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Abstract: The precise monitoring of chemical reactions in plasma-based processes is crucial for
advanced semiconductor manufacturing. This study integrates three diagnostic techniques—Optical
Emission Spectroscopy (OES), Quadrupole Mass Spectrometry (QMS), and Time-of-Flight Mass
Spectrometry (ToF-MS)—into a reactive ion etcher (RIE) system to analyze CF4-based plasma. To
synchronize and integrate data from these different domains, we developed a Tri-CycleGAN model
that utilizes three interconnected CycleGANs for bi-directional data transformation between OES,
QMS, and ToF-MS. This configuration enables accurate mapping of data across domains, effectively
compensating for the blind spots of individual diagnostic techniques. The model incorporates self-
attention mechanisms to address temporal misalignments and a direct loss function to preserve
fine-grained features, further enhancing data accuracy. Experimental results show that the Tri-
CycleGAN model achieves high consistency in reconstructing plasma measurement data under
various conditions. The model’s ability to fuse multi-domain diagnostic data offers a robust solution
for plasma monitoring, potentially improving precision, yield, and process control in semiconductor
manufacturing. This work lays a foundation for future applications of machine learning-based
diagnostic integration in complex plasma environments.

Keywords: plasma diagnostics; reactive ion etching (RIE); semiconductor manufacturing; machine
learning; cycle-consistent adversarial network (CycleGAN); multi-domain data integration

1. Introduction

Technological advancements in artificial intelligence (AI), the Internet of Things (IoT),
and high-performance computing are driving modern innovation, all of which rely heav-
ily on advanced semiconductor technologies [1]. For example, AI applications require
specialized hardware to run complex machine learning algorithms efficiently, IoT devices
must integrate various functionalities into compact designs, and high-performance com-
puting systems depend on High-Bandwidth Memory (HBM) to handle large-scale data
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processing and computation quickly and effectively. Meeting the stringent performance re-
quirements of these applications necessitates the use of plasma-based processes, including
deposition [2,3], etching [4–9], and cleaning [10,11]. These processes are essential for achiev-
ing the high precision and efficiency needed in advanced semiconductor device fabrication.
Plasma generates reactive species that facilitate precise atomic-level material modifications,
making it indispensable for high-aspect-ratio etching and other critical processes in semi-
conductor manufacturing. Accurate monitoring of the chemical reactions and behaviors of
these reactive species is crucial for maintaining the precision and consistency of plasma-
based manufacturing processes. Process analysis and control, driven by monitoring data,
not only optimize production but also help reduce defects, ultimately improving yield and
ensuring the efficient manufacturing of high-performance semiconductor devices.

The generation of plasma involves the formation of several key components, including
radicals, ions, neutral species, and excited electrons, which subsequently emit light [12].
To effectively monitor and control the chemical reactions within plasma, it is essential to
diagnose its state during the process using various methods [13]. Optical Emission Spec-
troscopy (OES) is one of the most widely used diagnostic techniques, as it is non-invasive
and capable of real-time monitoring without disrupting the plasma environment [14–17].

OES analyzes the light emitted from excited radicals at various wavelengths, offering
crucial insights into the electron energy levels of different species within the plasma [18].
However, it faces limitations, particularly in detecting species with low emission intensities
or those that do not emit visible light, which can result in incomplete diagnostics. On the
other hand, mass spectrometry-based techniques, such as Quadrupole Mass Spectrometry
(QMS) [17,19,20] and Time-of-Flight Mass Spectrometry (ToF-MS) [21,22], provide a more
comprehensive detection capability, including neutral species and those with low emission
characteristics, offering a more complete picture of the plasma state. Nevertheless, both
QMS and ToF-MS are invasive, requiring the extraction of gas samples from the chamber,
which may disturb the plasma. Furthermore, unstable species critical to plasma processes
can degrade during sampling, reducing the accuracy of the diagnostics.

To address these challenges, we employed machine learning to integrate data from the
three diagnostic techniques, offering a method to complement their strengths and mitigate
their respective limitations. Machine learning has shown its potential in various fields to
handle complex, high-dimensional datasets, enabling more accurate and efficient analysis
across different domains [23,24]. Machine learning techniques such as deep learning and
neural networks have been successfully applied to process large volumes of data that
are challenging to interpret with traditional methods. Among these, Cycle-Consistent
Generative Adversarial Network (CycleGAN) is particularly useful for transforming data
between different domains without requiring paired datasets [25]. While primarily applied
to image domain transformations, we adapted this technique to integrate data from different
semiconductor process diagnostic methods.

