE, RMSE, and low or neg-
ative correlation coefficients. Features, including ‘No_of_received_packets_per_minutes’,
‘Flow_rate’, Max_dest_SSL_payload’, ‘Std_dest_SSL_payload’, and ‘Max_loT_SSL_payload’
generally do not align with the distribution of the Joint Dataset as observed by the moderate
to high cumulative differences, high MAE and RMSE values, and low correlation coefficient.

5. Conclusions

This research presented in this paper introduces a novel Synthetic Data Generator Tool
designed to generate realistic and balanced synthetic datasets for IDSs in IoT environments.
The primary contribution of the tool lies in its ability to address the persistent challenge of
data imbalance. By leveraging the unique capabilities of CGANS, the tool generates high-
quality synthetic data that closely mirror real-world IoT network traffic, thereby enhancing
the training of IDS models. Through comprehensive data preprocessing, feature selection,
and model training, this tool ensures the generation of high-quality synthetic data that
closely mimic the characteristics of real-world IoT network traffic.

The tool’s feature engineering capabilities and statistical dashboard provide valuable
insights for researchers, aiding in analyzing and interpreting network traffic data. The
successful implementation and validation of the tool mark a significant advancement in
the field of 10T security, offering a powerful resource for researchers and practitioners. The
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evaluation results demonstrate the tool’s efficacy in creating balanced datasets that can be
used to enhance the performance of ML, DL, and IDS models” performance.

In practical terms, the tool is particularly valuable for industry professionals, especially
in sectors like smart homes, where IoT integration is prevalent. Its advanced ability to
detect anomalies and adapt to different usage patterns ensures robust security against
potential threats, such as unauthorized access or abnormal device behavior. The tool’s
compatibility with common IDS platforms like Snort, Suricata, or Zeek allows for easy
integration without major infrastructure changes. This makes it a key asset for professionals
seeking intelligent and secure solutions in the growing IoT and smart home industry.

Overall, this study contributes significantly to research done in IoT environments, by
providing access to a tool that can generate realistic datasets replicating network attacks
thus addressing key challenges in dataset generation.

6. Limitations and Future Work

Future work will expand the tool’s capabilities to support a wider range of IoT proto-
cols and environments, ensuring its applicability across diverse network scenarios.

Future work will expand the tool’s capabilities to support a wider range of IoT proto-
cols and environments, ensuring its applicability across diverse network scenarios. Specifi-
cally, we plan to enhance the tool to simulate a broader array of cyberattacks, which are
becoming increasingly relevant as IoT ecosystems grow more complex.

In this study, we focused on selected network attack types that almost always feature
as minority classes in IoT datasets, including reconnaissance, deauthentication, and MITM
attacks. While these attacks are representative of common threats in IoT environments, we
acknowledge the importance of expanding our research to encompass a broader array of
cyberattacks, such as ransomware, insider threats, and advanced persistent threats (APTs).
These attacks are emerging as significant threats in IoT contexts, particularly in smart
home environments and industrial IoT deployments. We plan to expand the testbed by
incorporating specific malware simulations and internal compromise scenarios that reflect
these evolving threats, improving the tool’s utility in real-world cybersecurity applications,
including IDS training.

In addition to network-based attacks, future work will extend the tool to simulate web-
based attacks, which are increasingly prevalent for IoT devices that integrate web interfaces
or host web servers. Attacks such as SQL Injection (SQLi), Cross-Site Scripting (XSS), and
Cross-Site Request Forgery (CSRF) represent significant vulnerabilities, particularly in
smart devices that interact with external web applications.

To achieve this, we will design a dedicated testbed for simulating web-based attacks.
This testbed will include IoT devices with integrated web servers or web-based control
panels, which will be subjected to various attack scenarios. For example, SQL injection
attacks will be simulated by targeting vulnerable input fields within the web interfaces of
the IoT devices, while XSS and CSRF attacks will be launched to manipulate user sessions
and hijack control over the devices.

Furthermore, we will expand the dataset by generating web-based traffic that accu-
rately reflects real-world IoT web communication patterns. The tool will be adapted to
handle these new attack types by extending the feature set to include web-related attributes
such as HTTP requests, URL parameters, and session tokens. This will allow the tool
to generate realistic synthetic datasets that can train machine learning models to detect
web-based attacks in IoT environments.

