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Abstract: This paper introduces a new method for the region segmentation of images. The approach
is based on the raster-scan paradigm and builds the segments incrementally. The pixels are processed
in the raster-scan order, while the construction of the segments is based on a distance metric in regard
to the already segmented pixels in the neighbourhood. The segmentation procedure operates in linear
time according to the total number of pixels. The proposed method, named the RSM (raster-scan
segmentation method), was tested on selected images from the popular benchmark datasets MS
COCO and DIV2K. The experimental results indicate that our method successfully extracts regions
with similar pixel values. Furthermore, a comparison with two of the well-known segmentation
methods—Watershed and DBSCAN—demonstrates that the proposed approach is superior in regard
to efficiency while yielding visually similar results.
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1. Introduction

Image segmentation denotes a process of dividing an image into a set of non-overlapping
regions [1]. It is one of the most basic image preprocessing methods and is utilised in many
applications, including object detection [2,3], medical imaging [4–6], remote sensing [7,8],
and biometric recognition [9–11]. There are numerous methods available for this task,
with the main objective of extracting adjacent pixel groups that share similar features and
properties [12]. Different approaches can be used for performing image segmentation,
which are divided into three groups [13]:

• Region segmentation.
Region segmentation methods, also referred to as classic segmentation methods,
exploit the similarity between pixels to arrange them into regions [13]. The most
common region segmentation methods and their principles are considered briefly in
Section 2.

• Collaborative segmentation.
Collaborative segmentation (or co-segmentation) methods deal with the segmentation
of similar objects in multiple correlated images [14]. The concept was introduced
in [15], and has been used primarily for tracking the objects in videos [16–18].

• Semantic segmentation.
The main goal of semantic segmentation methods is to divide an image into meaning-
ful regions that are assigned to the most suitable predefined category labels [19,20].
Nowadays, the great majority of semantic segmentation methods are based on deep
neural networks and other machine learning techniques. The most popular archi-
tectures include SegNet [21], ReSeg [22], DeepLab [23], CFNet [24], and HRViT [25].
Despite high segmentation performance [26], the downside of such methods is the
demand for huge pre-annotated datasets during the training phase of the models.

The existing segmentation methods have proven their strengths in various tasks of
image analysis [13]. However, depending on the technique, the available methods have
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several disadvantages: inefficiency, troublesome implementation, difficult manual tuning
of parameters, and a prolonged training phase (machine learning approaches) [12]. The
proposed approach overcomes the issues of other segmentation methods. It is efficient and
simple to implement while still yielding comparable results to related region segmentation
methods. It is especially suitable for deployment on edge devices [27] (e.g., surveillance
cameras) due to its low computational resource demands.
The main contributions of this paper are as follows:

• A new, highly efficient method named the raster-scan segmentation method (RMS)
based on a raster scan for the region segmentation of images.

• The design of different distance metrics, which define the similarity of pixels to
segments, and actions, which are utilised for the incremental building of segments.

• Extensive experimental work, which demonstrates the efficiency of the RMS, and
a comparison with state-of-the-art region segmentation methods (i.e., Watershed
and DBSCAN).

The remainder of the paper is structured in the following way. Section 2 highlights
the usage of image segmentation in sensor and actuator networks, and summarises the
related methods for performing image segmentations. Section 3 describes the proposed
method for the segmentation of images using the considered raster-scan approach, the
RSM (raster-scan segmentation method). In Section 4, the results of the proposed method
are shown and compared with other popular region segmentation methods. Section 5
concludes the paper, summarises the principles of the RSM, and describes future work.

2. Background and Related Work

Today, edge computing is one of the most popular paradigms in Computer Science [28].
The main characteristic of edge computing is that the majority of computations are per-
formed on edge devices with low computational resources [29]. Sensor and actuator
networks frequently include edge devices that gather image data. The segmentation meth-
ods should be efficient in terms of time and memory consumption in order to enable fast
enough performance of various operations on images (tracking the objects in the scene).
Image segmentation methods with low computational complexity have been used success-
fully on different edge devices in sensor and actuator networks, including remote sensing
data [8,30,31], handwritten text [20], medical scans [32,33], and footage from surveillance
cameras [34,35]. In robotics, image segmentation is often used for the recognition and
analysis of objects within the robot’s surroundings [36–38].