In our experimental setup, we connected the three diagnostic techniques (OES, QMS,
and ToF-MS) to an inductively coupled plasma reactive ion etching (ICP-RIE) system, en-
abling systematic data collection under various plasma conditions. To analyze the diverse
data from these diagnostic methods, we developed the Triangular Cycle-Consistent Gener-
ative Adversarial Network (Tri-CycleGAN). In contrast to conventional CycleGAN models,
which are typically constrained to two domains, our approach demonstrates the capacity
to transform data between three distinct domains, illustrating the potential for broader
application to other semiconductor diagnostic techniques. To further enhance the accuracy
of data transformation between domains, we introduced self-attention mechanisms and
a custom loss function into the transformation model, improving feature extraction and
optimizing the consistency of data integration across the three diagnostic techniques. By
leveraging the strengths of all three diagnostic techniques, we were able to overcome the
limitations of each individual method, resulting in a more comprehensive understanding
of the plasma state. Additionally, cross-referencing overlapping spectral data from OES
and mass data from QMS and ToF-MS enabled more precise identification of the species
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generated in the plasma. This novel approach not only facilitates comprehensive plasma di-
agnostics but also presents a framework that can be extended to various other plasma-based
processes and semiconductor equipment, including PECVD, sputtering, and PEALD.

2. Experimental Setup and Data Transformation

In this study, an ICP-RIE system (RAINBOW 4420, Lam Research, Fremont, CA, USA)
was employed for plasma etching experiments, as shown on the left side of Figure 1a. A
high-density plasma was generated by applying radio-frequency (RF) power at 13.56 MHz
to the copper coil, while a separate RF generator controlled the DC bias voltage through the
bottom electrode. Before the etching process, the chamber was evacuated to a base pressure
of 10−6 Torr using a turbomolecular pump (BOC Edwards, Burgess Hill, UK), ensuring a
clean and stable environment. To remove any contaminants before data collection, a clean-
ing step was performed. A gas mixture of 50 sccm of Ar and 20 sccm of O2 was introduced,
while 250 W of RF power was applied to the top coil for 5 min. This procedure helped
eliminate any residual particles or impurities, ensuring that subsequent measurements
would be accurate and uncontaminated.

After the cleaning process, a SiO2 wafer was placed in the chamber, and the etching
process was carried out using a gas mixture of CF4, Ar, and O2. To achieve stable plasma
across a wide range of process conditions using Penning ionization [26], we introduced Ar
and O2 gases at a flow rate of 10 sccm each. Based on typical gas composition ratios for CF4,
Ar, and O2 plasma etching, the CF4 flow was varied across four conditions, 5, 10, 15, and
20 sccm, while maintaining the chamber pressure at 20 mTorr. The RF power applied to
the top coil was adjusted from 50 W to 110 W in 10 W increments across seven conditions.
This resulted in 28 combinations of gas flow and power levels. For each condition, data
were collected across three diagnostic domains (OES, QMS, and ToF-MS), targeting 8 key
process gases. Each collection was repeated three times to ensure sufficient data for model
training and testing.

Data were collected using three diagnostic techniques during the etching process to
monitor the plasma characteristics in real time. OES (Maya2000Pro, Ocean Insight, Orlando,
FL, USA) was employed due to its non-invasive nature, ease of implementation, and fast
measurement capabilities. OES captures real-time light emissions from excited species in
plasma. In a plasma environment mixed with O2, CF4 is prone to decompose into CF3,
CF2, and CF due to the high energy conditions within the plasma. During the ionization
process in QMS and ToF-MS diagnostics, CF4 decomposes into CF3, CF2, and CF, making it
difficult to detect [27]. Consequently, CF3, CF2, and CF were selected for analysis to ensure
consistency in monitoring the chemical species present in the plasma. Key species expected
to form during the etching process were selected, each corresponding to specific emission
wavelengths: F-radical at 703 nm [28], CF3 at 241.7 nm [29], CF2 at 262.6 nm [30], CF at
255 nm [31], O2 at 777 nm [32,33], CO2 at 357 nm [34], CO at 519.82 nm [35], and COF at
258 nm [29].

