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Abstract: Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) have rapidly
evolved, becoming integral to various applications such as environmental monitoring, disaster re-
sponse, and precision agriculture. This paper provides a comprehensive review of the advancements
and the challenges in UAV-UGV collaboration and its potential applications. These systems offer
enhanced situational awareness and operational efficiency, enabling complex tasks that are beyond
the capabilities of individual systems by leveraging the complementary strengths of UAVs and UGVs.
Key areas explored in this review include multi-UAV and multi-UGV systems, collaborative aerial
and ground operations, and the communication and coordination mechanisms that support these
collaborative efforts. Furthermore, this paper discusses potential limitations, challenges and future
research directions, and considers issues such as computational constraints, communication network
instability, and environmental adaptability. The review also provides a detailed analysis of how these
issues impact the effectiveness of UAV-UGV collaboration.

Keywords: unmanned aerial vehicle; unmanned ground vehicle; heterogeneous robots; multi-robot
collaboration

1. Introduction

Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) have seen
rapid advancements in recent years, leading to their widespread use in various applica-
tions such as surveillance, environmental monitoring, disaster response, and precision
agriculture [1–3]. The ability to combine the strengths of UAVs and UGVs into collabo-
rative systems has extended new possibilities for complex tasks that require aerial and
ground perspectives. Each type of vehicle has its own unique strength with UAVs offering
aerial perspectives and rapid deployment and UGVs providing detailed ground level
interaction and manipulation. The integration of these two systems into collaborative
frameworks has opened new possibilities for complex missions that demand both aerial
and terrestrial capabilities.

The collaboration between UAVs and UGVs represents a significant advancement in
the field of robotics. This collaboration allows for the combination of aerial mobility with
ground-based endurance and interaction, enabling more efficient and effective execution
of tasks that neither system could achieve alone [4,5]. For instance, in search and rescue
missions, UAVs can rapidly identify points of interest from the air, while UGVs, equipped
with specialized tools, can navigate to those locations on the ground to perform rescue
operations. This synergistic approach not only enhances operational outcomes but also
provides greater flexibility in adapting to dynamic environments [6,7].
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The rapid advancements in UAV-UGV systems have led to their increased deployment
in various applications, each presenting its own set of challenges and practical require-
ments. The research community has responded by developing sophisticated algorithms
and coordination mechanisms that enable these systems to work together seamlessly.
Such developments have been crucial in addressing the complexities associated with the
real-time operation of multiple autonomous vehicles in dynamic and often unpredictable
environments [8].

Despite the significant progress, UAV-UGV collaboration still faces challenges, partic-
ularly in terms of optimizing communication, coordination, and operational efficiency in
complex scenarios [9]. The limitations related to computational constraints, communication
network instability, and environmental adaptability remain significant obstacles that must
be overcome to fully realize the potential of these systems. These challenges underscore
the need for ongoing research and innovation to enhance the robustness and reliability of
UAV-UGV collaborative frameworks.

The main contributions of this review are as follows:

1. To provide a comprehensive analysis of advancements in UAV-UGV collaboration,
highlighting their improved operational efficiency in different fields.

2. To evaluate the coordination mechanisms and communication technologies that enable
seamless integration of UAV-UGV systems, contributing to the optimization of real-
time collaborative operations.

3. To identify and analyze the key challenges limiting the full potential of UAV-UGV
systems, providing insights into areas requiring further research and development for
improved performance.

The rest of the article is organized as follows: The paper begins with an exploration of
multi-UAV and multi-UGV systems, detailing their evolution and applications as presented
in Section 2. Section 3 examines the mechanisms of collaboration between UAVs and
UGVs, focusing on the roles these systems play in both aerial and ground operations. The
discussion continues with an analysis of the communication technologies that support
seamless data exchange and coordination in Section 4.1. The collaborative tasks and
applications of UAVs and UGVs are discussed in Section 5. Finally, the paper addresses
the significant limitations and challenges that persist in the field, offering insights into the
areas where further research is needed in Section 6. Section 8 concludes the paper.

2. Multi-UAV and Multi-UGV Systems

The development and deployment of UAVs and UGVs have fundamentally trans-
formed various industries, enabling operations in environments that are challenging,
dangerous, or inaccessible to the humans [10,11]. Initially, single UAVs and UGVs were at
the forefront of this transformation. Single UAVs have also been widely utilized in vari-
ous fields, including military surveillance, environmental monitoring, and infrastructure
inspection, due to their versatility. These UAVs offer advantages like high mobility, the
ability to access difficult terrains, and the capability to provide real-time data from an aerial
perspective [12–14]. Nevertheless, these UAVs have their own limitations. For example,
small fixed wing UAVs, although offering fast velocity, a wide field-of-view, and excellent
communication capabilities, are limited by their low load capacity and reduced observation
accuracy. In contrast, small rotary wing UAVs excel in the vertical takeoff and landing and
are particularly effective for reconnaissance missions. However, they also face constraints,
notably a limited load capacity [15]. Despite these challenges, their applications have
expanded to include disaster response, where they can quickly survey the affected areas,
providing essential information for rescue operations, and environmental monitoring. The
versatility and efficiency of single UAVs have made them essential for tasks that require
fast and precise aerial assessments. Among these are UAVs used in disaster response to
quickly access areas that are otherwise unreachable due to debris, collapsed infrastructure,
or hazardous conditions. In addition to this, they can also provide real-time aerial imagery
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and thermal sensing, which is crucial for identifying survivors, assessing the damage, and
planning effective rescue and relief operations.

On the ground, single UGVs have played a pivotal role in tasks that necessitate direct
interaction with the environment. These vehicles range from small, agile robots employed
for explosive ordnance disposal and reconnaissance in military contexts to larger, more
robust robots such as Boston Dynamics’ Spot, which is engineered for industrial inspections
and remote operations in hazardous environments [16]. UGVs offer significant advantages,
including high load capacity and precise observation of ground targets, making them
well-suited for detailed and labor-intensive tasks. However, they face certain limitations,
including a narrow field-of-view, low velocity, and weak communication capabilities [15].
A notable example of UGV utility is in agriculture, where autonomous tractors are uti-
lized to perform precision farming operations such as sowing, weeding, and harvesting
with minimal human intervention [17]. With UGVs, the requirement for human labor in
challenging or dangerous situations can be reduced significantly due to their ability to
perform repetitive, hazardous, or labor-intensive tasks with high precision. In industries
such as agriculture, where accuracy and consistency are paramount, as well as in disas-
ter recovery scenarios, where human presence may be too risky, these vehicles can be
extremely valuable.

While single UAVs and UGVs provide significant benefits in their respective domains,
their limitations in coverage, payload capacity, and operational endurance have driven
the development of multi-UAV and multi-UGV systems. Multi-UAV systems leverage the
aerial mobility and extensive coverage provided by multiple drones to address a broader
range of applications. For instance, in disaster response operations, deploying multiple
UAVs can rapidly survey large areas, providing real-time imagery and data that can be used
to assess damage and coordinate rescue efforts. Similarly, in environmental monitoring,
multiple UAVs can cover extensive areas more efficiently than a single drone, collecting
data on wildlife, vegetation, or pollution levels with greater speed and accuracy. These
systems are particularly beneficial in dynamic environments where timely information is
critical, as they can operate simultaneously to gather comprehensive data over large or
complex terrains.

On the other hand, multi-UGV systems excel in performing tasks that require coordi-
nated physical interaction with the environment. These systems are ideal for applications
such as precision agriculture, where multiple ground robots can work in tandem to monitor
crops, apply fertilizers, or perform weeding. In logistics and supply chain management,
multi-UGVs can automate the movement of goods within warehouses or across manufac-
turing facilities, improving efficiency and reducing the reliance on human labor [18,19].
The coordination of multiple UGVs in a single operation allows for the division of labor
and parallel processing, which can greatly enhance the speed and effectiveness of the tasks
performed [20].

Integrating multi-UAV and multi-UGV systems offers significant advantages in com-
plex and unpredictable environments but managing computational constraints in such sys-
tems remains a critical challenge. High volumes of sensor data, communication overhead,
and real-time decision making require efficient strategies to avoid bottlenecks. Distributed
computing provides an effective solution by distributing computational tasks across mul-
tiple UAVs, UGVs, and external computing nodes. This allows functions like real-time
mapping, object detection, and path planning to be processed concurrently, reducing delays
and ensuring smoother system operations. As demonstrated in [21], the improved mission
allocation model optimizes reconnaissance rewards by efficiently distributing UAV re-
sources. Incorporating time window constraints and target importance leads to higher task
completion rates and improved mission success compared to traditional genetic algorithms.

Energy efficiency, especially on low power devices, is also a crucial aspect of multi-
UAV systems. In [22], the proposed hierarchical clustering based approach significantly
reduces communication overhead, thereby extending the system’s operational lifetime.
This balance between communication and computational energy consumption minimizes
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data transmission distances and volumes, improving energy efficiency. The system’s
ability to enhance energy efficiency in resource constrained environments demonstrates
its effectiveness. The computational demands of multi-UAV and multi-UGV systems are
further supported by advancements in hardware and communication technologies. The
use of GPUs, FPGAs, and real-time operating systems enhances processing speeds for tasks
like simultaneous localization and mapping (SLAM) and object recognition [23–25]. High
speed communication networks, such as 5G, ensure fast and reliable data transfer between
units, reducing latency and enabling effective coordination across the entire system.

UAV enabled Mobile-Edge Computing (MEC) systems further enhance the compu-
tation efficiency and operational performance of multi-UAV systems in time sensitive
applications. Optimizing UAV trajectory and resource allocation improves task completion
rates and ensures that IoT devices finish their computational tasks within required time
constraints, as noted in [26]. The proposed algorithm, which converges to a Karush Kuhn
Tucker (KKT) solution, provides significant performance gains over baseline schemes,
improving the system’s efficiency and accuracy in managing time critical tasks. Addition-
ally, the Distributed Allocation with Time Windows (DATW) method in [27], increases
task success rates by up to 18% compared to traditional methods like Consensus-Based
Bundle Algorithm. This method effectively manages complex time window constraints
and minimizes task conflicts, resulting in higher accuracy and success rates in mission
critical operations.

The collaboration between UAVs and UGVs further enhances the capabilities of these
individually operated systems, offering a coordinated and powerful solution to address
the limitations of single platform deployments [15]. While multi-UAVs excel in aerial
monitoring and rapid data acquisition, multi-UGVs are effective in ground-based tasks
that require physical manipulation or interaction. When integrated together, these systems
have a strong potential to tackle complex missions that require both aerial and ground per-
spectives. For example, in search and rescue operations, UAVs can quickly identify points
of interest from the air, while UGVs, equipped with specialized tools, can navigate to those
locations on the ground to assist with rescue efforts or perform tasks. This collaborative
approach maximizes the strengths of both platforms, providing a more comprehensive and
effective solution than either system could achieve alone. The integration of UAVs and
UGVs in a coordinated operation not only leaded to improved mission outcomes but also
can enhance the resilience and adaptability of the systems in complex, unpredictable and
practical environments.

3. Aerial and Ground Collaborative Systems

The collaboration between UAVs and UGVs represents a pivotal advancement in the
field of robotics, allowing for a more sophisticated and integrated approach to undertake
complex operations [28]. The integration of these systems leverages the unique strengths
of each platform, enabling them to perform tasks that are beyond the capabilities of either
system alone. UAVs, with their rapid aerial mobility and wide area data collection abili-
ties, provide a broad situational overview, which is essential in scenarios requiring quick
assessments over large areas. On the other hand, UGVs excel in detailed ground-level anal-
ysis and can carry out intricate tasks in difficult or hazardous terrains. This combination
allows for the efficient execution of missions that demand both a wide perspective and
precise ground-level interventions, making UAV-UGV collaboration particularly valuable
in dynamic and complex environments [29].

Search and rescue: One of the most significant advantages of UAV-UGV collaboration
is the ability to carry out complex missions with increased level of efficiency and effec-
tiveness [30]. In disaster response scenarios, for example, the UAVs can rapidly assess
the extent of damage from above, identifying critical areas that need immediate attention.
This aerial data can then guide UGVs on the ground, which are deployed to navigate
through the debris or hazardous environments to perform crucial tasks such as search
and rescue, delivering essential supplies, or conducting detailed structural inspections.
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The combination of aerial surveillance with ground-level intervention not only accelerates
response times but also enhances the overall quality and impact of the mission, ultimately
leading to more lives saved and better resource management during critical situations.
In addition, recent advancements in wireless communication technologies, such as 5G,
have significantly improved the real-time data exchange between UAVs and UGVs. The
integration of sophisticated AI algorithms allows for autonomous decision-making and
adaptive mission planning. Enhanced sensor technologies, including LiDAR and thermal
imaging, further enable these vehicles to operate efficiently in challenging environments.

Environmental monitoring: The environmental monitoring and resource management
sectors also stand to gain significantly from UAV-UGV collaboration. In environmental
monitoring, UAVs can cover large areas quickly, capturing data on environmental changes
or potential threats such as wildfires or floods. UGVs can then be used to access specific
areas of interest to perform detailed analysis or interventions, such as soil sampling or
deploying firefighting equipment. This dual approach allows for a more comprehensive
understanding of environmental conditions, as it combines the broad overview provided
by UAVs with the detailed insights gained from UGVs. This integrated capability is
particularly valuable for managing natural resources and responding to environmental
crises, as it enables more informed decision-making and more effective action.

Precision agriculture: In the field of agriculture, UAV-UGV collaboration is driving
significant advancements in precision agriculture, a practice that involves the use of tech-
nology to optimize crop management [1]. UAVs are used to monitor large agricultural
fields from the air, identifying areas where crops may be stressed due to factors such as
pests, disease, or inadequate water. This aerial data is then used to guide UGVs, which
are deployed to perform targeted interventions such as applying fertilizers, pesticides, or
irrigation. By integrating aerial monitoring with ground-level actions, this approach not
only improves the efficiency and effectiveness of agricultural practices but also reduces the
environmental impact by minimizing the use of chemicals and water. As a result, farmers
can achieve higher yields while conserving resources, contributing to more sustainable
agricultural practices. Aside from these environmental benefits, UAV-UGV technology
can significantly reduce farmers’ operating costs. In this way, farmers are able to save
money and reduce the need for fertilizers, pesticides, and water by precisely targeting the
areas that need special attention. Furthermore, automated systems handle tasks that would
otherwise require extensive manual labor, which reduces labor costs.