Author Contributions: Conceptualization, A.S.; methodology, A.S.; software, A.S. and M.A.; valida-
tion, A.S. and M.A; formal analysis, A.S. and M.A; investigation, A.S. and M.A_; resources, A.S. and
M.A.; data curation, A.S.; writing—original draft preparation, A.S.; writing—review and editing, A.S.
and M.A.; visualization, A.S. and M. A.; project administration, A.S.; funding acquisition, A.S. and
M.A. All authors have read and agreed to the published version of the manuscript.



J. Sens. Actuator Netw. 2024, 13, 62

28 of 30

Funding: This research work was funded by the Institutional Fund Project under grant no. (IFPIP:
1478-865-1443). The authors gratefully acknowledge the technical and financial support provided by

the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia, Jeddah.

Data Availability Statement: Not applicable

Acknowledgments: Both authors are working at and sponsored by King Abdulaziz University in
Saudi Arabia. This research work was funded by the Institutional Fund Project under grant no.
(IFPIP: 1478-865-1443). The authors gratefully acknowledge the technical and financial support
provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

https:/ /dsr.kau.edu.sa/Default-305-ar (accessed 6 August 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Results of Applying the Attacks on the IoT Devices

Table Al. Attacks on smart lamp (Xaiomi) device.

. Attack Inside/Outside
No. Attack Type Used Library Successful Results Attack

1 Nmap Nmap yes No open ports found Inside
Data were intercepted. However, some

2 MITM Ettercap yes of the data were readable as some Inside
devices’ data were encrypted.

. The device is no longer authenticated to .
3 Deauth Aireplay-ng yes the network. Outside
4 DOS (tcp) slowl.lttptest,. no Device does not have TCP Inside
slowloris, slowite servers running.

Device was halted sometimes and its
response was delayed. The device

5  DOS (UDP Flood) hping3 yes changed status randomly, occasionally Inside
when the UDP had a meaning by
coincidence.

6 Password crack Brute force no The device has no logm/p assword Inside
prompts on any services.

Table A2. Attacks on smart camera (tapo tc70) device.
. Attack Inside/Outside
No. Attack Type Used Library Successful Results Attack

443 /tcp open https
—554/tcp open rtsp

1 Nmap Nmap yes —2020/tcp open xinupageserver Inside
—8800/tcp open sunwebadmin
—20,002/tcp open commtact-http
Data were intercepted. However, some

2 MITM Ettercap yes of the data were readable as some Inside
devices’ data were encrypted.

. The device is no longer authenticated to .
3 Deauth Aireplay-ng yes the network Outside
slowhttotest Service on 443 went down. However,
4 DOS (tep) prest, yes the device did not go offline, nor was Inside

slowloris, slowite

functionality affected
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Table A2. Cont.
. Attack Inside/Outside
No. Attack Type Used Library Successful Results Attack
5 DOS (UDP Flood) hping3 no Device does not use UDP or have UDP Inside
ports open
The device has a user-password prompt
6 Password crack Brut force yes on rtsp streaming which yields 401 Inside
when wrong credentials are provided.
Table A3. Attacks on smart camera (EZVIS) device.
. Attack Inside/Outside
No. Attack Type Used Library Successful Results Attack
—80/tcp open https .
1 Nmap Nmap yes _554/tcp open rtsp Inside
Data were intercepted. However, some
2 MITM Ettercap yes of the data were readable as some Inside
devices’ data were encrypted.
. The device is no longer authenticated to .
3 Deauth Aireplay-ng yes the network Outside
slowhttptest Service on 443 went down. However,
4 DOS (tep) LHprest, yes the device did not go offline, nor was Inside
slowloris, slowite ) .
functionality affected
5 DOS (UDP Flood) hping3 no Device does not use UDP or have UDP Inside
ports open.
The device has a user-password prompt
6 Password crack Brut force yes on rtsp streaming, which yields 401 Inside
when wrong credentials are provided.
References
1. Kumar, V,; Sinha, D. Synthetic attack data generation model applying generative adversarial network for intrusion detection.

10.

11.

12.