During the etching process, in addition to collecting optical emissions, minimal
amounts of gas were sampled and continuously monitored using QMS (PrismaPro QMG
250, Pfeiffer Vacuum, Aßlar, Germany) and ToF-MS (Itof, EL, Gwangmyeong, Republic of
Korea), both of which were directly integrated with the main chamber. The QMS was able
to detect species with mass ranges up to 200 and the ToF-MS system with mass ranges up
to 500 amu. Key gas species detected during the process included F, CF3, CF2, CF, O2, CO2,
CO, and COF, with molecular weights of 19, 69, 50, 31, 32, 44, 28, and 47 amu, respectively.
However, there are inherent problems with gas sampling techniques, such as sampling
delays and degraded temporal resolution due to the dead volume of the gas sampling
interface. These limitations have been a critical challenge in synchronizing data across
different diagnostic domains. Consequently, previous analyses were routinely fragmented,
relying on isolated diagnostic techniques rather than an integrated approach.
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Figure 1. Experimental setup and Tri-CycleGAN architecture for multi-domain plasma diagnostics.
(a) Schematic of the ICP-RIE system with integrated diagnostic techniques (OES, QMS, and ToF-MS).
The arrows show data flow and transformations between diagnostic domains using the Tri-CycleGAN
model (b) A segment of the Tri-CycleGAN model, illustrating data transformation between OES
and ToF-MS domains using generators (GTO, GOT) and discriminators (DOT , DTO). (c) Generator
network architecture with repeated blocks to learn transformations for each of the eight gas species
using linear layers, residual blocks, and self-attention mechanisms. (d) Alignment between real and
reconstructed data for eight gas species (F, CF3, CF2, CF, O2, CO2, CO, and COF), demonstrating
improved matching of distributions as training advances.

To address these challenges and achieve seamless integration of data across different
diagnostic domains, we employed a Cycle-Consistent Generative Adversarial Network
(CycleGAN) model tailored for multi-domain transformation. CycleGAN is a deep learning
model widely used for translating data between two distinct domains without requiring
paired training data [36–39]. It consists of two generators and two discriminators, where
each generator learns to map data from one domain to another, and each discriminator
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evaluates the authenticity of the generated data. To ensure consistency during domain
translation, CycleGAN introduces a cycle consistency loss that preserves the content by
enabling the generated data to be mapped back to their original form in the source domain.

In our study, we applied this CycleGAN framework to synchronize data collected
using three diagnostic techniques. Specifically, we utilized three separate CycleGAN mod-
els to enable data transformation between each pair of diagnostic techniques, effectively
covering all possible domain combinations. As shown on the right side of Figure 1a, the
Tri-CycleGAN consists of six generators and six discriminators that facilitate data transfor-
mation between OES, QMS, and ToF-MS. OES, QMS, and ToF-MS data are represented in
pink, green, and blue, respectively, to distinguish the data obtained from each diagnostic
technique. The model includes generators (GQO, GOQ, GOT , GTO, GQT , and GTQ), and
discriminators (DQO, DOQ, DOT , DTO, DQT , and DTQ). The generators transform data
from one domain into another [36]. For instance, GQO generates fake OES data from QMS
data. The generator is represented by arrows with gradual color changes, symbolizing the
transformation of data between different domains. The discriminators, on the other hand,
are responsible for evaluating the authenticity of the generated data. For instance, DOQ
determines whether the OES data generated by GQO are real or fake. The generators and
discriminators work in tandem, where the generator attempts to transform data between
domains, and the discriminator evaluates the authenticity of the transformed data.

Figure 1b shows the Tri-CycleGAN model between the OES and ToF-MS data domains
in detail. Generators (GOT and GTO) are responsible for transforming data between OES
and ToF-MS. In the OES and ToF-MS data domains, the transformation process is defined
as follows:

O′ = GTO(T), T′ = GOT(O) (1)

where O′ and T′ represent the generated fake data in the ToF-MS and OES domains,
respectively. In the model schematic of Figure 1b, the arrows indicate the flow of data,
where the internal color represents the original domain and the border color represents
the transformed domain. The data are then reconstructed back into their original domain
as follows:

O′′ = GTO(O′), T′′ = GOT(T′) (2)

To effectively learn transformations between the two domains, the model is trained
using a combination of three loss functions: the adversarial loss (LGAN), which aligns
the generated data with real data distributions; the cycle consistency loss (Lcyc), which
maintains the original structure of data after round-trip transformations; and the direct
loss (Ldir), which we introduced to improve transformations between time-dependent 1D
measurement data obtained from real plasma etching processes using different diagnostic
techniques. While LGAN and Lcyc are conventional loss functions widely used in CycleGAN
models, Ldir specifically ensures accurate alignment and feature preservation across these
distinct data sources [40–42].