Infrastructure inspection: Infrastructure inspection and maintenance are other ar-
eas where UAV-UGV collaboration is proving to be highly effective. The use of UAVs
can provide a comprehensive aerial overview of large structures such as bridges, dams,
and power lines, indicating potential issues that may not be visible from the ground [31].
Detailed inspections or repairs can then be performed with UGVs at specific locations,
ensuring that any problems are addressed promptly and efficiently. Through this com-
bined approach, infrastructure inspections become more thorough and accurate, reducing
the risk of overlooking critical issues and improving safety. In addition, by automating
parts of the inspection process, UAV-UGV collaboration can reduce the time and costs
associated with maintaining infrastructure, making it a useful tool for public and private
sector stakeholders.

Formation control: Formation control is a critical aspect of UAV-UGV collaboration,
particularly in military and defense applications. Coordinated formation allows for the
optimal spatial distribution of UAVs and UGVs, ensuring that each platform can perform
its role effectively while supporting the other [15]. This capability is especially important
in combat scenarios, where the ability to quickly adjust formations in response to changing
conditions can be the difference between mission success and failure. Recent advancements
in control algorithms and coordination strategies have made it possible for UAVs and UGVs
to maintain optimal formations even in highly dynamic environments [32]. By enabling
these platforms to work together more effectively, formation control enhances the overall
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operational effectiveness of UAV-UGV teams, making them more capable of handling
complex and rapidly evolving missions.

Surveillance and reconnaissance: UAV-UGV collaboration also offers significant
benefits in the field of surveillance and reconnaissance [33]. For identifying and tracking
potential threats, UAVs can provide real-time aerial surveillance over large areas, providing
a high-level perspective. In addition, UGVs can provide ground-level insight, allowing
for detailed identification and monitoring of targets that may be obscured from the air.
As a result of this combination of aerial and ground perspectives, surveillance operations
become more accurate, reliable, and efficient, reducing security threats and enhancing
detection, monitoring, and response. By integrating UAVs and UGVs into surveillance
and reconnaissance operations, not only can situational awareness be improved, but also
the range and scope of these operations can be expanded, making them more effective in
civilian and military settings.

With UAV-UGV collaboration continuing to evolve, it is expected to become an increas-
ingly vital component across a broad range of industries. As communication technologies,
control algorithms, and autonomy advance, these collaborative systems will be able to
operate more effectively and efficiently in a variety of environments [34]. UAV-UGV collab-
oration offers innovative solutions to some of the most challenging problems in modern
robotics by addressing existing limitations and exploring new applications. In fields such as
disaster response, environmental monitoring, agriculture, infrastructure maintenance, and
defense, the integration of UAVs and UGVs has the potential to transform how we tackle
complex tasks, enabling more efficient, effective, and sustainable solutions to a variety
of problems.

Effective UAV-UGV collaboration is driven by the implementation of advanced tech-
nologies such as 3D mapping, localization, trajectory planning, object tracking, and au-
tonomous navigation [29,35,36]. 3D mapping allows UAVs to create detailed maps of
complex environments, which can then be used to guide UGVs through challenging ter-
rains. With this capability, UGVs can navigate autonomously in areas with weak GPS
signals by using the detailed spatial information provided by UAVs. In addition, local-
ization algorithms are crucial to accurately determining the location of both UAVs and
UGVs in real-time, allowing them to coordinate their movements. Sensor fusion, in which
data from multiple sensors such as cameras, LIDARs, and ultrasonic sensors are combined,
further enhances these techniques. By combining data from multiple sensors, UGVs can
gain a more comprehensive understanding of the environment, allowing them to make
better decisions about how to navigate. Sensor fusion also helps to reduce uncertainty and
errors in localization, allowing for more accurate coordination between UAVs and UGVs.

4. Communication and Coordination in UAV-UGV Collaborative Systems

Establishing effective communication and coordination methods is essential for the
success of UAV-UGV collaborative systems [37]. In complex and dynamic environments,
these two elements are crucial to ensuring that multiple robotic units operate harmoniously
and efficiently. Communication systems enable the exchange of critical data and commands
between UAVs and UGVs, facilitating real-time information sharing and decision-making.
The coordination mechanisms ensure that these units work seamlessly together to achieve
common objectives, whether they are engaged in disaster relief operations, military opera-
tions, or industrial applications. In this section, we now examine the various communica-
tion technologies and coordination strategies utilized in UAV-UGV systems, emphasizing
their impact on operational efficiency and effectiveness.

4.1. Communication Technologies

Considering their rapid advancements, both UAVs and UGVs are revolutionizing
various sectors through their collaborative capabilities. However, effective collaboration
between UAVs and UGVs relies heavily on advanced communication technologies that
facilitate seamless data exchange and coordinated task execution. In Figure 1, we illustrate
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a comprehensive communication framework for cooperative UAV and UGV systems,
particularly showcasing how these technologies integrate to optimize performance. This
introduction delves into the critical role of communication technologies in UAV-UGV
collaboration, highlighting advancements and challenges in this rapidly evolving field.

Figure 1. Communication Framework for Cooperative Multi-UAV and Multi-UGV Systems.

Relay systems: The system described in [38] demonstrates a sophisticated commu-
nication setup where a UAV integrates a relay pod to extend the control range of UGVs
from the typical 1–2 km to up to 26 km. This relay pod allows for continuous and reliable
tele-operated control over extended distances, significantly enhancing situational aware-
ness in military urban operations. The UAV’s communication relay effectively bridges the
gap between the central control station and the UGVs, ensuring seamless data transfer
and operational coordination. Meanwhile, ref. [39] describes a UAV designed to carry
and communicate with a smaller UGV, or Rover, using nRF24L01 transceivers over the
SPI protocol, integrated by a research team at Aydın Adnan Menderes University, Aydın,
Turkey. The UAV serves as a communication relay, linking the central control station
with the Rover, which operates independently after deployment. The system is designed
to be lightweight (for portability and computational efficiency) and power efficient (for
durability of its operations), enhancing the overall operational range and effectiveness of
the UAV-UGV team.

Directional and Non-directional Wi-Fi, Satellite link and Beacons: The proposed
wireless communication system in [40] connects Unmanned Surface Vehicles (USVs), UAVs,
and Autonomous Underwater Vehicles (AUVs) to create a collaborative offshore network,
utilizing multiple communication technologies as shown in Figure 2. The primary link
between the Ground Control (GC) station and USV is established via a directional Wi-Fi
connection. To ensure continuous connectivity in non-Line-of-Sight (LOS) scenarios, a UAV
acts as a relay using directional Wi-Fi links between the USV, GC, and UAV. The UAV and
AUV communicate through a non-directional Wi-Fi link, while both the USV and UAV
are also equipped with satellite links for extended-range communication. Additionally,
a beacon system is used for precise UAV landing. While the communication framework
discussed here is primarily designed for USVs, UAVs, and AUVs, its underlying principles
can be effectively adapted for UAV-UGV collaboration. In environments, where challenges,
such as complex terrains and non-LOS communication issues arise, the integration of
directional and non-directional Wi-Fi, satellite links, and beacon systems provides a robust
and reliable solution. As such, this framework holds significant potential for improving
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communication and coordination in UAV-UGV collaborative operations, particularly in
similarly challenging and complex environments.

Figure 2. Communication system for UAV-USV-AUV Collaboration, Integrating Directional and
Omni-directional Wi-Fi, GPS, and Landing Beacons for Maritime Coordination.

Xbee modules: The solution presented by Arbanas et al. [41] explores a UAV-UGV
cooperative system where the UAV performs aerial manipulation tasks, and the UGV pro-
vides support and transportation. The communication between these systems is managed
through a low level control and sensor collecting board using XBee modules. The reference
values for angular and linear speed are transmitted to the UGV via ZigBee, facilitating effi-
cient and reliable data exchange. The system also supports ad-hoc networks for adaptable
communication in diverse mission scenarios.

Radar, QoS, and 5G technologies: The integration of radar aided localization and
QoS-aware communication in UAV-UGV systems is discussed in [42,43]. As part of these
studies, UAVs are used to assist UGVs in environments with damaged communication
infrastructure, such as post-disaster scenarios. To improve performance and data deliv-
ery in high mobility operations, millimeter-wave (mmWave) communication and joint
radar-aided downlink transmission are used. Despite limited infrastructure, the solu-
tions proposed address the challenge of maintaining effective communication. In [44], a
cooperative UAV-UGV system is introduced where the UAV acts as a flying sensor and
tether attachment device. As a result of this setup, extensive aerial scanning and mapping
can be conducted, while the UGV is able to climb steep terrain with the aid of the tether.
The system includes an autonomous framework for collaborative navigation and tether
attachment, with communication managed through a serial link that transmits telemetry
data at 100 Hz. The paper [45] reviews radio frequency (RF) based localization approaches,
emphasizing the communication technologies involved. As a significant advancement
in the field of UAV and UGV localization, the ubiquitous 5G NR (New Radio) cellular
network is highlighted. In addition, it discusses the potential of 5G NR to address current
localization challenges and its integration with existing robotic systems. To ensure seam-
less integration into current localization systems, utilizing 5G’s unexplored capabilities
will be crucial for future research, highlighting the transformative impact of advanced
communication technologies on UAV and UGV localization.

Game theory: The paper [46] presents a game theoretical approach for managing
bandwidth in UAV-UGV disaster relief networks, where traditional communication meth-
ods are disrupted. The Stackelberg game model is used to allocate bandwidth, with UGVs
determining their capacities and UAVs choosing access based on these capacities. This
method optimizes communication in emergency scenarios. It is concieved that this method
can optimize the communication in emergency scenarios. In particular, the Stackelberg
game model can benefit this scenario by providing a structured hierarchy where UGVs act
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as the 3 leaders and UAVs as the followers, ensuring efficient and prioritized bandwidth
allocation. When implemented practically, this can lead to optimal resource utilization and
minimization of the latency in critical communication scenarios. Additionally, it can also
allow for scalable and adaptable strategies in dynamic disaster environments, which is
usually a practical need of UAV-UGV disaster relief networks.

Fuzzy Logic Control: Recent research demonstrates how fuzzy logic-based systems
enhance control, coordination, and communication in heterogeneous UAV-UGV systems,
particularly in challenging environments with uncertainties. In [47], a fuzzy switching
observer was implemented to estimate unavailable states during Denial of Service (DoS)
attacks, allowing the system to maintain stable tracking and coordination despite external
disturbances. Communication between UAVs and UGVs remained smooth even during the
attacks, ensuring uninterrupted collaboration. In a similar study [48], a Feedback Multilayer
Fuzzy Neural Network (FMFNN) was employed within a formation control strategy, allow-
ing UAVs and UGVs to follow planned trajectories and maintain formation, despite model
uncertainties. The system minimized the communication frequency while maintaining
data accuracy, contributing to reliable coordination. These studies highlight the importance
of fuzzy logic in enhancing UAV-UGV collaboration, ensuring stable trajectory tracking,
formation control, and continuous communication, even under challenging conditions.

4.2. Coordination Mechanisms

The UAV-UGV coordination system involves the collaboration of UAVs and UGVs to
achieve a common goal by leveraging their unique capabilities. UAVs can move quickly,
provide comprehensive and detailed views of the environment, and are less affected by
communication and GPS signal issues. Conversely, UGVs can carry heavier payloads,
endure longer missions, and operate close to the environment, allowing them to deploy
sensors, communicate devices, and perceive details that UAVs might miss. Despite their
individual limitations, the complementary strengths of UAVs and UGVs make the UAV-
UGV coordination system a powerful tool for completing complex tasks.

Arena et al. [49] demonstrate the importance of cellular neural networks (CNNs) with
constant templates in enabling self organizing behaviors, like wavefronts and spiral pat-
terns, essential for modeling complex, adaptive systems. CNNs consist of interconnected
cells that interact with their neighbors to fulfill common goals. Traditionally, CNNs use
centralized, synchronous learning methods, yet a decentralized asynchronous learning
(DAL) framework allows each cell to learn in a spatially and temporally distributed environ-
ment [50]. This decentralized approach is particularly valuable for UAV-UGV coordination,
as it supports autonomous, adaptive decision making in dynamic environments. CNN
based DAL frameworks enhance system resilience and scalability by allowing UAVs and
UGVs to manage their roles independently. Implementing such frameworks in UAV-UGV
networks could lead to improved operational efficiency in complex applications, advancing
research in autonomous coordination.

The distributed real-time control architecture for UAV-UGV systems offers a resilient
framework for managing coordinated real-time operations between aerial and ground
vehicles. This architecture eliminates dependency on central ground based controllers
by enabling autonomous decision making within each UAV and UGV, which is critical
in environments like space exploration and defense where continuous communication
may be unreliable or absent [51,52]. Each vehicle processes data independently and ex-
ecutes essential tasks, such as crowd detection, tracking, and motion planning, directly
onboard [53]. This decentralized approach not only enhances scalability but also reduces
data transmission loads, supporting highly responsive and efficient performance across
large, complex operational areas. The architecture’s adaptability and independence make it
ideal for dynamic, remote applications that demand robust and agile systems. The cross
dimensional distributed control strategy for heterogeneous UAV-UGV systems tackles
the challenge of tracking time varying output formation (TVOF) by addressing nonzero
leader inputs, parameter uncertainties, and external disturbances [54]. This approach uses
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adaptive observers to estimate leader information and coordinate TVOF across aerial and
ground vehicles. Importantly, it operates without the need for precise disturbance limits or
full network information, making it robust and flexible for practical implementation.