The proposed raster-scan segmentation method belongs to the region segmentation
methods, as its main goal is to split an image into regions with similar pixel values. In
Table 1, the most popular related region segmentation methods and their main advantages
and disadvantages are summarised. In the continuation of this section, a brief description
of each listed segmentation method is provided.

Table 1. Related region segmentation methods.

Method Advantages Disadvantages

Differential operators [39] Low computational complexity Poor resistance to noise, bad results for images with
small pixel gradients

Hough transform [40] High-accuracy segmentation of regular polygons Poor segmentation of concave and wavy structures,
high computational complexity

Active contour approach [41,42] Accurate segmentation of concave and
wavy polygons Difficult tuning of parameters

Thresholding [43,44] Low computational complexity, robust
adaptive approaches

Difficult choice of threshold value, possibility of
over-segmentation

Watershed [45] Low computational complexity, efficient
marker-controlled approach

Tendency toward over-segmentation, difficult
determination of markers’ positions

k-means [46–48] Simplicity, low computational complexity Difficult tuning of parameters

DBSCAN [49–51] Accurate segmentation of non-linearly separable
image clusters Sensitivity to input parameters

Superpixel methods [52–54] Low computational complexity Inability to process regions with high-intensity varieties
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2.1. Edge Detection

Edge detectors are the earliest and most basic methods for region segmentation. Their
main goal is to detect pixels with high gradients that represent boundaries of regions [13].
There are several approaches to this task, among which the least complex are differential
operators. Their main advantage is low computational complexity. However, their main
disadvantage is that they are very prone to producing visually peculiar results if there is
even a small amount of noise present in an image [55]. A lot of differential operators have
been proposed throughout the years, among which the most popular are Roberts, Kirsch,
Deriche, Prewitt, Laplacian, Sobel, and Canny operators [39]. Their time complexity is
O(n log n), where n signifies the total number of pixels in an image.

Hough transform is a popular method for the detection of contours in an image. It
was proposed by Duda and Hart [56], and has been adopted for many computer vision
tasks, including image segmentation [40,57]. The main advantage of Hough transform is its
high accuracy for the detection of regular polygons. On the other hand, it may not produce
good segmentation results for concave and wavy structures in an image. Furthermore,
Hough transform can be significantly demanding in terms of time complexity when dealing
with such structures. In its basic form for detecting lines, the time complexity of Hough
transformation is O(n4) [58].

An iterative active contour approach (also referred to as snakes) was proposed by
Kass et al. [59]. It is used for extracting regions from an image by fitting simple polylines to
region edges. The latter is performed by energy minimisation [59]: the image forces pull the
contour to important image features (i.e., edges, vertices, and lines) while obeying the con-
straints (either user-given or determined computationally). This method has been proven
to yield good results in some cases [41,42]. However, there are two major disadvantages of
the active contours method: sensitivity to the initial positions of control points, and difficult
initialisation of their input parameters [60]. The time complexity of the basic approach is
O(icm2), where i signifies the number of iterations, c the selected number of control points,
and m the number of scales (the contour is fitted to image regions in several resolutions).

Other image segmentation methods based on edge detection have been proposed in
the past, such as graph cut optimisations [61,62]. Although they can produce high-accuracy
segmentation results, they are only able to divide an image into two regions (foreground
and background).

2.2. Region Division

Region division segmentation methods are based either on the serial or the parallel
region division [13]. Serial region division splits an image into regions sequentially, while
regions are formed simultaneously when parallel region division is applied.

A typical parallel region division technique is thresholding. In the first step, a threshold
value is determined either manually or heuristically. After that, each pixel is assigned
a binary value [63], based on whether the pixel’s value is above or below the threshold.
Consequently, the obtained binary image consists of two segments. The described approach
has low computational complexity. Division into two regions, however, is not particularly
useful for images with many details. Therefore, thresholding with multiple thresholds [64]
and adaptive local thresholding [43,44] were proposed in order to increase the usability
of this segmentation method in practice. The time complexity of the described method
is O(n).