The first component, the adversarial loss (LGAN) is applied to both the OES and ToF-
MS data domains to ensure that the generated data (O′, T′) are indistinguishable from
real data in the respective target domains. This objective is achieved by minimizing the
following expression:

LGAN = ET∼pdata(T)

[
(DOT(GTO(T))− 1)2

]
+EO∼pdata(O)

[
(DTO(GOT(O))− 1)2

]
(3)

The first term makes the ToF-MS data transformed to the OES domain (O′) resemble
the real OES data, and the second term makes the OES data transformed to the ToF-MS
domain (T′) match the real ToF-MS data. However, minimizing adversarial loss alone may
lead to loss of unique features during domain transformation [43]. Therefore, the cycle
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consistency loss Lcyc is introduced to preserve the original structure of the data during
domain transformations. It is defined as

Lcyc = ET∼pdata(T)[∥GOT(GTO(T))− T∥1] +EO∼pdata(O)[∥GTO(GOT(O))− O∥1] (4)

The first term computes the L1-norm between the ToF-MS data, transformed to the
OES domain and then back to the ToF-MS domain (T and T′′), and the real ToF-MS data.
Similarly, the second term computes the L1-norm between (O and O′′).

In the conventional CycleGAN framework, generally using expectation-based loss
prioritizes aligning the overall data distribution between domains [37–39], but it often fails
to capture detailed individual characteristics. This limitation is particularly problematic in
reliability-critical systems like plasma monitoring in semiconductor manufacturing, where
capturing not only the unique features of each diagnostic techniques but also the anomaly
signals and faults occurring during the process is crucial. Anomalies and fault signals are
often rare and localized, making them difficult to detect when only considering average
distributional differences between domains.

To address this issue, our research incorporates a direct loss function alongside the
expectation-based loss. The direct loss is defined as

Ldir = ∥O − GTO(T)∥1 + ∥T − GOT(O)∥1 (5)

The complete generator loss function is then formulated as

LG = LGAN + λcycle × Lcyc + λdirect × Ldir (6)

where LGAN represents the adversarial loss, Lcyc is the cycle consistency loss, and Ldir is
the direct loss defined above. The weights λcycle and λdirect control the relative importance
of the cycle consistency and direct losses, respectively. The weights were selected based
on existing literature [25,44] and empirical testing to balance transformation accuracy and
stability. λdirect was adjusted to balance against the cycle consistency and adversarial losses.

By utilizing paired data collected during experiments [45], the direct loss function
addresses issues such as overfitting and mode collapse. These issues are particularly
critical for 1D semiconductor data transformation, where preserving physical characteristics
precisely is essential. Directly comparing the transformed data with real data enables the
model to capture subtle discrepancies and transient fault signals that might not be evident
in the overall data distribution.

Models without the direct loss function can capture distinct features such as plasma
on/off states, but may struggle with offsets and scale differences in the generated data.
This is due to mode collapse, where different plasma conditions produce similar outputs
because of the high similarity between input data [46,47]. The direct loss function penalizes
the model more heavily when mode collapse occurs, as it produces high errors in these
cases. This ensures that the model is pushed to generate more diverse and accurate outputs
by avoiding repetitive patterns or misrepresentations in the data, especially when dealing
with highly similar input conditions.

Figure 1c illustrates the architecture of the generator model, designed to process
time-dependent 1D measurement data [48] obtained from real plasma etching processes
using various diagnostic techniques. Experimental data were collected by varying the RF
power between 50 and 110 W and the CF4 flow rate between 5 and 20 sccm. These data
were then used to train the model, enabling it to accurately capture the plasma behavior
under different operating conditions. The generator has two sets of residual blocks [49]
stacked twice, making a total of eight residual layers. Each block extracts features and
learns nonlinear transformations, while the residual connections help prevent gradient
vanishing, ensuring stable training for deep networks.