The paper [55] explores a distributed adaptive cooperative control approach for
human-in-the-loop (HiTL) UAV-UGV systems, designed to facilitate real-time, decen-
tralized decision making across multiple agents. Each UAV and UGV can independently
process human inputs and adjust their trajectory based on locally available information,
thereby reducing reliance on a centralized control unit. This distribution enables each
agent to respond autonomously to human motion signals while maintaining coordinated
behavior with others in the network. The system addresses signal discontinuities in con-
ventional HiTL methods by integrating adaptive observers across the UAV-UGV network,
ensuring smooth transitions and synchronized control. This kind of distributed real-time
control architecture for UAV-UGV systems can be greatly enhanced by integrating a data
driven learning approach, similar to the H∞ control method used in adaptive cruise control
systems, to manage complex, dynamic environments with greater accuracy [56]. This ap-
proach allows each UAV and UGV to independently estimate unknown system dynamics
by taking advantage of real-time input-output data, enabling an uninterrupted adjustment
to changing conditions without relying on pre-modeled dynamics. Each vehicle’s control
settings might be constantly adjusted through data driven learning, enabling real-time
response to changes in mission requirements, parameter uncertainties, and disturbances.
Since the neural networks in this data driven approach have no approximation errors
and refine the control directly based on actual operating data, the accuracy is further im-
proved [57]. Hence, such integration supports the distributed architecture’s autonomy,
providing each unit with advanced responsiveness and real-time adaptability.

The functional roles of UGVs and UAVs in a coordination system depend on their
capabilities. The main challenge in UAV-UGV collaboration is how to best utilize their
complementary strengths to complete tasks that are difficult for other coordination types.
According to Ding et al. [3], there are four primary functional roles in a UAV-UGV coordi-
nation system, from a control system perspective (Figure 3). They are:

• Sensors: Detect environmental changes or events and relay this information to other
components or vehicles.

• Actuators: Execute specific actions or tasks.
• Decision Makers: Make critical decisions, such as task planning and motion planning,

for other components or vehicles.
• Auxiliary Facilitators: Provide essential services such as energy, communication, and

computation, supporting the sensors, actuators, and decision makers.

Figure 3. UAV-UGV coordination system showcasing different types of UAVs and UGVs.
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The existing UAV-UGV coordination systems generally focus on designing one or
more of these functional roles according to the application’s needs. UAVs and UGVs can
assume one or more of the aforementioned roles within a system to achieve specific tasks.
In the following sections, we discuss various coordination systems and their applications.

4.2.1. UAVs Serving as Sensors and UGVs as Actuators or Decision Makers

In this collaborative air-ground system, the UAV operates as a sensor, responsible
for collecting, transmitting, detecting, and tracking data. Concurrently, the UGV utilizes
the information provided by the UAV to plan its route and offers real-time updates on
the roadway conditions, allowing for timely adjustments. UAVs are known for their high
mobility and extensive field of view, which enables rapid data acquisition. As a result, the
information sent to the UGV greatly improves the overall efficiency of the task [58].

The study of [59] has used UAVs to generate a 2D map and photogrammetry to create a
detailed 3D map of the area, aiding UGVs in effective route planning. In [60], a system was
implemented where UAVs utilize stereo vision and parallax to produce a depth map, which
helps UGVs make informed decisions with accurate spatial information. The research work
in [61] presents a pursuit-evasion system where the UAV, a quadrotor, acts as an aerial
sensor, continuously capturing terrain data and the evader’s location within a complex
3D polygonal environment. The UGV, a Mecanum vehicle, processes this information
using an improved boundary value problem (BVP) to execute optimal path planning and
control strategies, particularly in scenarios where the evader’s location is partially or fully
unknown. This framework, integrating real-time UAV sensing and UGV decision making,
enables efficient coordination and rapid adaptation to evolving environmental and pursuit
conditions, as shown in Figure 4.

Figure 4. Cooperative path planning and communication architecture for UAV-UGV Pursuit-Evasion
in 3D Polygonal Environments [61].

In the paper [62], an elevation map based localization system was developed to allow
UGVs to determine their position using terrain data from UAVs, eliminating the need for
GPS. The system described in [63] created an autonomous framework where UAVs provide
UGVs with bird’s eye views to assist in obstacle avoidance and path planning, thereby
enhancing navigation and mission efficiency. A real-time collaborative system proposed
in [30] employs UAVs to offer overhead views that guide and dynamically adjust the UGV’s
path, improving both accuracy and responsiveness. The abstraction model for UGV teams
introduced in [64,65] enables UAVs to manage and coordinate the team without needing
detailed knowledge of each vehicle, focusing on overall formation and positioning.

The study of [66] has explored how UAVs can coordinate multiple UGVs in urban
environments, enhancing their deployment and operational effectiveness. A vision based
control method in [67] uses UAVs with cameras to guide ground robots into desired for-
mations, combining centralized control with distributed strategies. Another study [68]
developed a vision based control approach that reduces resource requirements for UGVs
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and provides a flexible, robust architecture to handle various errors. In [69], a method
was demonstrated where UAVs use camera observations to control UGVs along a specific
trajectory, improving navigation precision. The paper [70] introduced a technique called su-
pervised morphogenesis, where UAVs guide the self assembly of UGVs using aerial views
to manage and adjust their formation. Hailong et al. [71] presented an autonomous explo-
ration and mapping system that integrates UAVs and UGVs for GPS denied environments.
In this system, the UGV performs rapid autonomous exploration and active 2.5-D SLAM
to create a preliminary environment model. This model then guides a UAV in conducting
detailed 3-D mapping to refine the navigation reference. In a similar study by Hu and
Assaad [72] proposed a method to enable cognitive sharing between UAVs and UGVs by
recognizing and identifying the same objects, enhancing coordination and efficiency.

4.2.2. UAVs Serving as Auxiliary Facilities and UGVs as Actuators

In UAV-UGV coordination systems, UAVs act as auxiliary facilities that enhance the
operational capabilities of UGVs, especially in challenging environments. Additionally,
UAVs can be used to transport UGVs to difficult terrain that would otherwise be inaccessible
due to obstacles or steep slopes. Using this capability, UGVs are able to perform tasks in
environments where ground mobility alone is not sufficient. In addition to being able to
transport UGVs to these hard-to-reach areas, UAVs are also capable of executing critical
missions requiring ground based operations, thereby extending the reach and flexibility of
the robotic system.

Additionally, UAVs can provide essential support to UGVs by supplying power, fuel,
or other resources necessary for their sustained operation. In remote or harsh environments
where refueling or recharging stations are unavailable, UAVs can deliver these supplies
directly to the UGVs, ensuring continuous operation without the need for frequent returns
to base stations. This auxiliary role of UAVs not only extends the operational duration
of UGVs but also enhances their performance by mitigating the limitations imposed by
energy constraints. By serving as both transporters and resupply units, UAVs significantly
contribute to the overall effectiveness and efficiency of UGVs in executing complex tasks.

In Miki et al. [44], the authors describe a system where a UAV can help a UGV to
climb steep inclines by attaching a tether to an anchor point at the top of a cliff. This
tether then allows the UGV to ascend by winding it, overcoming obstacles that would
otherwise be impassable. In this setup, the UAV acts as both a sensor and an auxiliary
facility, providing aerial scanning and mapping while directly supporting the UGV’s
climbing efforts. Similarly, Heven Drones, in partnership with Roboteam, introduced an
integrated land and air robotic solution at Israel’s ISDEF exhibition. This system combines
Heven Drones’ aerial technology with Roboteam’s ground robots, creating a unified UAV-
UGV platform. The UAV’s ability to lift the UGV to complex terrains underscores its
role in overcoming obstacles and enabling operation in otherwise inaccessible areas, with
the system controlled through a single interface that supports both flying and driving
modes [73].

4.2.3. UAVs Serving as Sensors and UGVs as Auxiliary Facilities

UAVs, with their aerial mobility and ability to access inaccessible locations, serve
as versatile sensors, providing high resolution data collection and real-time monitoring.
However, their limited battery life and payload capacity constrain their operational range
and duration. To address these limitations, UGVs can be deployed as auxiliary facilities,
offering ground support to UAVs. UGVs can extend the operational range of UAVs by
acting as mobile charging stations, transportation units, and launch platforms, enabling
UAVs to cover larger areas and conduct prolonged missions. This symbiotic relationship
between UAVs and UGVs has the potential to revolutionize applications in precision
agriculture, infrastructure inspection, and environmental monitoring, where efficient and
comprehensive data collection is critical.
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The study [1] presents a symbiotic UAV-UGV system designed for precision agri-
culture, where UAVs act as sensors and UGVs serve as auxiliary facilities. The research
introduces two new informative path planning problems designed to optimize the use of
aerial and ground robots for agricultural tasks. The first problem, the Sampling Traveling
Salesperson Problem with Neighborhoods (SAMPLINGTSPN), addresses scenarios where
UGVs are used to conduct time consuming soil measurements. The objective is to select
optimal sampling locations within overlapping areas (disks) and plan a tour that minimizes
the combined travel and measurement time. The second problem involves maximizing
the number of aerial measurements by a UAV with limited energy. The study proposes a
symbiotic system where the UAV lands on the UGV, allowing the UGV to transport the UAV
between deployment locations. This cooperation effectively extends the UAV’s operational
range and efficiency. Roperoe et al. [74] introduced TERRA (cooperaTive ExploRation
Routing Algorithm), a path planning algorithm for cooperative UGV-UAV exploration,
tailored to scenarios like planetary surface exploration. In this system, the UAV’s limited
energy capacity is mitigated by the UGV acting as a moving charging station, enabling the
UAV to efficiently reach all target points. The approach combines classic combinatorial
techniques with modern evolutionary strategies to optimize travel distance.

Liu et al. [75] explore a novel high voltage powerline inspection system, where the
UGV functions as a mobile platform, launching and recycling the UAV, which flies over
powerlines for inspection within its limited endurance. The coordination between the UGV
and UAV enables efficient inspection of large powerline networks, introducing a new Two-
Layer Point-Arc Routing Problem (2L-PA-RP) with algorithms designed to optimize the
inspection process and improve routing efficiency. The system described in [76] introduced
a novel approach to vehicle assisted multi-drone surveillance, addressing the limitations
of UAVs’ battery capacities by leveraging vehicle drone cooperation. This cooperation
combines the extended driving range of vehicles with the high mobility of UAVs, enabling
efficient surveillance over wide areas. The research proposes a new problem, the vehicle
assisted multi-drone routing and scheduling problem, and introduces the Vehicle assisted
multi-UAV Routing and scheduling algorithm to solve it.

4.2.4. UAVs Serving as Actuators and UGVs as Auxiliary Facilities

In this cooperative system, UGVs can play a crucial auxiliary role by supporting UAV
operations. UGVs can transport UAVs to locations near surveillance targets or maintenance
sites, extending the UAVs’ operational range and conserving their battery life. Additionally,
UGVs can serve as reference stations for the Global Navigation Satellite System (GNSS),
helping to reduce navigation uncertainties for UAVs [58]. For rapid and economical services
over congested areas, such as search and rescue (SAR) missions or delivery services, UGV
assistance is invaluable. The vertical takeoff and landing capabilities of multi-rotor UAVs
enable them to dock with UGVs, which act as mobile charging stations and support
platforms. This ability to autonomously land and recharge extends the UAVs’ operational
duration and efficiency. By working together, UAVs and UGVs enhance each other’s
capabilities, making their collaboration essential for a wide range of applications.

The results presented in [77] introduces a hybrid camera array based system for the
autonomous landing of a UAV on a moving UGV in GPS denied environments. The
system employs a combination of fisheye and stereo cameras to provide accurate location
and depth imaging of the UGV. A motion compensation based state estimation algorithm
determines the UGV’s movement, allowing the UAV to align its motion accordingly. A
nonlinear controller ensures precise landing of the UAV on the moving UGV. As discussed
in [78], a vision based control system for the autonomous landing of a quadrotor UAV on a
moving UGV is presented. This system operates without direct communication between
the UAV and UGV. A fractional order fuzzy proportional integral derivative controller is
designed to handle the quadrotor’s nonlinear dynamics and wind induced disturbances.
The control system includes a feedback linearization term to address model nonlinearities
and a supervisory control algorithm to ensure fast, smooth, and precise landings.
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The approach outlined in [79] introduces a vision based autonomous landing system
for multirotor UAVs on a moving platform using Deep Reinforcement Learning. The
Deep Deterministic Policy Gradients algorithm is employed to manage continuous state
and action spaces, enabling the UAV to learn landing maneuvers through simulation
and real world scenarios. The paper [80] presents a control method for the autonomous
landing of a quadrotor UAV onto a skid steered UGV, focusing on time delays. The method
details local controllers for feedback linearization and a joint decentralized controller for
coordinating the landing. The impact of time delays on stability is analyzed using Retarded
Functional Differential Equations, with delay margins assessed for various configurations.
Simulation results demonstrate the effectiveness of this approach for outdoor autonomous
coordinated landings.

4.2.5. UAVs and UGVs Functioning as Sensors

UAVs and UGVs function as mobile sensor platforms, each leveraging their unique
capabilities to enhance data collection and monitoring. UAVs equipped with an array
of sensors such as high resolution cameras, LiDAR, thermal imaging, and multispectral
sensors, can quickly and efficiently cover large areas from the air. As they fly over these
areas, they collect a vast amount of data, capturing detailed images and measurements
that can be processed in real-time. This ability to gather data from an aerial perspective is
particularly valuable in applications such as environmental monitoring, where UAVs can
track changes in vegetation, water bodies, and wildlife habitats, or in disaster response,
where they provide critical information about the extent of damage and aid in search and
rescue operations.

On the other hand, UGVs complement UAVs by operating on the ground, where they
navigate through difficult terrains and confined spaces. They can perform close up inspec-
tions and gather data from a ground perspective equipped with similar sensors, including
cameras, LiDAR, and various environmental sensors. This is particularly useful in scenarios
like infrastructure inspection, where UGVs can access and examine the condition of bridges,
tunnels, and pipelines [72]. In addition, UGVs are used in hazardous environments, such
as in chemical plants or disaster sites, where they can safely collect data without putting
human operators at risk. The data collected by UGVs provides detailed, ground level
insights that, when combined with the aerial data from UAVs, create a comprehensive view
of the environment.