Watershed techniques utilise the geology concept of drainage divides for data segmen-
tation [65,66]. A similar approach, based upon serial region division, is used for region
segmentation [67,68]. A greyscale image is interpreted as a 3D topographic relief, which is
split into valleys, ridges, and slopes [69]. The main advantage of the Watershed is low time
complexity, as it operates in O(n). However, it tends to over-segmentise an image. In order
to solve this issue, a marker-controlled Watershed was proposed [45] where significant
parts of the image are marked either by a user or using a heuristic.
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2.3. Clustering

Clustering is a popular technique for organising data by grouping near data sam-
ples [70]. It is also used in different fields of image analysis [71–73]. One of the earliest and
most well-known clustering algorithms is k-means [74]. Its main advantage is low compu-
tational complexity. On the other hand, major challenges arise concerning the choice of the
parameter k that would yield the best segmentation, and the initialisation of the centroid
pixels’ locations. Therefore, several analyses of an image are usually performed before the
segmentation procedure [46–48,75–77]. The time complexity of k-means is O(knt), where t
specifies the number of iterations, while k signifies the number of clusters.

Density-based spatial clustering of applications with noise (DBSCAN) was proposed
by Ester et al. [78]. Compared to k-means, its major advantage is its ability to process
non-linearly separable image structures. DBSCAN has been used successfully for image
segmentations [49–51]. Its main disadvantage is having to precisely tune the input pa-
rameters in order to obtain the expected results. In the worst case, DBSCAN has a time
complexity of O(n2), although, with the proper data structures, its time complexity is
reduced to O(n log n) [79].

Superpixel segmentation is a clustering method that splits a weighted graph into
subgraphs with low coupling and high cohesion [13]. Such an approach has been used in
many image segmentation applications [52–54]. Despite the low time complexity using the
proper implementation [54], there are several drawbacks of different superpixel segmenta-
tion methods: no explicit control over the superpixels’ numbers and compactness [52], and
failing to correctly segmentise image regions that have high-intensity variety [80]. The time
complexity of the most efficient superpixel segmentation methods is O(n) [54].

3. Raster-Scan Segmentation Method

The proposed method is based on a raster-scan paradigm that derives from the era
of analogue television [81] based on a cathode-ray tube (CRT). The CRT directs a beam
of electrons to the phosphorescent coating on the screen. As a result, a spot of light is
produced at a place where the electron beam hits the screen coating. In order to display
the picture on the screen, the CRT directs the beam from the left to the right, and, after
the whole line is drawn, the procedure is repeated in the next row. This drawing order is
known as the scan-line order [82], while the covering of the entire screen in this way is
referred to as a raster scan [81].

Let I be a raster image with X columns and Y rows. Consequently, the number of
pixels in I is n = X · Y. With no loss of generality, I is considered to be greyscale with b
bit-planes, yielding 2b shades of grey. The goal of region image segmentation is to divide I
into a set of segments S = {Si}, 1 ≤ i ≤ |S|, so that |S| ≤ n. However, it is expected that
|S| ≪ n.

The segmentation of I is performed in the scan-line order, which is why the method is
referred to as the raster-scan segmentation method (RSM) in the continuation. The block
diagram that represents the sequence of steps in the RSM is displayed in Figure 1.

Start Image
segmentation End

For each pixel in image

Calculate distances with a
selected distance metric

Get segments of 
neighbouring pixels

Determine the suitable 
 action

Update the segment set

B

C

D

E

Initialisation of
segment setA F

Figure 1. Block diagram of RSM.
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In the beginning, the segment set S is initialised as an empty set (block A in Figure 1).
Then, the RSM iterates through I in a scan-line order (see Figure 2). After a pixel
px,y, 1 ≤ x ≤ X, 1 ≤ y ≤ Y is reached, segments of neighbouring pixels are obtained
(block B). The distances δ are calculated with the selected distance metric d (block C), based
on which an action A is determined (block D). According to the local neighbourhood, px,y
is assigned to the segment Si (already existing or newly created). The partial result of the
segmentation is stored in a set of edge-connected segments S (block E). After all pixels in I
are processed, S contains the final result of the segmentation (block F). The pseudocode at
the end of this section gives the details of the algorithm.