To address the timing discrepancies between different diagnostic techniques, such as
OES, QMS, and ToF-MS, a self-attention mechanism [50] is incorporated into the model.
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When data are collected through different mechanisms and equipment, slight temporal
offsets can occur, leading to misalignments. The self-attention mechanism helps reduce
these temporal misalignments by evaluating the importance of each data point in relation
to others across the entire sequence [51]. This enables the generator to transform and
represent data from multiple diagnostic techniques, ensuring accurate modeling of plasma
dynamics. Additionally, the model is structured to handle the eight key chemical species
in CF4 plasma by building separate pathways, which allows for specialized learning and
robust performance in multi-domain data transformations.

Figure 1d visualizes the alignment between the reconstructed data T′′ and the real
data T in the ToF-MS domain for eight chemical species: F, CF3, CF2, CF, O2, CO2, CO, and
COF. Each plot represents the degree of similarity between the distributions of the real and
reconstructed data. As training progressed, the model minimized reconstruction errors,
ensuring that the data closely matched between the real and reconstructed states.

Unlike traditional models such as Kalman filters, which process data sequentially [52],
Tri-CycleGAN offers a computational advantage by transforming the entire dataset in
parallel once the model has been trained. This parallel processing reduces computational
time, allowing for faster data transformations across multiple domains like OES, QMS,
and ToF-MS. Additionally, since the model learns complex nonlinear relationships, it
maintains minimal reconstruction error when processing normal data. However, since
the model is trained to accurately transform only normal data, the reconstruction error
increases significantly after abnormal data undergoes both the transformation and reverse
transformation process [53]. This contrast between low reconstruction error for normal data
and high error for abnormal data allows for efficient differentiation between the two. These
advantages in both speed and anomaly detection make Tri-CycleGAN highly suitable for
process monitoring and diagnostics in semiconductor environments.

3. Results and Discussion

Figure 2 illustrates the multi-domain transformations of CF3 data across OES, ToF-MS,
and QMS domains. The test data were input as CF3, collected under RF power levels
ranging from 50 to 110 W with a CF4 flow rate of 20 sccm. CF3 was selected as the test
species because it serves as the primary source of highly reactive F-radicals. These radicals
play a critical role in the plasma etching process. This demonstrates that the model has been
sufficiently trained to perform accurate transformations across domains and effectively
capture the variations in CF3 under different experimental conditions.

Figure 2 is organized into three rows and three columns, each representing differ-
ent combinations of real and generated data in the respective domains. The first row
(Figure 2a–c) shows the real OES data (Figure 2a) and the generated data in the ToF-MS
(Figure 2b) and QMS (Figure 2c) domains translated from the OES domain. The second
row (Figure 2d–f) represents transformations starting from the ToF-MS domain, where
Figure 2e displays the real ToF-MS data, and Figure 2d,f show the data translated into
the OES and QMS domains, respectively. Similarly, the third row (Figure 2g–i) illustrates
transformations from the QMS domain, with the real QMS data in Figure 2i and their
translations into the OES (Figure 2g) and ToF-MS (Figure 2h) domains.

Each column represents a different target domain for transformation. The first column
(Figure 2a,d,g) shows OES data, including the real OES data and the OES data generated
from the other domains. The second column (Figure 2b,e,h) displays data translated into the
ToF-MS domain, while the third column (Figure 2c,f,i) presents data in the QMS domain. In
all plots, the real data are represented by solid lines, while the generated data are depicted
by dashed lines. Other process gases, such as O2 and the F-radical, are also included in
the Supporting Materials (Figures S1 and S2). Due to its high reactivity, the F-radical was
scarcely detected in the ToF-MS and QMS diagnostic techniques, as it tends to adsorb
onto surfaces in the gas line during transport to the measurement devices. However, clear
plasma emissions for F-radicals were observed in the OES data. Our model successfully
captured these signals at the corresponding locations in the generated data, as shown in
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the outputs of GTO(T) and GQO(Q). This confirms that our approach can bridge the gap
between domains with disparate diagnostic techniques and maintain high consistency even
under challenging conditions.

Figure 2. Multi-domain transformations of CF3 data across OES, ToF-MS, and QMS diagnostic
techniques using the Tri-CycleGAN model. Each row corresponds to a different original domain:
OES (a–c), ToF-MS (d–f), and QMS (g–i). Each column represents the target domain for transforma-
tion: OES, ToF-MS, and QMS, respectively. Diagonal subplots (a,e,i) show the real data from each
domains, while off-diagonal subplots illustrate transformed data in the target domains. Solid lines
indicate real data, and dashed lines represent transformed data.