Shkurti et al. [81] describe a heterogeneous multi-robot system for environmental
monitoring, specifically marine ecosystem inspection. The system includes a fixed wing
aerial vehicle, an autonomous airboat, and an agile legged underwater robot. These robots
operate hierarchically and interact with remote scientists to autonomously collect visual
footage of underwater regions from multiple scales and mediums. Field trials demonstrated
the system’s effectiveness in multi-domain monitoring of coral reefs, enabling real-time
interaction with marine biologists for comprehensive and efficient environmental assess-
ments. The deployment and recovery of autonomous or remotely piloted platforms from
research vessels significantly enhance the capabilities and reach of the research fleet. The
paper [82] discusses the use of ship launched and ship recovered Boeing Insitu Scan Eagle
UAVs to study the marine atmospheric boundary layer and ocean surface processes. During
the October 2012 Equator Mix experiment and the July 2013 Trident Warrior experiment,
these UAVs provided detailed atmospheric and oceanographic measurements, uncovering
longitudinal atmospheric roll structures and surface signatures of internal waves. The
UAV data, combined with ship based instruments, demonstrated the UAVs’ ability to offer
high resolution observations in remote ocean areas, thereby extending the research fleet’s
capabilities for oceanographic and atmospheric studies.

A heterogeneous team of aerial and ground robots for persistent monitoring of terrains
has been explored in [83]. This robot team is tasked with surveillance and mapping along a
predefined path. Both types of robots are equipped with cameras for terrain monitoring
within their fields of view. A key feature of this study is the aerial robots’ capability to
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occasionally land and recharge, optimizing their operational time. The primary goal is to
minimize the total time required for monitoring by finding optimal paths for the robots,
considering terrain constraints and fuel limitations. The study [84] introduces a switched
cooperative control scheme where UAVs and UGVs work together to locate a moving
target. The UGVs form a guarding formation using a navigation function, effectively acting
as a perimeter. While UAVs follow a designated trajectory, they scan the enclosed area
to provide aerial surveillance. The UAVs and UGVs operate as sensors by combining
decentralized flocking algorithms with navigation functions, which allow them to avoid
obstacles, reach specific positions, and maintain direction control. This cooperative effort
enhances situational awareness and ensures effective target detection.

4.3. Advanced Learning Based Techniques for UAV-UGV Cooperative Optimization

Recent advancements in UAV-UGV collaboration demonstrate substantial progress
in developing algorithms and frameworks that enhance cooperative capabilities within
complex environments. These approaches enable more efficient task execution, resource al-
location, and navigation, advancing UAV-UGV team effectiveness in practical applications,
utilizing reinforcement learning, artificial intelligence, and neural networks. Innovations
such as autonomous landing systems, advanced path planning, proficiency based coordi-
nation, and natural language based scene understanding contribute to overcoming specific
challenges in UAV-UGV operations. These methods collectively strengthen UAV-UGV
collaboration, establishing it as a scalable, intelligent solution adaptable across various
sectors for complex missions.

The Imitation Augmented Deep Reinforcement Learning (IADRL) model proposed
in [85] enables UAVs and UGVs to form a cooperative coalition to address limitations
encountered when operating independently. The IADRL algorithm learns complementary
behaviors of UAVs and UGVs from a demonstration dataset based on simple, non opti-
mized strategies in basic scenarios. These observations allow the algorithm to create an
optimized policy that directs the UAV-UGV coalition to work together efficiently, minimiz-
ing costs while achieving task objectives. Reinforcement learning techniques are employed
to continuously enhance the cooperation strategy through environmental feedback. More-
over, IADRL supports multiple UAV-UGV coalitions, scaling effectively to handle complex
tasks in dynamic environments. In [86], a hybrid approach is presented that combines
clustering with multi agent reinforcement learning for UAV-UGV coalition path planning.
This approach utilizes a modified mean shift clustering algorithm (MEANCRFT) to segment
targets into circular zones based on density and range, substantially reducing time to reach
these targets. By enabling simultaneous engagement with multiple targets, this method
improves task efficiency. Vehicles are trained with two reinforcement learning algorithms,
Multi-agent Deep Deterministic Policy Gradient (MADDPG) and Multi-agent Proximal
Policy Optimization (MAPPO), achieving nearly double the efficiency of prior methods in
terms of target navigation and task completion.

The development of a novel vision based deep reinforcement learning approach in [87]
facilitates autonomous landing of a quadrotor UAV on a moving UGV without direct
communication between the vehicles. Using an Automatic Curriculum Learning (ACL)
framework alongside the Twin Delayed Deterministic Policy Gradient (TD3) algorithm,
the UAV dynamically adapts its landing strategy to environmental changes, such as UGV
motion and wind interference. This system incorporates a Landing Vision System (LVS)
with ORB algorithms for real-time localization and pose estimation, complemented by
a “Ghosting” method to consolidate UGV motion trajectories for enhanced tracking and
prediction. This approach achieved a landing success rate of 91% with a distance error of
0.44 m, outperforming traditional TD3 methods. A new framework for Apprenticeship
Bootstrapping using Inverse Reinforcement Learning (ABS-IRL-DQN) is introduced in [88]
to facilitate learning of complex UAV-UGV coordination tasks through simpler sub task
demonstrations. ABS-IRL-DQN enables a UAV to keep multiple UGVs within its field of
view, achieving performance levels comparable to those of human operators. This method
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breaks down tasks into manageable sub tasks demonstrated by less skilled operators,
allowing the model to build complex skills from basic actions. Each sub task has unique
actions and states, creating partial reward signals that approximate the complete reward,
enabling the agent to autonomously perform full coordination tasks.

Proficiency Constrained Multi-Agent Reinforcement Learning (Mix-RL), introduced
in [6], optimizes UAV-UGV coordination in dynamic environments such as disaster re-
sponse and precision agriculture. This model matches task assignments with the unique
strengths of each robot, such as speed, perception range, and adaptability, to maximize
efficiency. Demonstrated in a criminal vehicle tracking scenario, Mix-RL achieved an 89.6%
success rate with proficiency awareness, significantly outperforming the 55.2% success rate
without it. Training episodes with proficiency awareness also resulted in improved reward
outcomes, illustrating Mix-RL’s effectiveness in complex environments. The deep reinforce-
ment learning (DRL) approach proposed in [89] enables a UAV swarm to serve as Mobile
Base Stations (MBSs) for optimal communication coverage for ground users in partially
observable areas. The Deep Recurrent Graph Network (DRGN) architecture facilitates
inter-UAV communication and utilizes recurrent units to harness historical data, addressing
challenges of partial observation. When combined with maximum entropy learning, this
model, called the Soft Deep Recurrent Graph Network, is both scalable and cost effective,
surpassing previous DRL and heuristic methods in transferability and robustness.

In [90], an Artificial Neural Network (ANN) based system has been developed for
precise positioning and navigation in UAV-UGV collaboration, particularly focused on path
planning in unstructured environments. By integrating inputs from GPS, the Robot Vision
System (RVS), and the Quadcopter Vision System (QVS), this system ensures accurate local-
ization and decision making. Using competitive learning, the network generates collision
free paths by dynamically adjusting to obstacles, enhancing UAV-UGV team capabilities for
complex navigation tasks. The paper [91] introduces a Multi-Agent Robotic System (MARS)
to support UAV-UGV path planning and sensory data collection in complex indoor settings.
MARS utilizes an enhanced Shunting Short Term Memory model for pathfinding and
obstacle avoidance, with a mediating agent facilitating communication between UAVs and
UGVs. Field tests demonstrate that MARS effectively gathers 2D and 3D environmental
data, making it a valuable tool for UAV-UGV coordination. In [92], a natural language
based scene understanding framework is proposed to enhance inter robot communication
and coordination among heterogeneous multi-robot systems, such as UAVs and UGVs.
This system leverages deep learning to identify semantic meanings from environmental
data, creating semantic graphs that support coordinated action. Using JENA-TDB for data
storage, the framework enables efficient retrieval of mission relevant information, with a
Planning Domain Definition Language (PDDL) planner generating action sequences based
on mission parameters to facilitate real-time multi-robot cooperation.

5. Collaborative Tasks and Applications

This section examines the collaborative use of UAVs and UGVs in several important
applications. This integration enhances capabilities in various fields by leveraging their
complementary strengths. We focus on three key areas: Surveillance and Monitoring,
Agriculture, and Infrastructure Inspection. In Surveillance and Monitoring, the combined
use of UAVs and UGVs provides comprehensive coverage and real-time data collection,
which is vital for security and emergency response. In agriculture, this collaboration
enables precision farming, improving crop management and monitoring. For Infrastructure
Inspection, UAVs and UGVs work together to conduct thorough and efficient assessments
of critical structures, ensuring timely maintenance and safety.

5.1. Surveillance and Monitoring

The convergence of UAVs and UGVs has transformed surveillance and monitoring sys-
tems by combining their unique strengths. This integration has expanded the possibilities
for applications in various fields, including disaster response, environmental monitoring,
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border security, and infrastructure inspection [93]. In disaster situations, UAVs can quickly
assess damage, find survivors, and set up communication networks, whereas UGVs can
navigate through dangerous terrain to deliver supplies and perform rescue missions. For
environmental monitoring, UAVs are used to gather high-resolution aerial data, while
UGVs perform detailed ground-level measurements and collect samples. By integrating
UAVs and UGVs, these combined efforts enhance both the efficiency and reliability of data
collection, leading to improved outcomes in surveillance and monitoring tasks.

Zhao et al. [94] focus on enhancing post disaster rescue and management through an
integrated ground-air-space (GAS) communication system, particularly when traditional
networks are unavailable. This system enables the timely collection of critical data from
points of interest in disaster affected areas by coordinating UGVs and UAVs. It consid-
ers a GAS vehicular crowdsensing (VCS) campaign, where UGVs periodically dispatch
and recall UAVs at multiple stops within a work zone. The goal is to maximize the total
amount of collected data and ensure geographic fairness, while simultaneously minimiz-
ing energy consumption utilizing hierarchical multi-agent deep reinforcement learning
with diffusion models. Moreover, Ma et al. [95] present an approach for dynamic task
allocation in UAV-UGV operations within complex urban environments, using an adaptive
depth graph neural network (AD-GNN) combined with biomimetic algorithms. AD-GNN
adjusts its depth based on scenario complexity, while biomimetic algorithms optimize
task distribution by mimicking natural processes. This method significantly enhances
UAV-UGV collaboration in tasks such as reconnaissance, combat, and disaster management
by providing real-time adaptability to unpredictable conditions, achieving operational
efficiencies above 85% in search and rescue operations and 90–95% in disaster management
scenarios after optimization.

The system described in [96] focuses on enhancing surveillance and targeting through
the integration of PackBot UGVs and Raven UAVs. This study introduces a novel Decentral-
ized Data Fusion technique that effectively merges data from both UAV and UGV platforms,
improving the ability to track moving targets in open environments. Stolfi et al. [97] pro-
posed a new surveillance system to detect individuals escaping from restricted areas. This
system uses a new swarming mobility model, CROMM-MS (Chaotic Rossler Mobility
Model for Multi-Swarms), which controls the trajectories of a diverse team of unmanned
vehicles, including aerial, ground, and marine units. A Competitive Coevolutionary Ge-
netic Algorithm is proposed to optimize vehicle parameters and enhance the evasion ability
of the targets, employing a predator prey strategy. This system represents an advanced ap-
proach where UAVs, UGVs, and UMVs work together to detect escapers early, utilizing an
extended version of the CROMM model that accommodates heterogeneous multi swarms.

In [98], a vehicular fog computing (VFC) system was introduced, where UGVs handle
computation tasks offloaded from UAVs in natural disaster areas. UAVs are highly effective
in these situations due to their rapid deployment and flexibility, but their performance is
often constrained by limited energy and computational capacity. The VFC based system,
using distributed computing, addresses these limitations by allowing UGVs to take over the
computational tasks, conserving energy and processing power for the UAVs [99,100].The
computation task offloading was formulated as a two sided matching problem, and a stable
matching algorithm was used to assign each UAV the most suitable UGV to ensure efficient
collaboration between UAVs and UGVs. This approach optimizes resource utilization and
reduces average delay, ensuring smooth interaction between UAVs and UGVs. In [101],
UAVs are recognized for their potential in surveillance tasks but are constrained by limited
energy and computational power. While UAVs typically delegate tasks like image or
video processing to mobile edge computing facilities at base stations, but this option is
unavailable in rural areas [102]. To overcome this, the authors propose offloading tasks
to UGVs that operate along fixed routes, such as highways. A secure communication
strategy is developed to address the risk of eavesdropping and account for the movement
of UGVs, which may exit the target area. Tasks cached on UAVs are modeled as a stochastic
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queue, and an iterative algorithm is introduced to optimize key factors like latency, power,
and distance.

The study in [103] explores cooperative exploration for search and rescue operations in
damaged buildings. It presents a system where a UGV navigates on the ground while a UAV
provides an elevated perspective, enhancing situational awareness. A camera mounted on
the UGV tracks a fiducial tag on the UAV, enabling the UAV to maintain a fixed position
relative to the UGV. This setup allows the UAV to offer a bird’s eye view to a remote operator,
facilitating observation beyond the UGV’s line of sight. The system described in [104]
proposes a hierarchical control framework for a cooperative UAV-UGV platform focused
on wildfire detection and suppression. This framework features a three-layered structure,
with an airship acting as a mobile mission controller that coordinates UAVs and UGVs. It
addresses task generation and allocation through integer linear programming, enabling
dynamic waypoint assignment for UAVs based on wildfire spread models, resulting in
improved mission efficiency, reduced resource usage, and autonomous decision-making in
wildfire suppression. Khaleghi et al. [53] evaluates different control architectures for UAV
and UGV teams in surveillance and crowd control. It compares centralized, hierarchical,
distributed, and hybrid architectures, assessing their performance in crowd detection,
tracking, and motion planning to determine the most effective approach for these tasks.