Figure 2. The processing order of the RSM in I. Already processed pixels are marked with green
circles, the current pixel is marked with a yellow circle, and non-processed pixels are marked with
red circles.

Edge-connected segments are created and built incrementally during the segmentation
procedure with the RSM. Each pixel is assigned to a segment Si. The selection of Si depends
on the already processed pixels, and is based on the selected distance metric d. The
following three distance metrics d were used for the calculation of the distance δ:

1. One-Neighbour Metric (ΓON).
This metric is based on the differences between the current pixel value px,y and the
pixel values of its left and top neighbours. The differences δle f t and δup are calculated
according to Equation (1).

δle f t =
∣∣px,y − px−1,y

∣∣
δup =

∣∣px,y − px,y−1
∣∣ (1)

2. Two-Neighbour Metric (ΓTN).
This metric considers the differences between the current pixel value px,y and the
average value of two pixels to the left and at the top. The differences δle f t and δup are
calculated according to Equation (2).

δle f t =

∣∣∣∣px,y −
px−1,y + px−2,y

2

∣∣∣∣
δup =

∣∣∣∣px,y −
px,y−1 + px,y−2

2

∣∣∣∣ (2)

3. Adjacent Segments’ Average Metric (ΓASA).
Unlike the other two, this metric assesses larger areas in I instead of only separate
adjacent pixels’ values. Let px−1,y belong to the segment Sle f t and let px,y−1 belong to
Sup. If Sle f t and Sup represent the average pixel values of the segments Sle f t and Sup,
the differences δle f t and δup are calculated according to Equation (3).

δle f t =
∣∣∣px,y − Sle f t

∣∣∣
δup =

∣∣px,y − Sup
∣∣ (3)
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In order to control the segmentation process, the user needs to provide two parameters.
The first parameter is the distance threshold value ϵ, below which px,y can be added to Si.
The second parameter is the maximum deviation from a segment’s average value, ∆max.
There are five possible actions A when assigning px,y to Si:

1. Merge.
If δle f t ≤ ϵ, δle f t ≤ ∆max, δup ≤ ϵ, δup ≤ ∆max, and ile f t ̸= iup, segments of px−1,y and
px,y−1 are merged into a single segment Si. After that, Si is expanded with the current
pixel px,y. The latter is performed using a union: Si ∪ {px,y} (Figure 3).
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(b)
Figure 3. The action Merge: before (a) and after (b) the processing of pixel px,y, marked by a red
square. The green arrows indicate that δ ≤ ϵ.

2. Add.
If δle f t ≤ ϵ, δle f t ≤ ∆max, δup ≤ ϵ, δup ≤ ∆max, ile f t = iup, and px,y−1 ∈ Sup, the
segment Sup is expanded as follows: Sup ∪ {px,y} (Figure 4).

10

12

11

13 55 77

77

7877

222 227 225

77

7679

79

80

80

80

14 54 56 58

11

10

(a)

10

12

11

13 55 77

77

7877

222 227 225

77

7679

79

80

80

80

14 54 56 58

11

10

(b)
Figure 4. The action Add: before (a) and after (b) the processing of pixel px,y, marked by a red square.
The green arrows indicate that δ ≤ ϵ.

3. Add-Left.
If δle f t ≤ ϵ, δle f t ≤ ∆max, δup > ϵ, and px−1,y ∈ Sle f t, the segment Sle f t is expanded as
follows: Sle f t ∪ {px,y} (Figure 5).
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(b)
Figure 5. The action Add-Left: before (a) and after (b) the processing of pixel px,y, marked by a red
square. The green arrow indicates that δ ≤ ϵ while the red arrow indicates that δ > ϵ.
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4. Add-Up.
If δle f t > ϵ, δup ≤ ϵ, δup ≤ ∆max, and px,y−1 ∈ Sup, the segment Sup is expanded as
follows: Sup ∪ {px,y} (Figure 6).
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(b)
Figure 6. The action Add-Up: before (a) and after (b) the processing of pixel px,y, marked by a red
square. The green arrow indicates that δ ≤ ϵ while the red arrow indicates that δ > ϵ.