Comput. Secur. 2023, 125, 103054. [CrossRef]

Jeong, J.; Lim, ].Y,; Son, Y. A data type inference method based on long short-term memory by improved feature for weakness
analysis in binary code. Future Gener. Comput. Syst. 2019, 100, 1044-1052. [CrossRef]

Alabdulwahab, S.; Kim, Y.T.; Seo, A.; Son, Y. Generating Synthetic Dataset for ML-Based IDS Using CTGAN and Feature Selection
to Protect Smart IoT Environments. Appl. Sci. 2023, 13, 10951. [CrossRef]

Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT telemetry dataset: A new generation dataset of IoT and
IIoT for data-driven intrusion detection systems. IEEE Access 2020, 8, 165130-165150. [CrossRef]

Samarakoon, S.; Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Chang, S.Y.;; Kim, J.; Kim, J.; Ylianttila, M. 5g-nidd: A
comprehensive network intrusion detection dataset generated over 5g wireless network. arXiv 2022, arXiv:2212.01298.

Liu, X,; Li, T.; Zhang, R.; Wu, D,; Liu, Y.; Yang, Z. A GAN and feature selection-based oversampling technique for intrusion
detection. Secur. Commun. Netw. 2021, 2021, 9947059. [CrossRef]

Riera, T.S.; Higuera, ].R.B.; Higuera, ].B.; Herraiz, J.J.M.; Montalvo, J].A.S. A new multi-label dataset for Web attacks CAPEC
classification using machine learning techniques. Comput. Secur. 2022, 120, 102788. [CrossRef]

Parmisano, A.; Garcia, S.; Erquiaga, M.J. A Labeled Dataset with Malicious and Benign Iot Network Traffic; Stratosphere Laboratory:
Praha, Czech Republic, 2020.

Hindy, H.; Bayne, E.; Bures, M.; Atkinson, R.; Tachtatzis, C.; Bellekens, X. Machine learning based IoT intrusion detection system:
An MQTT case study (MQTT-IoT-IDS2020 dataset). In Proceedings of the International Networking Conference; Springer: Cham,
Switzerland, 2020; pp. 73-84.

Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779-796. [CrossRef]

Hamza, A.; Gharakheili, H.H.; Benson, T.A.; Sivaraman, V. Detecting volumetric attacks on lot devices via sdn-based monitoring
of mud activity. In Proceedings of the 2019 ACM Symposium on SDN Research, San Jose, CA, USA, 3—4 April 2019; pp. 36—48.
Sivanathan, A.; Gharakheili, H.H.; Loi, F; Radford, A.; Wijenayake, C.; Vishwanath, A ; Sivaraman, V. Classifying IoT devices in
smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 2018, 18, 1745-1759. [CrossRef]


http://doi.org/10.1016/j.cose.2022.103054
http://dx.doi.org/10.1016/j.future.2019.05.013
http://dx.doi.org/10.3390/app131910951
http://dx.doi.org/10.1109/ACCESS.2020.3022862
http://dx.doi.org/10.1155/2021/9947059
http://dx.doi.org/10.1016/j.cose.2022.102788
http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1109/TMC.2018.2866249

J. Sens. Actuator Netw. 2024, 13, 62 30 of 30

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108-116.

Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-baiot—Network-based detection of
iot botnet attacks using deep autoencoders. IEEE Pervasive Comput. 2018, 17, 12-22. [CrossRef]

Sivanathan, A.; Sherratt, D.; Gharakheili, H.H.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Characterizing and
classifying IoT traffic in smart cities and campuses. In Proceedings of the 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1-4 May 2017; pp. 559-564.

Sureda Riera, T.; Bermejo Higuera, J.R.; Bermejo Higuera, J.; Sicilia Montalvo, J.A.; Martinez Herraiz, J.J. SR-BH 2020 Multi-
Label Dataset 2022. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVIN/OGOIXX
(accessed on 15 September 2024).

Mashrur Arifin, M.; Shoaib Ahmed, M.; Ghosh, TK.; Zhuang, J.; Yeh, J.h. A Survey on the Application of Generative Adversarial
Networks in Cybersecurity: Prospective, Direction and Open Research Scopes. arXiv 2024, arXiv:2407.08839.

Ranka, P.; Shah, A.; Vora, N.; Kulkarni, A.; Patil, N. Computer Vision-Based Cybersecurity Threat Detection System with
GAN-Enhanced Data Augmentation. In International Conference on Soft Computing and Its Engineering Applications; Springer:
Cham, Switzerland, 2023; pp. 54-67.