As described in [105], a multi agent framework is introduced for enhanced disaster
surveillance. The framework utilizes the strengths of both vehicle types (UAVs’ speed and
coverage with UGVs’ endurance and recharge capability) by utilizing UGVs as mobile
recharging stations for UAVs. The study shows that this collaborative approach improves
operational efficiency and route planning in disaster management scenarios, as demon-
strated through a simulation covering 30 task points over a 4-h mission with different
team configurations. The team with 4 UAVs and 2 UGVs performed best, reducing the
operational cost by 63.73% compared to a single UAV-UGV team. However, increasing the
number of agents beyond this does not proportionally improve performance due to higher
energy costs. The study shows that a balance between UAV and UGV numbers is critical
for the best performance and cost efficiency. Therefore, this framework not only improves
route planning in disaster management but also provides valuable insights into the most
suitable team configurations for continuous surveillance operations.

The research in [106] addresses the challenge of persistent surveillance in urban
environments by integrating UAVs and UGVs. This study focuses on generating optimal
circular paths for both UAVs and UGVs to ensure complete area coverage while minimizing
travel time. The problem is formulated as a large scale 0–1 optimization problem and solved
using a hybrid algorithm combining the Estimation of Distribution Algorithm (EDA) and
Genetic Algorithm (GA). This approach enhances global and local search capabilities, while
a sweep based method and an online local adjustment strategy are employed to refine
path sequences and adapt to changing coverage requirements. The approach proposed
in [4] introduces a path planning method for collaborative coverage monitoring in urban
scenarios by integrating UGVs with UAVs. The model includes realistic elements such
as restricted zones and building obstructions to simulate urban scenarios. A Three stage
Alternating Optimization Algorithm is introduced, which involves prediction and rolling
optimization to handle complex path planning tasks.

5.2. Agriculture

With the advancements in UAV technologies, numerous studies have explored their
applications in agriculture, which holds the most significant potential for UAV utilization.
The Association for Unmanned Vehicle Systems International (AUVSI) predicts that agricul-
tural UAVs will dominate 80% of the commercial UAV market in the future [107]. Currently,
agricultural UAVs are primarily utilized for pest control and monitoring various crops. In
addition, the potential applications of agricultural UAVs extend to soil and field surveys,
sowing, spraying, crop monitoring, irrigation management, growth evaluation, mapping,
remote sensing, reconnaissance, and transportation [108].
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Introducing UAVs into traditional agriculture has significantly reduced working hours
and labor requirements while improving the efficiency of agricultural operations [109].
However, since UAVs rely on limited battery power, employing a multi-UAV system
is more efficient than using a single UAV [110,111]. For instance, using a single UAV
for tasks such as spraying or monitoring large farmlands is time consuming and energy
intensive. In contrast, a multi-UAV system allows for simultaneous cooperative work
(Figure 5), where individual UAVs perform specific tasks on assigned areas of the farmland,
thereby expediting the completion of agricultural tasks on large farmlands. Therefore,
multiple UAVs in agriculture enhances efficiency and speed for large scale tasks. They can
collaborate or divide tasks, ensuring rapid completion with increased or equal accuracy due
to overlapping mission areas. While a single UAV can achieve high accuracy with a well
planned path but its performance is highly dependent on the path planning algorithm [112].

Figure 5. Task distribution of single UAV (Left) vs. Multi-UAV Systems (Right) in agricultural fields.

In agricultural operations involving multi-UAVs and multi-UGVs, it is crucial to
create detailed maps of crop positions, shapes, and dimensions for effective obstacle
avoidance and target localization. However, due to limited computational resources,
varying velocities, and complex terrains, online SLAM procedures are often impractical.
Autonomous mobile robots in agriculture still heavily depend on GNSS free localization
systems, making robotic localization and mapping a challenging issue [113]. Despite
numerous proposed solutions, significant improvements are still needed, which could
lead to innovative approaches for autonomously localizing and operating outdoor robots
in agriculture.

In study [114], a combined team of a UAV and a UGV was deployed in a strawberry
field to address disease detection. The UAV scanned the entire crop field to identify areas
of interest, and the UGV subsequently approached these marked locations to perform
targeted analysis and collect samples. This approach enabled efficient disease detection by
capitalizing on the aerial capabilities of the UAV to conduct wide area inspections, while
the UGV managed ground level interventions. The RHEA project in [115], addressed pest
control in cereal crops through coordinated operations involving two six-rotor drones and
three tractors, as illustrated in Figure 6. The drones performed aerial inspection missions to
identify weed and pest concentrations, and the tractors executed ground level treatments
in response to drone data. A Mission Manager played a critical role by integrating data
from both drones and trackers, optimizing robot trajectories and actions based factors
such as cost and time. This setup showcased a well organized collaboration where the
UAVs provided large scale coverage, and the UGVs handled specific intervention tasks,
enhancing efficiency in pest control operations.
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In another framework [116], a cooperative crop management system was implemented
in lettuce fields, focusing on identifying and analyzing plant stresses due to water and nitro-
gen deficiencies, as illustrated in the Figure 7. The UAV conducted aerial scans, identifying
specific locations of interest based on variations in vegetation. Both UAV and UGV plat-
forms equipped with various sensors, while Multispectral and RGB images were collected
using both multicopter and fixed wing UAVs to calculate the normalized differential vege-
tation index, learning classifiers aimed at predicting plant quality. Meanwhile, the UGV
was responsible for ground level analysis, using tools such as a handheld spectrometer,
chlorophyll meter, and leaf water potential meter for accurate ground truth data collection.
This integrated UAV-UGV approach allowed for precise detection of crop stress factors and
enabled timely interventions to optimize plant health.

Figure 6. The RHEA project for pest control in cereal crops: Deployment of two rotor drones and three
tractors working collaboratively for aerial inspection and ground level treatments (Left). Additional
RHEA tractors used in a related pest control initiative (Right) [115].

Figure 7. DJI 900 hexacopter manufactured by DJI, a leading technology company headquartered in
Shenzhen, China, conducting an aerial survey over a lettuce field to capture multispectral data (Left).
Husky UGV from Clearpath Robotics deployed at CPP’s Spadra Farm for ground level support
(Right) [116].

In the study [117,118], a UAV and a UGV generated individual point clouds of a
field, representing its surface model and vegetation index. This methodology merged
these datasets, producing a comprehensive map with detailed vegetation information,
illustrating the value of UAV-UGV data fusion. The FREEDOM robot [119], is built for
agricultural field exploration, providing valuable support to human operators in both
routine and emergency scenarios. A distinctive feature of the FREEDOM robot lies in its
ability to extend inspection missions by supplying power from the ground crawler to the
aerial unit, thereby allowing the UAV to conduct prolonged field surveys. The crawler can
also transport the UAV across challenging terrains, showcasing the adaptability of ground
units in supporting aerial operations essential for monitoring crop health and assessing
field conditions.

To meet the demands of future large scale, integrated industrialized agriculture, a UAV-
UGV collaboration system is essential for improving operational efficiency. Despite their
potential benefits, the technical capabilities required for effective UAV-UGV collaboration
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in real environments are not yet fully developed [120]. Current research on industrialized
agriculture primarily offers broad comments and lacks detailed discussions on cutting
edge technologies. Studies have shown that while UAVs excel in high dimensional broad
vision and flexible motion for tasks such as monitoring, crop counting, and pesticide
spraying [121], their limited load, size, and endurance make them unsuitable for long
duration and large area tasks. Conversely, UGVs, which are used for harvesting, sowing,
and mapping, have greater load capacity and endurance but lack the speed, flexibility,
and field of view of UAVs [122,123]. Effective space ground cooperative systems can
leverage the strengths of both UAVs and UGVs, with UAVs collecting environmental
data and UGVs using this information for more efficient operations [124,125]. However,
achieving this collaboration in real world scenarios requires overcoming key technical
challenges such as energy management, control navigation, and operational efficiency.
Table 1 provides an overview of the objectives and tasks identified in various studies on
UAV-UGV collaboration in agriculture, highlighting the significant contributions and focus
areas of each research work.

Table 1. Summary of objectives and tasks in UAV-UGV collaborative research for agricultural applications.

Ref. Objective Task

[126]
Improve robot localization by
integrating ground and
aerial data

Compute detailed traversability maps by
analyzing the filtered vegetation data, allowing
the UGV to plan and follow optimal paths
through complex and vegetated terrains, as
illustrated in Figure 8.

[120]
Enhance UAV-UGV
collaboration for future
industrialized agriculture

Focus on dynamically assigning job roles
between UAVs and UGVs, integrating and
processing data from various sources, and
enabling cooperative formation
control strategies.

[120]
Optimize small and
medium-sized UGV platforms
for agricultural use

Emphasize safety in operations, reduce soil
compaction, and improve positioning accuracy
to enhance UGV performance in
agricultural settings.

[113]
Improve multi-machine
collaboration in
precision agriculture

Facilitate collaboration among multiple UAVs,
multiple UGVs, and combined UAV-UGV
systems for enhanced precision
agriculture practices.

[127]
Achieve efficient UAV-UGV
coordination tasks
in agriculture

Aim to complete agricultural tasks more
efficiently and accurately by enabling real-time
information exchange and coordination between
UAVs and UGVs.

[128]
Implement multi-UAV
collaboration for
plant protection

Utilize multiple UAVs for tasks like remote
sensing, mapping, spraying, and monitoring
pests and weeds, to protect crops
more effectively.

[129]
Utilize multi-UGV
collaboration for large scale
agricultural operations

Improve efficiency in large-scale farming by
leveraging multiple UGVs and traditional
agricultural vehicles to cover vast
areas effectively.

[130] Develop UAV-UGV systems
for weed monitoring

Focus on automatic detection and spraying of
weeds in large outdoor areas using UAV-UGV
collaboration, enhancing weed control efforts.

[125]
Facilitate UAV-UGV
collaboration for greenhouse
environmental mapping

Use UAVs and UGVs to remotely sense and map
key environmental variables within greenhouses,
such as temperature, humidity, brightness, and
CO2 levels.
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Table 1. Cont.

Ref. Objective Task

[131] Combine UAV-UGV systems
for rugged terrain adaptation

Develop UAV-UGV systems that can move
across amphibious and rugged terrains,
overcoming challenges related to vision and
movement flexibility.

[132]
Innovate with embodied
intelligent technology for
UAV-UGV coordination

Integrate advanced features like autonomous
coordination, perception, decision-making,
interactive learning, and self-improvement
capabilities into UAV-UGV systems.

Figure 8. Terrain-Based localization for collaborative UAV-UGV mapping enables the generation of
detailed traversability maps using filtered vegetation data, facilitating optimized UGV path planning
in complex environments [58,126].

5.3. Infrastructure Inspection

Traditional quality inspections of buildings involve manual processes that are time
consuming and prone to human error [133–135]. These methods typically include visual
assessments, photography, and measuring tools compared with Building Information
Modeling (BIM) models, often leading to inconsistencies and inefficiencies [136]. Regular
inspection and monitoring of buildings and infrastructure are essential for maintaining
safety and functionality in construction fields [137,138]. The built environment encom-
passes a range of infrastructure, including commercial and residential buildings, roads,
bridges, tunnels, and pipelines.

The integration of UAVs and UGVs represents a significant advancement in the field
of infrastructure inspection. Relevance can be drawn from the advancements in UAV
technology, especially its applications in architecture, engineering, and construction have
been expanded, leading to improvements in operations and safety [139]. The use of UAVs
and UGVs together provides a highly effective solution for inspecting and monitoring
infrastructure. UAVs offer an aerial perspective and mobility, while UGVs provide detailed
ground level capabilities. This collaborative approach enhances the efficiency, accuracy, and
safety of inspections, reducing human error and increasing operational effectiveness [140].

The paper [141] introduce a new theoretical framework for inspecting complex 3D
infrastructures with multiple UAVs. This framework ensures complete coverage of the
infrastructure by dividing it into horizontal planes and assigning specific areas to each
UAV. The images captured by the UAVs are then processed using Structure from Motion,
stereo SLAM, and mesh reconstruction algorithms to create detailed 3D meshes for visual
inspection. The study [142] proposed a multi Quadruped Robot system automates the data
collection and analysis process, enhancing reliability and efficiency. In this system, a master
robot gathers general data and identifies regions of interest, while a slave robot provides
detailed inspections of these areas. It improves the detection of construction defects such as
cracks and alignment errors. In fact, the paper [136] presents a vision based mobile robotic
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system that can autonomously navigate and be aware of their surroundings are becoming
essential. The solution is proposed through a UAV-UGV collaboration system, where
autonomous navigation is performed by the UGV, and an external viewpoint to observe
inaccessible areas is provided by the UAV. This system improves navigation efficiency in
cluttered, GPS denied environments by continuously estimating the UAV’s position and
using sensors for localization, mapping, and path planning.

Furthermore, studies in [143,144] propose using an UAV to work cooperatively with
a UGV to enhance data collection and mapping. The UAV first captures 3D terrain data
through images, which aids in planning paths and determining scanning locations for
the UGV. Inspecting large and complex dams is time consuming and costly as it requires
specialized equipments and poses significant safety risks to inspectors. UAVs offer a
promising solution by serving as data acquisition platforms for photogrammetric 3D
reconstruction and analysis. The paper [145] presents a case study at Brighton Dam in
Maryland, where multiple UAVs were used to create high resolution 3D models of the
dam. The models demonstrated sub-millimeter accuracy in detecting various defects and
provided valuable insights into mission planning and imaging specifications, showcasing
the effectiveness of UAVs in enhancing dam inspection processes. Another system uses
multiple UAVs for autonomous and cooperative inspection of 3D structures [146]. Each
UAV independently covers a section of the structure while avoiding collisions, relying
solely on onboard computers and sensors. The collected visual data is then processed
collaboratively to generate detailed 3D models.

Various studies present systems combining underwater robots with USV for inspecting
underwater structures like bridge piers and dams [147–149]. With cameras, depth sensors,
and IMUs for posture control, the remotely operated vehicle (ROV) conducts detailed
underwater inspections using the USV’s surface navigation. These systems operate with
minimal personnel and integrate GPS and LRF for precise positioning. In comparison to
human divers, the robots displayed a significant improvement in inspection efficiency and
safety in field experiments. It should be noted however, that these robotic systems still face
several potential challenges. One major limitation is the difficulty in maintaining stable
communication between the underwater ROV and the surface USV, especially in deep
or turbulent waters. Additionally, navigating complex underwater environments with
obstacles and limited visibility can pose significant operational challenges for the robots.