5. New.
In all other cases, a new segment Si = {px,y} is added to S (Figure 7).
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(b)
Figure 7. The action New: before (a) and after (b) the processing of pixel px,y, marked by a red square.
The red arrows indicate that δ > ϵ.

The pseudocode of the RSM is presented in Algorithm 1. In the initialisation phase,
an empty set of segments S is created. In order to enable direct access to the already
assigned pixels’ segments, a matrix M with indices of segments is used, and is initialised
to −1 in the beginning. The loops in Lines 11 and 12 iterate through I. After a pixel px,y
is reached, the index of the left segment ile f t and the index of the upper segment iup are
obtained from M in Lines 13 and 14. Segments Sle f t and Sup are obtained from M in Lines
15 and 16. δle f t and δup are calculated in Lines 17 and 18 using the provided d (according to
Equations (1), (2), or (3)). In Line 20, one of the five actions A is selected, based on δle f t, δup,
ϵ, ∆max, ile f t, and iup. If the action Merge is chosen, the segments of the left and the upper
pixels are merged into a new segment, to which the current pixel px,y is added in Line 24.
The newly created Si is added to S in Line 25, while the matrix M is updated in Line 26. In
the case of the action Add, px,y is added to the common Si of the left and top pixels in Line
28. After that, S and M are updated. The actions Add-Left and Add-Top add px,y to the left
or the top Si in Line 32 and Line 36, respectively. In both cases, S and M are then updated
accordingly. In the case of the action New, a new Si is created, which is added to S in Line
41. After that, in Line 42, M is also updated. The final result of the algorithm is a set of
segments S .
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Algorithm 1 Region image segmentation with the RSM

1: function RASTER-SCAN-SEGMENTATION-METHOD(I, X, Y, d, ϵ, ∆max)
2: ▷ I: an image with the resolution X×Y
3: ▷ d, ϵ: distance metric, distance threshold
4: ▷ ∆max: maximum deviation from the segment’s average value
5: ▷ The function returns a set of segments
6:
7: S ← {} ▷ Initial set of segments is empty
8: M← InitialiseMatrix(X, Y,−1) ▷ Matrix with indices of segments for pixels
9: segmentCounter ← 0 ▷ Counter of segments is set to 0 in the beginning

10:
11: for y← 1 to Y do
12: for x ← 1 to X do
13: ile f t ← Mx−1,y ▷ Segment index of the left pixel
14: iup ← Mx,y−1 ▷ Segment index of the upper pixel
15: Sle f t ← FindSegment(M, x− 1, y)
16: Sup ← FindSegment(M, x, y− 1)
17: δle f t ← CalculateDistance(d, px,y, px−1,y, px−2,y, Sle f t) ▷ Equation (1), (2), or (3)
18: δup ← CalculateDistance(d, px,y, px,y−1, px,y−2, Sup) ▷ Equation (1), (2), or (3)
19:
20: A← DetermineAction(δle f t, δup, ϵ, ∆max, ile f t, iup)
21: switch A do
22: case Merge:
23: segmentCounter ← segmentCounter + 1
24: SsegmentCounter ←MergeSegments(ile f t, iup) ∪ {px,y}
25: AddSegment(S , SsegmentCounter)
26: Mx,y ← segmentCounter

27: case Add:
28: Sup ← Sup ∪ {px,y}
29: UpdateSegment(S , Sup, iup)
30: Mx,y ← iup

31: case Add-Left:
32: Sle f t ← Sle f t ∪ {px,y}
33: UpdateSegment(S , Sle f t, ile f t)
34: Mx,y ← ile f t

35: case Add-Up:
36: Sup ← Sup ∪ {px,y}
37: UpdateSegment(S , Sup, iup)
38: Mx,y ← iup

39: case New:
40: segmentCounter ← segmentCounter + 1
41: AddSegment(S , {px,y})
42: Mx,y ← segmentCounter