The Tri-CycleGAN model demonstrated robustness in integrating diverse diagnostic
techniques through multi-domain transformations, proposing a novel approach to integrate
previously fragmented semiconductor process diagnostic data. Although discrepancies may
arise between generated and real data due to factors such as measurement noise, temporal
resolution mismatches among diagnostic methods, and gas transmission delays caused
by equipment interfaces, these issues can be mitigated through additional measurements,
equipment parameter control, and implementing calibration procedures such as domain
adaptation and transfer learning [48] to minimize the discrepancies.

Figure 3 illustrates the training progress of the Tri-CycleGAN model for CF3 data
transformations between OES, QMS, and ToF-MS domains. Test data, collected under a CF4
flow rate of 10 sccm and an RF power of 50 W, were input into models trained for 0, 500,
and 1000 epochs, as well as the fully trained model. In each graph, the black line indicates
the real data, the red line represents the generated data in the target domain, and the blue
line shows the reconstructed data after being transformed back to the source domain. The
figure is divided into three main sections: (a–h) show transformations between OES and
QMS domains, (i–p) show transformations between QMS and ToF-MS domains, and (q–x)
show transformations between OES and ToF-MS domains.
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Figure 3. Training progress of the Tri-CycleGAN model for CF3 data transformations across the
OES, QMS, and ToF-MS domains. Sections (a–h), (i–p), and (q–x) show transformations between
OES and QMS, QMS and ToF-MS, and OES and ToF-MS domains, respectively. Columns represent
different training stages: initial state (epoch 0), epoch 500, epoch 1000, and the fully trained model. In
each plot, black lines show the real data, red lines indicate generated data, and blue lines represent
reconstructed data.

Each section is further organized into four columns, representing different training
epochs: epoch 0 (first column), epoch 500 (second column), epoch 1000 (third column),
and the fully trained model (fourth column). In the initial state (epoch 0), the generated
data are completely random as the model has not yet learned any domain mappings. As
training progresses to epoch 500 and epoch 1000, competition between the generator and
discriminator causes fluctuations in the generated data. However, the model gradually
reduces errors and converges to the real data, effectively capturing their temporal patterns
in the fully trained stage.

The results clearly demonstrate effective learning, even under conditions with low gas
flow rates and low plasma power, which often produce weak signal intensities. Despite
these challenging scenarios, CF3 signals are successfully reconstructed across domains,
showing robust convergence and high consistency in data translation between distinct
diagnostic techniques. The training progress for the input gas O2 and the F-radical is
provided in the Supporting Materials (Figures S3 and S4).

Figure 4 compares the generated and reconstructed data for CF3, F-radical, and O2
across OES, ToF-MS and QMS domains based on test data collected under a CF4 flow
rate of 10 sccm and an RF power of 50 W. The first row (Figure 4a–c) shows CF3 data
transformations in the OES, ToF-MS and QMS domains, comparing the generated and
reconstructed data with the real data. The second row (Figure 4d–f) and the third row
(Figure 4g–i) show the transformations of F-radical and O2 data in the OES, ToF-MS and
QMS domains, respectively. In addition to these species, we also collected data for five
other gas species (CF2, CF, COF, CO2, and CO) during the experiments, and the comparison
results for these five models across the three diagnostic domains are provided in the
Supporting Materials (Figure S5). This comprehensive analysis demonstrates the model’s
effectiveness in capturing and translating data for various chemical species across different
diagnostic techniques.
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Figure 4. Comparison of real data, generated data from different source domains and the recon-
structed data from different transformation pathways for CF3, F-radical, and O2 across OES, ToF-MS,
and QMS domains. The first row (a–c) shows CF3 transformations in each domain, while the
second (d–f) and third rows (g–i) display transformations for the F-radical and O2, respectively.

The Tri-CycleGAN model performs consistent transformations across the OES, ToF-
MS, and QMS domains for three species: CF3, F-radical, and O2. The transformed data
generally align well with the real data, showing that the model captures the key features
of the input data despite variations in amplitude and noise across domains. These results
indicate that the model can effectively integrate multi-domain data, making it suitable for
multi-domain analysis of complex semiconductor plasma processes.

Figure 5 illustrates the changes in the loss functions during the training process of
the Tri-CycleGAN model on a logarithmic scale. It provides individual loss values for CF3
(Figure 5a–c) as well as the mean loss values for all species (Figure 5d–f), including F, CF3,
CF2, CF, O2, CO2, CO, and COF. The black line indicates the generator loss, and the red and
blue lines represent the discriminator losses for different domains. The detailed loss func-
tion trends for the remaining species are provided in the Supporting Materials (Figure S6).