6. Limitations and Challenges of Air-Ground Collaboration

Air-ground collaborative systems, which combine the strengths of UAVs and UGVs,
offer significant advantages across various applications due to the complementary nature of
these robots. However, this diversity also introduces complexities that can hinder smooth
collaboration. Integrating these components requires careful attention to ensure they work
together effectively and enhance overall mission efficiency.

One of the key challenges in these systems is the computational burden. UAVs and
UGVs, often limited by size and weight, have restricted computational capacities. This
becomes particularly critical in real-time operations, where data needs to be processed
and decisions made instantly. Communication network instability can further disrupt
the smooth interaction required for effective collaboration. Dynamic load balancing can
distribute tasks evenly across UAVs and UGVs, preventing any single component from
becoming overwhelmed even when network conditions fluctuate, contributing to network
optimization and improving overall network stability [150,151]. Adaptive routing methods,
such as Ad-hoc On Demand Distance Vector and Optimized Link State Routing, dynam-
ically adjust communication pathways based on real-time network conditions, ensuring
more stable and efficient data transfer [152,153]. Moreover, delay tolerant networking
further enhances reliability by buffering data during periods of disconnection and trans-
mitting it once connectivity is restored [154]. Placing computational resources closer to the
UAVs and UGVs, known as multi-access edge computing, reduces latency and manages
bandwidth, thereby supporting network optimization [155]. Additionally, fuzzy logic
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based network control adjusts parameters in response to real-time conditions, providing a
flexible solution for handling environmental uncertainties.

Table 2 provides an overview of limitations in existing UAV-UGV systems, including
issues related to communication range, data transmission rates, mapping accuracy, and
UAV landing techniques.

Table 2. Summary of limitations in existing UAV-UGV systems.

Section Ref. Limitation

Communication

[41]

Reliance on XBee modules may limit communication range and
data rate, potentially hindering scalability in larger or more
complex missions. These limitations could impact real-time
data transmission, leading to challenges with latency and
reliability, particularly in high-speed or
extended-area operations.

[42]

The system’s dependency on mmWave technology could face
challenges due to lower sensitivity caused by the smaller
antenna size. Additionally, mmWave signals are more
susceptible to being blocked by physical barriers like walls,
buildings, and trees.

[44]

The serial link for telemetry data transmission at 100 Hz may
not accommodate higher data rates required for complex
applications. This limitation could impact the system’s ability
to process sophisticated sensor data or manage multiple
operations simultaneously, potentially affecting effectiveness in
scenarios needing rapid and detailed analysis.

[45]

The potential limitations in 5G NR integration with existing
systems, particularly in areas with limited infrastructure
coverage, could lead to inconsistent connectivity. Moreover,
integration with legacy systems may encounter compatibility
issues, slowing the adoption of advanced 5G features.

Mapping

[156]

The system’s effectiveness relies on the accurate overlap
between aerial and ground maps. Insufficient overlap can
impede the precise registration of data, resulting in less reliable
position estimation and updating for the UGV.

[157]

The effectiveness of this method depends on the accurate
overlap between the dense 3D reconstructions from the Micro
Aerial Vehicle (MAV) and the maps generated by the ground
robot. Inadequate overlap can impair the alignment process,
leading to less reliable localization and map augmentation.

[158]

The method depends on the presence of distinct planar surfaces
for accurate registration, which may be ineffective in
environments with sparse or irregular features. Additionally, it
relies on globally scaled point clouds, limiting its applicability
in GPS denied or scale-challenged environments.

[159]

The system’s reliance on GPS for positioning and obstacle
mapping limits its effectiveness in areas where GPS signals are
unavailable or unreliable. This significantly restricts its use in
urban canyons, dense forests, and indoor settings, where GPS
signals are often compromised.

UAV Landing [160]

The proposed approach relies heavily on deep learning and
reinforcement learning, which may require extensive training
data and computational resources. While the MCTD3 and
ACOACH algorithms improve precision and training efficiency,
they may struggle to generalize to highly dynamic or
unpredictable UGV movements not encountered
during training.
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As the complexity of air-ground collaborative missions grows, there is also an in-
creasing need for advanced embedded hardware that can manage the high computational
demands. This challenge is tough for UAVs because they need to minimize weight and
power consumption, which limits the types of hardware they can use. Developing efficient
and resilient embedded systems capable of handling these demands is crucial for the suc-
cess of air-ground collaboration. The Table 3 provides a detailed overview of the primary
issues associated with UAV-UGV collaboration systems, highlighting areas that require
focused attention.

Table 3. Challenges and limitations in UAV-UGV collaboration systems.

Key Areas of Concern Challenges and Limitations

Complex Coordination

• Differences in dynamics, speed, and communication protocols
between UAVs and UGVs complicate task coordination [105,161].

• Advanced algorithms are needed for efficient real-time
decision-making.

Communication Latency and Bandwidth Constraints

• High dependency on low-latency communication to ensure timely
data exchange [42].

• Bandwidth limitations can hinder the amount and quality of data
shared between UAVs and UGVs.

• Limited infrastructure in certain environments exacerbates
communication challenges, impacting overall system
coordination [162].

Energy and Resource Management

• UAVs have limited flight time due to energy constraints,
restricting mission duration [31,163].

• Managing energy resources effectively is crucial, especially in
environments with limited access to recharging or refueling [105].

• Poor resource management can lead to mission failure or reduced
operational efficiency.

Environmental and Terrain Challenges

• UAVs may encounter difficulties operating in adverse weather
conditions, affecting flight stability and data collection [164].

• UGVs face challenges in navigating rough or uneven terrain,
which can slow down or halt progress.

• Terrain-adaptive algorithms and environment-aware planning are
essential for overcoming these obstacles and ensuring
mission success.

Computational Burden

• UAVs and UGVs often have limited computational capacity due
to size and weight constraints, making it difficult to handle
real-time operations.

• The need for real-time data processing and decision-making
places a significant strain on these systems.

• Failure to manage computational tasks effectively can lead to
delays, errors, or system crashes.

Communication Network Instability

• Instability in communication networks can disrupt the flow of
information between UAVs and UGVs, leading to
coordination failures.

• Unstable communication can result in missed opportunities,
errors, or mission failure [162].

Embedded Hardware Limitations

• UAVs have restrictions due to the need to minimize weight and
power consumption, limiting the types of hardware they can
use [43].

• Balancing high performance with lightweight and power-efficient
hardware can make system design and implementation more
complex [165].

7. Discussion

Multi-robotic systems, including multi-UAVs and multi-UGVs, are transforming the
operational landscape for tasks requiring high mobility and resilience across complex
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terrains. With current advancements in task allocation algorithms and energy efficient
clustering, multi-UAV and multi-UGV systems are gaining significant operational capability.
However, a key limitation remains in computational resources when handling real-time
data from multiple agents, especially in remote areas. Exploring more advanced distributed
computing methods and dynamic role switching among agents to adapt to unpredictable
environments remains a crucial research direction. Future developments could integrate
real-time environmental learning, enabling systems to respond autonomously to changes,
such as shifting terrain or variable weather, maximizing mission efficiency.

The synergy between UAVs and UGVs enables an advanced framework for tackling
diverse tasks, such as disaster response and infrastructure inspection. As a timely and
rapidly advancing topic, UAV-UGV collaboration represents an open field for research, with
ongoing developments that promise to address critical gaps in autonomous systems. By
combining UAVs’ wide range data acquisition with UGVs’ detailed ground interventions,
these systems address tasks neither could accomplish alone. However, limitations like
dependency on stable communication links persist, especially in high interference areas.
We have discussed more flexible control frameworks that allow UAVs and UGVs to adjust
roles based on real-time situational analysis, enhancing resilience and adaptability. Looking
to the future, there is potential to integrate advanced AI driven mission planning that
autonomously tailors UAV-UGV interactions based on task demands, maximizing their
versatility. Furthermore, research could explore autonomous swarm coordination, where
multiple UAVs and UGVs work together in complex environments, and predictive mainte-
nance, where UAVs inspect UGVs in the field for real-time diagnostics. Advancements in
human-robot collaboration are also anticipated, wherein UAV-UGV systems interact with
human responders in disaster relief, enabling more responsive and intelligent air-ground
operations across increasingly complex scenarios.

Establishing robust communication and coordination is fundamental for effective
UAV-UGV collaboration, especially in complex and dynamic environments. Advanced
communication technologies, such as relay systems, 5G NR cellular networks, directional
Wi-Fi, and satellite links, have greatly enhanced data exchange and coordination, allowing
UAVs and UGVs to perform synchronized tasks even in challenging non-line-of-sight
settings. These technologies are critical for applications in urban, military, and space
exploration scenarios where reliable connectivity is often compromised. However, despite
these advancements, maintaining stable communication in high interference or GPS denied
areas remains a significant challenge. Future research in this rapidly evolving field could
focus on decentralized and autonomous communication models, where UAVs and UGVs
can operate independently under fluctuating connectivity, thereby extending their utility
in high stakes situations. Techniques such as game theoretical bandwidth allocation and
neural network driven adaptive communication offer promising directions for ensuring
reliable, low latency data transfer in critical missions. This open research area holds
substantial potential to establish more resilient, adaptable UAV-UGV systems capable of
meeting the demands of increasingly complex, real-time collaborative operations.

In domains such as precision agriculture, surveillance, and infrastructure inspection,
integrating aerial and terrestrial robotic systems has markedly enhanced data accuracy and
operational effectiveness by utilizing each platform’s specialized capabilities. In precision
agriculture, aerial units conduct large scale remote sensing to detect biotic and abiotic
stress factors in crops, while terrestrial units perform targeted interventions, such as precise
soil sampling and agrochemical applications, thus optimizing resource distribution and
minimizing environmental impact. In surveillance, aerial platforms provide high reso-
lution, wide area monitoring, rapidly identifying potential security threats from above,
while ground platforms enable close up inspections, object tracking, and physical inter-
actions in complex or obstructed terrains. Similarly, in infrastructure maintenance, aerial
systems enable efficient, comprehensive surveys of large structures like bridges or pipelines
to identify potential vulnerabilities, while ground systems execute detailed diagnostics,
repairs, and material assessments, often using high precision tools and sensors. A crit-
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ical limitation, however, remains in the substantial energy demand for continuous and
expansive operations, which affects mission endurance and reliability. Addressing this
challenge will require further refinement in task specific resource allocation, allowing UAVs
to prioritize high altitude, large scale assessments while UGV systems focus on localized,
intensive interventions.

UAV-UGV collaborative systems and their technologies remain highly dynamic and
open to research, with continuous developments needed to address challenges in computa-
tional capacity, connectivity, and energy efficiency. As these systems advance, they are set
to play an increasingly important role across diverse applications, making this a critical
and evolving area for future research.

8. Conclusions

In this paper, we provided a comprehensive review of UAV-UGV collaboration and
particularly highlighted the advancements and challenges reported in high quality studies.
In this review, it was found that integrating UAVs and UGVs into collaborative systems
represents a significant leap forward in the field of robotics, with implications for a wide
range of industries. Due to the capability of UAVs to provide high level aerial surveillance,
combined with the detailed control capabilities of UGVs, it is possible to accomplish com-
plex missions that neither system would be able to accomplish on its own. The collaboration
enhances operational efficiency and expands the range of applications, making it possi-
ble to address challenges in fields such as disaster response, environmental monitoring,
and infrastructure inspection. In spite of these advances, the field still faces significant
challenges, particularly in the areas of communication technologies, coordination mech-
anisms, and computational resources. As these systems operate in unpredictable and
dynamic environments, robust, adaptable solutions that can function reliably in real-time
are required.

This review has also highlighted the significant progress made in the development of
collaborative UAV-UGV systems, along with advancements in communication frameworks
and coordination strategies that underpin these efforts. However, fully realizing the
potential of UAV-UGV collaboration necessitates continued research focused on addressing
technical limitations and ensuring that these systems can operate autonomously and
efficiently in a wide range of complex environments. The ongoing evolution of these
technologies presents a promising avenue for innovative solutions to some of the most
critical challenges faced across various sectors. By systematically addressing existing
limitations, particularly those related to communication, coordination, and computational
efficiency, UAV-UGV systems can be further optimized to perform more sophisticated and
demanding tasks with enhanced reliability and precision. This continued development
will not only improve the operational capabilities of these systems but also broaden their
applicability to emerging fields, solidifying UAV-UGV collaboration as a leading force in
the advancement of robotics technology.