43: end switch
44: end for
45: end for
46: return S
47: end function

4. Results

The results of the RSM are presented and discussed in this section. For testing pur-
poses, the popular image datasets MS COCO [83] and DIV2K [84] were used. MS COCO
is a well-known image dataset that is often used for the benchmarking of segmentation
algorithms [85,86]. It consists of more than 330,000 images. Meanwhile, DIV2K is a consid-
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erably smaller dataset as it consists of 1000 images. Primarily, DIV2K is used as a benchmark
dataset for super-resolution tasks [87]. In our case, we used both datasets to diversify the
test image samples. The performance of the RSM is demonstrated on 10 greyscale images
that were selected randomly from MS COCO and DIV2K. The high-resolution images
belong to DIV2K, while the images with lower resolutions belong to MS COCO. The names
of the selected images, the datasets that they belong to, their resolutions, and the total
numbers of pixels n are shown in Table 2.

Table 2. Names, source datasets, resolutions, and total number of pixels of the selected test images I.

I Dataset Resolution n

Airplane MS COCO 640× 406 259,840
Baseball MS COCO 640× 427 273,280

Canal DIV2K 2040× 1524 3,108,960
Fruits DIV2K 2040× 1356 2,766,240

Seashore DIV2K 2040× 1356 2,766,240
Stop Sign MS COCO 640× 480 307,200

Sunflowers DIV2K 2040× 1356 2,766,240
Taxi MS COCO 640× 480 307,200

Tennis MS COCO 640× 427 273,280
Train DIV2K 2040× 1356 2,766,240

In Figure 8, the results of image segmentation with the RSM are displayed. Different
distance metrics d, described in Section 3, were used. For visualisation purposes, the
segments are coloured with randomly selected colours, with the limitation that adjacent
segments do not have the same colour. Such colouring enables distinguishing between
adjacent segments.

(a) (b)

(c) (d)
Figure 8. Image segmentation with the RSM using different distance metrics d: (a) input image,
(b) ΓON , (c) ΓTN , (d) ΓASA. Each Si is coloured with a random colour.

The numbers of segments |S| for each I using different d values are shown in Table 3.
During the segmentation, a suitable action A (Merge, Add, Add-Left, Add-Up, or New) is
selected according to the local neighbourhood of the current pixel px,y. The ΓTN distance
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metric produces higher |S| than ΓON and ΓASA for all test images. On the other hand, |S| is
consistently the lowest in all test cases if performing segmentation using ΓON . In Figure 8b,
it can be seen that the ΓON distance metric produces fewer segments on the ground than
ΓTN and ΓASA. Meanwhile, ΓASA is able to extract segments that do not contain pixels with
large gradients (e.g., segments that represent the sky). Therefore, the most appropriate
distance metric d depends on the properties of I. If I contains many edges that are not
clearly defined, it is sensible to use ΓASA. On the other hand, if the pixels on the edges in I
have large gradients, ΓON or ΓTN can yield better results.

Table 3. Number of segments |S| for test images according to d.

I ΓON ΓTN ΓASA

Airplane 23,761 39,949 33,809
Baseball 10,505 16,520 12,659

Canal 215,024 349,251 282,342
Fruits 416,740 698,121 538,066

Seashore 84,695 160,417 118,450
Stop Sign 60,134 74,841 65,451

Sunflowers 349,382 588,149 457,998
Taxi 36,891 55,769 42,701

Tennis 17,703 28,048 25,093
Train 160,412 249,109 190,581

Figure 9 shows region segmentations of the image Train with different values of ϵ
(limited to the range that produces sensible segmentation results). The ΓON distance metric
was used for the segmentation. Table 4 shows the number of segments |S| for the test
images according to different values of ϵ. Smaller values of ϵ cause the segmentation
to yield higher |S|. Furthermore, by selecting too small a value of ϵ, the RSM tends to
over-segment the image (as seen in Figure 9b). Therefore, it is sensible not to choose ϵ
values that are close to 0. On the other hand, an ϵ that is too large can lead to a failure in
extracting segments with soft edges (e.g., in Figure 9d, where the ground and the bottom
part of the train are merged into a single Si).