For CF3 (Figure 5a–c), the generator loss (black line) starts at a high value and rapidly
decreases as the training progresses, indicating that the generator quickly learns to produce
data similar to the real data. As the generator’s performance improves, the discriminator
loss increases, suggesting that it struggles to differentiate between real and generated
samples. Eventually, both the generator and discriminator losses converge and stabilize,
indicating that the two networks have reached an equilibrium, which is a typical sign of
successful Tri-CycleGAN training [25].

More specifically, for the OES to ToF-MS transformation model (Figure 5a), the loss
values show stabilization around 5k epochs. This period reflects when the model has
learned to handle the transformation between these two domains effectively. After 16k
epochs, a further decrease in loss indicates additional fine-tuning in the generator’s per-
formance. The other two transformation models, ToF-MS to QMS (Figure 5b) and QMS to
OES (Figure 5c), show more regular patterns after approximately 4k epochs, highlighting
the more consistent performance in these transformations. This stability suggests that the
generator has successfully learned the relationships between the data from these domains
earlier in the training process.
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Figure 5. Logarithmic changes in the loss functions during the training process of the Tri-CycleGAN
model. The left y-axis shows the generator loss, while the right y-axis displays the discriminator
loss. (a–c) present loss values for CF3, and (d–f) show the mean loss values for all species (CF2,
CF, F-radical, COF, CO2, CO, and O2). Black lines indicate generator loss, while red and blue lines
represent discriminator losses for different domains (OES, QMS, and ToF-MS).

The mean loss values for all species (Figure 5d–f) follow a similar pattern to the
individual CF3 loss values. The mean generator loss decreases rapidly at the beginning and
stabilizes at a low value, showing that the generator achieves a stable performance across
multiple species. The mean discriminator loss values exhibit steady fluctuations but overall
maintain a relatively constant level after an initial phase of rapid changes. This suggests
that the multi-domain transformations are consistent across different diagnostic techniques
and that the model successfully captures the relationships between the different domains
for all species. The stable loss values across domains confirm that the Tri-CycleGAN model
is effective in transforming data between different measurement domains, indicating its
robustness in integrating multi-domain plasma diagnostics.

4. Conclusions

We have developed a methodology to integrate multiple diagnostic techniques for
monitoring and analyzing plasma conditions, which are essential for semiconductor manu-
facturing processes. To address the limitations of conventional diagnostic technique, we
combined OES, QMS and ToF-MS to identify and monitor key chemical species within
CF4-based plasma. By leveraging the unique strengths of each diagnostic technique, our
integrated approach provides a more comprehensive understanding of the plasma state,
thereby improving the precision and efficiency of semiconductor fabrication.

This research proposes a Tri-CycleGAN model specifically designed for multi-domain
data transformations in semiconductor process diagnostics. The model integrates multi-
domain plasma diagnostics (OES, QMS, and ToF-MS), enabling effective data mapping
across these different diagnostic techniques. By incorporating self-attention mechanisms
to correct for temporal misalignments and a direct loss function to preserve fine-grained
details, the model ensures more accurate and reliable data transformations. These improve-
ments allow it to capture subtle but critical plasma variations, enhancing the precision
of diagnostics. As the model is trained to synthesize data across multiple measurement
domains, it effectively eliminates the need for redundant diagnostic techniques, offering a
cost-efficient solution for complex diagnostic environments. This not only reduces opera-
tional costs but also leads to more reliable process monitoring and better decision-making
in semiconductor manufacturing.

This approach not only minimizes the reliance on multiple diagnostic techniques but
also offers a solution for deriving a comprehensive understanding of the plasma state
using limited data sources. The proposed framework can also serve as a basis for building
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more advanced diagnostic models that adapt to various plasma-based manufacturing
environments, potentially improving process control, yield, and overall efficiency in semi-
conductor production.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/jsan13060075/s1, Figures S1 and S2: Multi-domain trans-
formations of F-radical and O2 data, Figures S3 and S4: Training progress of the Tri-CycleGAN model
for F-radical and O2 data, Figure S5: Comparison of real data, generated data, and the reconstructed
data, Figure S6: Logarithmic changes in the loss functions.
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