In closing, it should also be noted that AI can play a crucial role in enhancing UAV-
UGV systems by enabling more sophisticated decision-making processes and adaptive
behaviors, purely based on data-driven approaches [166–168]. AI algorithms can optimize
path planning, obstacle avoidance, and real-time data processing, which are essential for
autonomous operations. This is especially applicable to situational awareness, disaster
response, or routine applications in agriculture and other practically deployable environ-
ments. Additionally, machine learning techniques can improve the systems’ ability to learn
from past experiences and adapt to new environments, further increasing their efficiency
and reliability. It is therefore possible that in the foreseeable future, a combination of AI
and machine learning methods with UAV-UGV systems can lead to major advancements in
the capabilities of standalone systems to tackle adversarial problems we face today.
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Abbreviations
The following abbreviations are used in this manuscript:

5G NR 5G New Radio
2L-PA-RP Two-Layer Point-Arc Routing Problem
ACOACH Adaptive Critic Online Actor-Critic Heuristic
ACL Automatic Curriculum Learning
AD-GNN Adaptive Depth Graph Neural Network
AI Artificial Intelligence
ANN Artificial Neural Network
AUV Autonomous Underwater Vehicle
AUVSI The Association for Unmanned Vehicle Systems International
BIM Building Information Modeling
BVP Boundary Value Problem
CNN Cellular Neural Networks
CROMM Chaotic Rossler Mobility Model
CROMMMS Chaotic Rossler Mobility Model for Multi-Swarms
DAL Decentralized Asynchronous Learning
DATW Distributed Allocation with Time Windows
DRGN Deep Recurrent Graph Network
DRL Deep Reinforcement Learning
EDA Estimation of Distribution Algorithm
FMFNN Feedback Multilayer Fuzzy Neural Network
FPID Fractional Proportional-Integral-Derivative
GA Genetic Algorithm
GAS Ground-Air-Space
GC Ground Control station
GNSS Global Navigation Satellite System
GPS Global Positioning System
HiTL Human-in-The-Loop
IADRL Imitation Augmented Deep Reinforcement Learning
IMU Inertial Measurement Unit
KKT Karush-Kuhn-Tucker
LOS Line-of-Sight
LVS Landing Vision System
MADDPG Multi-agent Deep Deterministic Policy Gradient
MAPPO Multi-agent Proximal Policy Optimization
MARS Multi-Agent Robotic System
MAV Micro Aerial Vehicle
MCTD3 Multi-Critic Twin Delayed Deep Deterministic Policy Gradient
MEC Mobile-Edge Computing
MEANCRFT Modified Mean-Shift Clustering Algorithm
Mix-RL Proficiency Constrained Multi-Agent Reinforcement Learning
mmWave Millimeter-Wave
PDDL Planning Domain Definition Language
QoS Quality of Service
RF Radio Frequency
ROV Remotely Operated Vehicle
ROS Robot Operating System
SAMPLINGTSPN Sampling Traveling Salesperson Problem with Neighborhoods
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SAR Search and Rescue
SLAM Simultaneous Localization and Mapping
TD3 Twin Delayed Deterministic Policy Gradient
TVOF Time Varying Output Formation
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UMV Unmanned Marine Vehicle
USV Unmanned Surface Vehicle
VCS Vehicular CrowdSensing
VFC Vehicular Fog Computing
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39. Ulutaş, T.; Avcı, O.; Akar, E.C.; Köksal, B.; Kalkan, Y. Simple Design and Implementation of Two-Way Communication System
through UAV. Balk. J. Electr. Comput. Eng. 2023, 11, 61–70. [CrossRef]

40. Pokorny, J.; Ma, K.; Saafi, S.; Frolka, J.; Villa, J.; Gerasimenko, M.; Koucheryavy, Y.; Hosek, J. Prototype Design and Experimental
Evaluation of Autonomous Collaborative Communication System for Emerging Maritime Use Cases. Sensors 2021, 21, 3871.
[CrossRef]

41. Arbanas, B.; Ivanovic, A.; Car, M.; Orsag, M.; Petrovic, T.; Bogdan, S. Decentralized planning and control for UAV–UGV
cooperative teams. Auton. Robot. 2018, 42, 1601–1618. [CrossRef]

42. Xu, X.; Qian, Y.; Zhang, R.; Yang, X. Integrated Radar-Aided Localization and QoS-Aware Communications for UAV-UGV
Cooperative Systems. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal
Processing (WCSP), Changsha, China, 20–22 October 2021.

43. Xu, X.; Zhang, R.; Qian, Y. Location-Based Hybrid Precoding Schemes and QoS-Aware Power Allocation for Radar-Aided
UAV–UGV Cooperative Systems. IEEE Access 2022, 10, 50947–50958. [CrossRef]

44. Miki, T.; Khrapchenkov, P.; Hori, K. UAV/UGV autonomous cooperation: UAV assists UGV to climb a cliff by attaching a tether.
In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 8041–8047.

45. Kabiri, M.; Cimarelli, C.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H. A review of radio frequency based localisation for aerial and
ground robots with 5g future perspectives. Sensors 2022, 23, 188. [CrossRef]

46. Ying, B.; Su, Z.; Xu, Q.; Ma, X. Game Theoretical Bandwidth Allocation in UAV-UGV Collaborative Disaster Relief Networks. In
Proceedings of the 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science
& Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), Haikou, China, 20–22 December 2021.

47. Li, Y.Y.; Li, Y.X. Resilient Distributed Fixed-Time Tracking of Heterogeneous UAVs-UGVs Systems Against DoS Attacks. IEEE
Trans. Syst. Man Cybern. Syst. 2024, 54, 5780–5790. [CrossRef]

48. Xiong, H.; Deng, H.; Liu, C.; Wu, J. Distributed event-triggered formation control of UGV-UAV heterogeneous multi-agent
systems for ground-air cooperation. Chin. J. Aeronaut. 2024, in press. [CrossRef]

http://dx.doi.org/10.1109/ICJECE.2021.3088294
http://dx.doi.org/10.3390/s22166286
http://dx.doi.org/10.3390/drones7020132
http://dx.doi.org/10.1109/JIOT.2021.3073208
http://dx.doi.org/10.3390/drones6090226
http://dx.doi.org/10.3390/electronics13122239
http://dx.doi.org/10.3390/s18020630
http://www.ncbi.nlm.nih.gov/pubmed/29461496
http://dx.doi.org/10.3390/a17050177
http://dx.doi.org/10.1142/S2301385024500274
http://dx.doi.org/10.3390/drones8050193
http://dx.doi.org/10.1007/s10846-024-02055-w
http://dx.doi.org/10.3390/drones8050182
http://dx.doi.org/10.1016/j.csi.2020.103451
http://dx.doi.org/10.17694/bajece.1115408
http://dx.doi.org/10.3390/s21113871
http://dx.doi.org/10.1007/s10514-018-9712-y
http://dx.doi.org/10.1109/ACCESS.2022.3173806
http://dx.doi.org/10.3390/s23010188
http://dx.doi.org/10.1109/TSMC.2024.3408410
http://dx.doi.org/10.1016/j.cja.2024.05.035


J. Sens. Actuator Netw. 2024, 13, 81 31 of 35

49. Arena, P.; Baglio, S.; Fortuna, L.; Manganaro, G. Self-organization in a two-layer CNN. IEEE Trans. Circuits Syst. I Fundam. Theory
Appl. 1998, 45, 157–162. [CrossRef]

50. Luitel, B.; Venayagamoorthy, G.K. Decentralized Asynchronous Learning in Cellular Neural Networks. IEEE Trans. Neural Netw.
Learn. Syst. 2012, 23, 1755–1766. [CrossRef]

51. Ramos, J.; Ribeiro, R.; Safadinho, D.; Barroso, J.; Rabadão, C.; Pereira, A. Distributed architecture for unmanned vehicle services.
Sensors 2021, 21, 1477. [CrossRef] [PubMed]

52. Munera, E.; Poza-Lujan, J.L.; Posadas-Yague, J.L.; Simo, J.; Noguera, J.F.B. Distributed Real-time Control Architecture for
ROS-based Modular Robots. IFAC-PapersOnLine 2017, 50, 11233–11238. [CrossRef]

53. Khaleghi, A.M.; Xu, D.; Minaeian, S.; Li, M.; Yuan, Y.; Liu, J.; Son, Y.J.; Vo, C.; Mousavian, A.; Lien, J.M. A comparative study
of control architectures in UAV/UGV-based surveillance system. In Proceedings of the IIE Annual Conference. Proceedings.
Institute of Industrial and Systems Engineers (IISE), Montreal, QC, Canada, 31 May–3 June 2014.

54. Tang, H.; Chen, Y.; Ali, I. Cross-dimensional Distributed Control for Heterogeneous UAV-UGV Systems with Nonzero Leader
Input. IEEE Trans. Intell. Veh. 2024, early access. [CrossRef]

55. Liang, H.; Yang, S.; Li, T.; Zhang, H. Distributed adaptive cooperative control for human-in-the-Loop heterogeneous UAV-UGV
systems with prescribed performance. IEEE Trans. Intell. Veh. 2024, early access. [CrossRef]

56. Jleilaty, S.; Ammounah, A.; Abdulmalek, G.; Nouvelière, L.; Su, H.; Alfayad, S. Distributed real-time control architecture for
electrohydraulic humanoid robots. Robot. Intell. Autom. 2024, 44, 607–620. [CrossRef]

57. Zhao, J.; Wang, Z.; Lv, Y.; Na, J.; Liu, C.; Zhao, Z. Data-Driven Learning for H∞ Control of Adaptive Cruise Control Systems.
IEEE Trans. Veh. Technol. 2024, early access. [CrossRef]

58. Liu, C.; Zhao, J.; Sun, N. A review of collaborative air-ground robots research. J. Intell. Robot. Syst. 2022, 106, 60. [CrossRef]
59. Lazna, T.; Gabrlik, P.; Jilek, T.; Zalud, L. Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in

highly accurate localization of gamma radiation hotspots. Int. J. Adv. Robot. Syst. 2018, 15, 1729881417750787. [CrossRef]
60. Kim, J.; Kwon, J.W.; Seo, J. Multi-UAV-based stereo vision system without GPS for ground obstacle mapping to assist path

planning of UGV. Electron. Lett. 2014, 50, 1431–143. [CrossRef]
61. Liang, X.; Wang, H.; Luo, H. Collaborative Pursuit-Evasion Strategy of UAV/UGV Heterogeneous System in Complex Three-

Dimensional Polygonal Environment. Complexity 2020, 2020, 1–13. [CrossRef]
62. Kaslin, R.; Fankhauser, P.; Stumm, E.; Taylor, Z.; Mueggler, E.; Delmerico, J.; Scaramuzza, D.; Siegwart, R.; Hutter, M. Collaborative

localization of aerial and ground robots through elevation maps. In Proceedings of the 2016 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016; pp. 284–290.

63. Zhang, S.; Wang, H.; He, S.; Zhang, C.; Liu, J. An Autonomous Air-Ground Cooperative Field Surveillance System with Quadrotor
UAV and Unmanned ATV Robots. In Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology
in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 19–23 July 2018.

64. Michael, N.; Fink, J.; Kumar, V. Controlling Ensembles of Robots via a Supervisory Aerial Robot. Adv. Robot. 2008, 22, 1361–1377.
[CrossRef]

65. Michael, N.; Fink, J.; Kumar, V. Controlling a team of ground robots via an aerial robot. In Proceedings of the 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007.

66. Chaimowicz, L.; Kumar, V. Aerial Shepherds: Coordination Among UAVs and Swarms of Robots; Springer: Tokyo, Japan, 2007;
pp. 243–252.

67. Aranda, M.; López-Nicolás, G.; Sagues, C. Control of Mobile Robot Formations Using Aerial Cameras; Springer: Cham, Switzer-
land, 2017.

68. Aranda, M.; Mezouar, Y.; López-Nicolás, G.; Sagüés, C. Scale-Free Vision-Based Aerial Control of a Ground Formation With
Hybrid Topology. IEEE Trans. Control. Syst. Technol. 2019, 27, 1703–1711. [CrossRef]

69. Rao, R.; Kumar, V.; Taylor, C. Visual servoing of a UGV from a UAV using differential flatness. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003.

70. Mathews, N.; Christensen, A.; Stranieri, A.; Scheidler, A.; Dorigo, M. Supervised morphogenesis: Exploiting morphological
flexibility of self-assembling multirobot systems through cooperation with aerial robots. Robot. Auton. Syst. 2018, 112, 154–167.
[CrossRef]

71. Qin, H.; Meng, Z.; Meng, W.; Chen, X.; Sun, H.; Lin, F.; Ang, M.H. Autonomous Exploration and Mapping System Using
Heterogeneous UAVs and UGVs in GPS-denied Environments. IEEE Trans. Veh. Technol. 2018, 68, 1339–1350. [CrossRef]

72. Hu, X.; Assaad, R.H. The use of unmanned ground vehicles (mobile robots) and unmanned aerial vehicles (drones) in the
civil infrastructure asset management sector: Applications, robotic platforms, sensors, and algorithms. Expert Syst. Appl. 2023,
232, 120897. [CrossRef]

73. Magazine, E. Heven Drones Partners with Roboteam to Launch First Ever Flying Robot 2022. Available online: https://www.
edrmagazine.eu/heven-drones-partners-with-roboteam-to-launch-first-ever-flying-robot (accessed on 20 September 2024).

74. Ropero, F.; Muñoz, P.; R-Moreno, M. TERRA: A path planning algorithm for cooperative UGV–UAV exploration. Eng. Appl. Artif.
Intell. 2019, 78, 260–272. [CrossRef]

75. Liu, Y.; Shi, J.; Liu, Z.; Huang, J.; Zhou, T. Two-Layer Routing for High-Voltage Powerline Inspection by Cooperated Ground
Vehicle and Drone. Energies 2019, 12, 1385. [CrossRef]

http://dx.doi.org/10.1109/81.661681
http://dx.doi.org/10.1109/TNNLS.2012.2216900
http://dx.doi.org/10.3390/s21041477
http://www.ncbi.nlm.nih.gov/pubmed/33672605
http://dx.doi.org/10.1016/j.ifacol.2017.08.1600
http://dx.doi.org/10.1109/TIV.2024.3366932
http://dx.doi.org/10.1109/TIV.2024.3391176
http://dx.doi.org/10.1108/RIA-01-2024-0013
http://dx.doi.org/10.1109/TVT.2024.3447060
http://dx.doi.org/10.1007/s10846-022-01756-4
http://dx.doi.org/10.1177/1729881417750787
http://dx.doi.org/10.1049/el.2014.2227
http://dx.doi.org/10.1155/2020/7498740
http://dx.doi.org/10.1163/156855308X344873
http://dx.doi.org/10.1109/TCST.2018.2834308
http://dx.doi.org/10.1016/j.robot.2018.11.007
http://dx.doi.org/10.1109/TVT.2018.2890416
http://dx.doi.org/10.1016/j.eswa.2023.120897
https://www.edrmagazine.eu/heven-drones-partners-with-roboteam-to-launch-first-ever-flying-robot
https://www.edrmagazine.eu/heven-drones-partners-with-roboteam-to-launch-first-ever-flying-robot
http://dx.doi.org/10.1016/j.engappai.2018.11.008
http://dx.doi.org/10.3390/en12071385


J. Sens. Actuator Netw. 2024, 13, 81 32 of 35

76. Hu, M.; Liu, W.; Peng, K.; Ma, X.; Cheng, W.; Liu, J.; Li, B. Joint Routing and Scheduling for Vehicle-Assisted Multi-Drone
Surveillance. IEEE Internet Things J. 2018, 6, 1781–1790. [CrossRef]

77. Yang, T.; Ren, Q.; Zhang, F.; Xie, B.; Ren, H.; Li, J.; Zhang, Y. Hybrid camera array-based UAV auto-landing on moving UGV in
GPS-denied environment. Remote Sens. 2018, 10, 1829. [CrossRef]

78. Ghasemi, A.; Parivash, F.; Ebrahimian, S. Autonomous landing of a quadrotor on a moving platform using vision-based FOFPID
control. Robotica 2022, 40, 1431–1449. [CrossRef]

79. Rodríguez Ramos, A.; Sampedro Pérez, C.; Bavle, H.; Moreno, I.; Campoy, P. A Deep Reinforcement Learning Technique for
Vision-Based Autonomous Multirotor Landing on a Moving Platform. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

80. Daly, J.; Ma, Y.; Waslander, S. Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays.
Auton. Robot. 2014, 38, 179–191. [CrossRef]

81. Shkurti, F.; Xu, A.; Meghjani, M.; Gamboa Higuera, J.C.; Girdhar, Y.; Giguère, P.; Dey, B.B.; Li, J.; Kalmbach, A.; Prahacs, C.; et al.
Multi-domain monitoring of marine environments using a heterogeneous robot team. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012.