(a) (b)

(c) (d)
Figure 9. Image segmentation with the RSM according to different values of ϵ: (a) input image,
(b) ϵ = 2, (c) ϵ = 4, (d) ϵ = 6. Each Si is coloured with a random colour.
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Table 4. Number of segments |S| for test images according to the parameter ϵ.

I ϵ = 2 ϵ = 3 ϵ = 4 ϵ = 5 ϵ = 6

Airplane 39,469 23,761 16,017 11,789 9245
Baseball 25,948 17,356 13,076 10,505 8669

Canal 443,081 300,451 215,024 161,928 126,380
Fruits 624,147 416,740 294,988 216,854 163,314

Seashore 275,453 180,119 122,328 84,695 59,557
Stop Sign 107,356 87,775 72,513 60,134 50,191

Sunflowers 349,382 224,471 155,674 112,928 84,441
Taxi 86,543 61,972 46,599 36,891 30,081

Tennis 31,942 17,703 12,234 9405 7501
Train 355,059 258,854 200,255 160,412 131,059

Figure 10 displays a comparison between the segmentation results with different
values of ∆max. The numbers of segments |S| for the test images are shown in Table 5.
Effectively, small ∆max impacts the segmentation, so that regions with small pixel gradients
and large differences in pixel values are split into several segments. Consequently, it can be
observed that by increasing ∆max, the number of segments |S| decreases. The decrease in
|S| is especially noticeable when dealing with smaller values of ∆max.

Table 5. Number of segments |S| for test images according to parameter ∆max.

I ∆max = 5 ∆max = 10 ∆max = 20 ∆max = 50 ∆max = 100

Airplane 27,237 24,581 23,920 23,761 23,747
Baseball 13,126 11,032 10,505 10,360 10,344

Canal 261,231 225,578 216,978 215,024 214,898
Fruits 464,036 429,965 420,911 417,494 416,740

Seashore 124,666 93,531 86,474 84,695 84,444
Stop Sign 67,569 61,315 60,265 60,135 60,134

Sunflowers 366,326 354,651 350,808 349,382 348,971
Taxi 44,238 36,891 35,326 34,930 34,906

Tennis 20,349 18,458 17,754 17,708 17,703
Train 197,737 167,779 160,412 158,535 158,417

(a) (b)

(c) (d)
Figure 10. Image segmentation with RSM according to different values of ∆max: (a) input image,
(b) ∆max = 5, (c) ∆max = 20, (d) ∆max = 50. Each Si is coloured with a random colour.
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Examples of region image segmentations of the test images Baseball, Stop Sign, and
Taxi are displayed in Figures 11, Figure 12, and Figure 13, respectively. After the segmen-
tation is performed, it can be seen that regions with low variance in pixel values form
common segments while the important image details, such as edges and vertices, are
preserved. Following this, the parameters d, ϵ, and ∆max were tuned manually, so that the
segmentation yielded the best visual results. Although the majority of the regions were
detected as expected, we can observe that some parts of the image are over-segmented
(especially noticeable in Figure 12 below the Stop Sign).

(a) (b)
Figure 11. Region segmentation of Baseball: (a) input image, (b) segmented image.

(a) (b)
Figure 12. Region segmentation of Stop Sign: (a) input image, (b) segmented image.

(a) (b)
Figure 13. Region segmentation of Taxi: (a) input image, (b) segmented image.

In Figure 14, different region segmentation methods are compared on the test image
Canal. Besides the RSM, we used the marker-controlled Watershed method from the
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library OpenCV [88] and DBSCAN from a popular C++ library mlpack [89]. In Table 6, the
numbers of segments |S| are summarised for the test image Canal. Despite the fact that
Watershed yielded the fewest segments among the three methods, I was over-segmented
in some areas (e.g., the water surface). On the other hand, the result of DBSCAN was
considerably better, as larger areas are grouped to form segments. The RSM produces
visually similar results to DBSCAN.

Table 6. Number of segments |S| using different segmentation methods.