Strickland, C.; Zakar, M.; Saha, C.; Soltani Nejad, S.; Tasnim, N.; Lizotte, D.J.; Haque, A. Drl-gan: A hybrid approach for binary
and multiclass network intrusion detection. Sensors 2024, 24, 2746. [CrossRef] [PubMed]

Dina, A.S.; Siddique, A.; Manivannan, D. Effect of balancing data using synthetic data on the performance of machine learning
classifiers for intrusion detection in computer networks. IEEE Access 2022, 10, 96731-96747. [CrossRef]

Vasilomanolakis, E.; Cordero, C.G.; Milanov, N.; Miihlhduser, M. Towards the creation of synthetic, yet realistic, intrusion
detection datasets. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium,
Istanbul, Turkey, 25-29 April 2016; pp. 1209-1214.

Subahi, A.; Almasre, M. IoT Traffic Analyzer Tool with Automated and Holistic Feature Extraction Capability. Sensors 2023,
23,5011. [CrossRef] [PubMed]

Ashraf, J.; Keshk, M.; Moustafa, N.; Abdel-Basset, M.; Khurshid, H.; Bakhshi, A.D.; Mostafa, R.R. IoTBoT-IDS: A novel statistical
learning-enabled botnet detection framework for protecting networks of smart cities. Sustain. Cities Soc. 2021, 72, 103041.
[CrossRef]

UNSW, S. The Bot-IoT Dataset. 2021. Available online: https:/ /research.unsw.edu.au/projects/bot-iot-dataset (accessed on 27
August 2024).

Figueira, A.; Vaz, B. Survey on synthetic data generation, evaluation methods and GANs. Mathematics 2022, 10, 2733. [CrossRef]
Saxena, D.; Cao, J. Generative adversarial networks (GANSs) challenges, solutions, and future directions. ACM Comput. Surv.
(CSUR) 2021, 54, 1-42. [CrossRef]

Couplet, E.; Lee, ].A.; Verleysen, M. Tabular Data Synthesis Using Generative Adversarial Networks: An Application to Table
Augmentation. Master’s Thesis, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium, 2021.

Nayak, A.A.; Venugopala, P.; Ashwini, B. A Systematic Review on Generative Adversarial Network (GAN): Challenges and
Future Directions. Arch. Comput. Methods Eng. 2024, 1-34. [CrossRef]

Ahmad, Z.; Chen, M.; Bao, S. Understanding GANs: Fundamentals, variants, training challenges, applications, and open
problems. Multimed. Tools Appl. 2024, 1-77. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1109/MPRV.2018.03367731
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OGOIXX
http://dx.doi.org/10.3390/s24092746
http://www.ncbi.nlm.nih.gov/pubmed/38732852
http://dx.doi.org/10.1109/ACCESS.2022.3205337
http://dx.doi.org/10.3390/s23115011
http://www.ncbi.nlm.nih.gov/pubmed/37299737
http://dx.doi.org/10.1016/j.scs.2021.103041
https://research.unsw.edu.au/projects/bot-iot-dataset
http://dx.doi.org/10.3390/math10152733
http://dx.doi.org/10.1145/3446374
http://dx.doi.org/10.1007/s11831-024-10119-1
http://dx.doi.org/10.1007/s11042-024-19361-y

	Introduction
	Literature Review
	Comprehensive Review of Public IoT Datasets
	Recent Advances in Synthetic Dataset Generation for IoT Cybersecurity Applications
	GAN-Based Approaches for IDS Dataset Generation
	Non-GAN-Based Toolkit for Dataset Generation


	Methodology
	Network Configuration
	Attack Scenarios
	Building the Dataset 
	Benchmark Dataset
	Designing the Synthetic Data Generator Tool
	Synthetic Data Generator Tool Algorithm
	GUI of the Proposed Synthetic Data Generator Tool:


	Results and Discussion
	Implementation
	Class Imbalance Evaluation
	Evaluation of the Ranges of Numerical Features in Both Datasets
	Evaluation of Categorical Features
	Evaluation of Numerical Features

	Conclusions
	Limitations and Future Work
	Results of Applying the Attacks on the IoT Devices
	References