I Watershed DBSCAN RSM

Airplane 28,409 48,542 23,761
Baseball 23,278 21,298 10,505

Canal 197,729 498,016 215,024
Fruits 243,714 583,656 416,740

Seashore 126,108 394,168 84,695
Stop Sign 23,324 113,411 60,134

Sunflowers 157,878 576,622 349,382
Taxi 27,862 96,811 36,891

Tennis 24,391 42,800 17,703
Train 153,704 538,013 160,412

(a) (b)

(c) (d)
Figure 14. Comparison of different region segmentation methods: (a) input image, (b) Watershed,
(c) DBSCAN, (d) RSM.

In terms of theoretical time complexity, with n denoting the total number of pixels,
the worst case for Watershed segmentation is O(n log n). On average, though, the algo-
rithm performs in linear time O(n) [90]. DBSCAN’s worst time complexity using proper
implementation is O(n log n). The RSM processes each pixel only once, which is performed
in linear time O(n). Each classified pixel is assigned to a certain segment whose index
is stored in a 2D matrix. Consequently, a query for a segment during the segmentation
procedure is performed in O(1). The operation of merging can be implemented with the
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union-find data structure, which has the amortised time complexity of O(1) [91]. Based on
this, it can be concluded that the time complexity of the RSM is O(n).

The average elapsed CPU times of region segmentation on the test images with
Watershed, DBSCAN, and the RSM are shown in Table 7. The experiments were conducted
on a personal computer with an Intel Core i9-12900K CPU, 64 GB of DDR5 RAM, and
Windows 11 OS. Watershed’s performance turned out to be almost on a par with the RSM,
while DBSCAN was considerably slower for images with large numbers of pixels. Despite
the good performance of Watershed, the RSM was faster in all the test cases.

Table 7. Time measurements of different region segmentation methods on test images. The measure-
ments that are bold indicate the method that performed the fastest for a given test image.

I Watershed [s] DBSCAN [s] RSM [s]

Airplane 0.011 0.743 0.006
Baseball 0.011 0.916 0.005

Canal 0.098 17.163 0.069
Fruits 0.136 10.462 0.083

Seashore 0.076 16.246 0.053
Stop Sign 0.011 0.818 0.010

Sunflowers 0.103 13.694 0.075
Taxi 0.012 0.837 0.010

Tennis 0.011 0.879 0.008
Train 0.080 13.883 0.053

5. Conclusions

This paper introduces a new method, the raster-scan segmentation method (RSM),
for the region segmentation of images based on a raster scan. During the segmentation
in scan-line order, image segments are built incrementally according to the similarity
in the pixels’ local neighbourhoods. Different distance metrics are used to estimate the
similarity between pixels. The RSM was extensively tested on images from the public
image datasets MS COCO and DIV2K. Five images were selected randomly from each
dataset, and were used to demonstrate the results of the proposed method. The RSM was
compared with the widely used region segmentation methods Watershed and DBSCAN.
Extensive experimental work revealed that the RSM brings several advantages. Besides its
ability to extract segments with pixels that have small gradients, the RSM demonstrated
comparable results to other state-of-the art region segmentation methods while being faster
in terms of elapsed CPU time.

Region image segmentation could be used as a preprocessing step in different appli-
cations of image processing. The RSM could be applied on real-world datasets, or could
be used as a real-time segmentation method in sensor and actuator networks due to its
low computational complexity. Another possible use case would be remote sensing. Our
method could be used as an alternative to other segmentation methods in order to extract
different landscape elements from satellite images. Lastly, a possible domain where the
RSM could be applied is object-based image compression, where compression could be
performed on extracted segments instead of in the pixel space.

There are several ways to implement improvements to the RSM in the future. To start
with, the RSM has no mechanisms to deal with noise present in an image. Additional
studies on various types and intensities of noise, applied on images, should be conducted.
After that, the most suitable noise-removing methods in the preprocessing step should be
identified. In addition, currently, the method’s parameters are tuned manually, which can
be inefficient in real-life applications. Consequently, an automatic approach for selecting
the parameters, based on the extracted image’s characteristics, should be developed.
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