82. Reineman, B.D.; Lenain, L.; Melville, W.K. The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric
Boundary Layer and Ocean Surface Processes. J. Atmos. Ocean. Technol. 2016, 33, 2029–2052. [CrossRef]

83. Maini, P.; Yu, K.; Sujit, P.B.; Tokekar, P. Persistent Monitoring with Refueling on a Terrain Using a Team of Aerial and Ground
Robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018.

84. Tanner, H.G. Switched UAV-UGV Cooperation Scheme for Target Detection. In Proceedings of the 2007 IEEE International
Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007.

85. Zhang, J.; Yu, Z.; Mao, S.; Periaswamy, S.C.G.; Patton, J.; Xia, X. IADRL: Imitation Augmented Deep Reinforcement Learning
Enabled UGV-UAV Coalition for Tasking in Complex Environments. IEEE Access 2020, 8, 102335–102347. [CrossRef]

86. Brotee, S.; Kabir, F.; Razzaque, M.A.; Roy, P.; Mamun-Or-Rashid, M.; Hassan, M.R.; Hassan, M.M. Optimizing UAV-UGV coalition
operations: A hybrid clustering and multi-agent reinforcement learning approach for path planning in obstructed environment.
Ad Hoc Netw. 2024, 160, 103519. [CrossRef]

87. Wang, C.; Wang, J.; Wei, C.; Zhu, Y.; Yin, D.; Li, J. Vision-Based Deep Reinforcement Learning of UAV-UGV Collaborative Landing
Policy Using Automatic Curriculum. Drones 2023, 7, 676. [CrossRef]

88. Nguyen, H.T.; Garratt, M.; Bui, L.T.; Abbass, H. Apprenticeship bootstrapping: Inverse reinforcement learning in a multi-skill
UAV-UGV coordination task. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, Stockholm, Sweden, 10–15 July 2018.

89. Ye, Z.; Wang, K.; Chen, Y.; Jiang, X.; Song, G. Multi-UAV navigation for partially observable communication coverage by graph
reinforcement learning. IEEE Trans. Mob. Comput. 2022, 22, 4056–4069. [CrossRef]

90. Kurdi, M.M.; Dadykin, A.K.; Elzein, I.; Ahmad, I.S. Proposed system of artificial Neural Network for positioning and navigation
of UAV-UGV. In Proceedings of the 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT),
Istanbul, Turkey, 18–19 April 2018.

91. Hu, D.; Gan, V.J.; Wang, T.; Ma, L. Multi-agent robotic system (MARS) for UAV-UGV path planning and automatic sensory data
collection in cluttered environments. Build. Environ. 2022, 221, 109349. [CrossRef]

92. Moon, J.; Lee, B.H. PDDL Planning with Natural Language-Based Scene Understanding for UAV-UGV Cooperation. Appl. Sci.
2019, 9, 3789. [CrossRef]

93. Balestrieri, E.; Daponte, P.; De Vito, L.; Lamonaca, F. Sensors and Measurements for Unmanned Systems: An Overview. Sensors
2021, 21, 1518. [CrossRef]

94. Zhao, Y.; Liu, C.H.; Yi, T.; Li, G.; Wu, D. Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent
Deep Reinforcement Learning with Diffusion Models. IEEE J. Sel. Areas Commun. 2024, early access. [CrossRef]

95. Ma, Z.; Xiong, J.; Gong, H.; Wang, X. Adaptive Depth Graph Neural Network-based Dynamic Task Allocation for UAV-UGVs
Under Complex Environments. IEEE Trans. Intell. Veh. 2024, early access. [CrossRef]

96. Moseley, M.; Grocholsky, B.; Cheung, C.; Singh, S. Integrated Long-range UAV/UGV Collaborative Target Tracking. In
Proceedings of the Unmanned Systems Technology XI 2009, Orlando, FL, USA, 14–17 April 2009; Volume 7332.

97. Stolfi, D.H.; Brust, M.R.; Danoy, G.; Bouvry, P. UAV-UGV-UMV multi-swarms for cooperative surveillance. Front. Robot. AI 2021,
8, 616950. [CrossRef] [PubMed]

98. Wang, Y.; Chen, W.; Luan, T.H.; Su, Z.; Xu, Q.; Li, R.; Chen, N. Task offloading for post-disaster rescue in unmanned aerial
vehicles networks. IEEE/ACM Trans. Netw. 2022, 30, 1525–1539. [CrossRef]

99. Sun, G.; He, L.; Sun, Z.; Wu, Q.; Liang, S.; Li, J.; Niyato, D.; Leung, V.C.M. Joint Task Offloading and Resource Allocation in
Aerial-Terrestrial UAV Networks with Edge and Fog Computing for Post-Disaster Rescue. IEEE Trans. Mob. Comput. 2024, 23,
8582–8600. [CrossRef]

100. Li, X.; Zhou, L.; Sun, Y.; Ulziinyam, B. Multi-task offloading scheme for UAV-enabled fog computing networks. EURASIP J. Wirel.
Commun. Netw. 2020, 2020, 1–16. [CrossRef]

101. Chen, P.; Luo, L.; Guo, D.; Luo, X.; Li, X.; Sun, Y. Secure Task Offloading for Rural Area Surveillance Based on UAV-UGV
Collaborations. IEEE Trans. Veh. Technol. 2024, 73, 923–937. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2018.2878602
http://dx.doi.org/10.3390/rs10111829
http://dx.doi.org/10.1017/S0263574721001181
http://dx.doi.org/10.1007/s10514-014-9400-5
http://dx.doi.org/10.1175/JTECH-D-15-0019.1
http://dx.doi.org/10.1109/ACCESS.2020.2997304
http://dx.doi.org/10.1016/j.adhoc.2024.103519
http://dx.doi.org/10.3390/drones7110676
http://dx.doi.org/10.1109/TMC.2022.3146881
http://dx.doi.org/10.1016/j.buildenv.2022.109349
http://dx.doi.org/10.3390/app9183789
http://dx.doi.org/10.3390/s21041518
http://dx.doi.org/10.1109/JSAC.2024.3459039
http://dx.doi.org/10.1109/TIV.2024.3457493
http://dx.doi.org/10.3389/frobt.2021.616950
http://www.ncbi.nlm.nih.gov/pubmed/33681299
http://dx.doi.org/10.1109/TNET.2022.3140796
http://dx.doi.org/10.1109/TMC.2024.3350886
http://dx.doi.org/10.1186/s13638-020-01825-y
http://dx.doi.org/10.1109/TVT.2023.3307443


J. Sens. Actuator Netw. 2024, 13, 81 33 of 35

102. Narang, M.; Xiang, S.; Liu, W.; Gutierrez, J.; Chiaraviglio, L.; Sathiaseelan, A.; Merwaday, A. UAV-assisted edge infrastructure
for challenged networks. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, 1–4 May 2007.

103. Hood, S.; Benson, K.; Hamod, P.; Madison, D.; O’Kane, J.M.; Rekleitis, I. Bird’s eye view: Cooperative exploration by UGV and
UAV. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16
June 2017.

104. Phan, C.; Liu, H.H. A cooperative UAV/UGV platform for wildfire detection and fighting. In Proceedings of the 2008 Asia
Simulation Conference—7th International Conference on System Simulation and Scientific Computing, Beijing, China, 10–12
October 2008.

105. Mondal, M.S.; Ramasamy, S.; Humann, J.D.; Dotterweich, J.M.; Reddinger, J.P.F.; Childers, M.A.; Bhounsule, P. A Robust
UAV-UGV Collaborative Framework for Persistent Surveillance in Disaster Management Applications. In Proceedings of the
2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania, Crete, Greece, 4–7 June 2024.

106. Wu, Y.; Wu, S.; Hu, X. Cooperative Path Planning of UAVs & UGVs for a Persistent Surveillance Task in Urban Environments.
IEEE Internet Things J. 2021, 8, 4906–4919.

107. Vachtsevanos, G.; Valavanis, K. Handbook of Unmanned Aerial Vehicles; Springer Publishing Company, Incorporated: New York,
NY, USA, 2015.

108. Zhang, C.; Kovacs, J. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012,
13, 693–712. [CrossRef]

109. Kavvadias, A.; Psomiadis, E.; Chanioti, M.; Gala, E.; Michas, S. Precision Agriculture—Comparison and Evaluation of Innovative
Very High Resolution (UAV) and Landsat Data. In Proceedings of the Hellenic Association for Information and Communication
Technologies in Agriculture, Food, and Environment (HAICTA), Kavala, Greece, 24–27 September 2015; pp. 376–386.

110. Lee, D.; Franchi, A.; Giordano, P.; Son, H.; Bülthoff, H. Haptic teleoperation of multiple unmanned aerial vehicles over the
internet. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May
2011; pp. 1341–1347.

111. Franchi, A.; Giordano, P.; Secchi, C.; Son, H.; Bülthoff, H. A passivity-based decentralized approach for the bilateral teleoperation
of a group of UAVs with switching topology. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 9–13 May 2011; pp. 898–905.

112. Ju, C.; Son, H. Multiple UAV Systems for Agricultural Applications: Control, Implementation, and Evaluation. Electronics 2018,
7, 162. [CrossRef]

113. Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of unmanned systems for agricultural applications: A
theoretical framework. Biosyst. Eng. 2022, 223, 61–80. [CrossRef]

114. Menendez-Aponte, P.; Garcia, C.; Freese, D.; Defterli, S.; Xu, Y. Software and Hardware Architectures in Cooperative Aerial
and Ground Robots for Agricultural Disease Detection. In Proceedings of the 2016 International Conference on Collaboration
Technologies and Systems (CTS), Orlando, FL, USA, 31 October–4 November 2016.

115. Gonzalez-de Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.; López-Granados, F.; Brandstoetter, M.; Tomic, S.D.K.; Pedrazzi, S.;
Peruzzi, A.; Pajares, G.; Kaplanis, G.; et al. Fleets of robots for environmentally-safe pest control in agriculture. Precis. Agric. 2017,
18, 574–614. [CrossRef]

116. Bhandari, S.; Raheja, A.; Green, R.L.; Do, D. Towards collaboration between unmanned aerial and ground vehicles for precision
agriculture. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping
II, Anaheim, CA, USA, 10–11 April 2017; SPIE: Bellingham, WA, USA, 2017.

117. Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A. AgriColMap: Aerial-Ground Collaborative 3D Mapping for
Precision Farming. IEEE Robot. Autom. Lett. 2019, 4, 1085–1092. [CrossRef]

118. Potena, C.; Khanna, R.; Nieto, J.I.; Nardi, D.; Pretto, A. Collaborative UAV-UGV Environment Reconstruction in Precision
Agriculture. In Proceedings of the IEEE/RSJ IROS Workshop “Vision-based Drones: What’s Next?”, Madrid, Spain, 1–5
October 2018.

119. Grassi, R.; Rea, P.; Ottaviano, E.; Maggiore, P. Application of an inspection robot composed by collaborative terrestrial and aerial
modules for an operation in agriculture. In Advances in Service and Industrial Robotics: Proceedings of the 26th International Conference
on Robotics in Alpe-Adria-Danube Region, RAAD 2017, Torino, Italy, 21–23 June 2017; Springer: Berlin/Heidelberg, Germany, 2018.

120. Ju, C.; Kim, J.; Seol, J.; Son, H. A review on multirobot systems in agriculture. Comput. Electron. Agric. 2022, 202, 107336.
[CrossRef]

121. Liu, Y.; Noguchi, N.; Liang, L. Development of a positioning system using UAV-based computer vision for an airboat navigation
in paddy field. Comput. Electron. Agric. 2019, 162, 126–133. [CrossRef]

122. Bechar, A.; Vigneault, C. Agricultural robots for field operations: Concepts and components. Biosyst. Eng. 2016, 149, 94–111.
[CrossRef]

123. Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications
Viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [CrossRef]

124. Azimi, S.; Zainal Abidin, M.S.; Emmanuel, A.; Hasan, H. Robotics and Automation in Agriculture: Present and Future
Applications. Appl. Model. Simul. 2020, 4, 130–140.

http://dx.doi.org/10.1007/s11119-012-9274-5
http://dx.doi.org/10.3390/electronics7090162
http://dx.doi.org/10.1016/j.biosystemseng.2021.11.008
http://dx.doi.org/10.1007/s11119-016-9476-3
http://dx.doi.org/10.1109/LRA.2019.2894468
http://dx.doi.org/10.1016/j.compag.2022.107336
http://dx.doi.org/10.1016/j.compag.2019.04.009
http://dx.doi.org/10.1016/j.biosystemseng.2016.06.014
http://dx.doi.org/10.1109/COMST.2016.2560343


J. Sens. Actuator Netw. 2024, 13, 81 34 of 35

125. Krishnaswamy Rangarajan, A.; Raja, P.; Pérez-Ruiz, M. Task-based agricultural mobile robots in arable farming: A review. Span.
J. Agric. Res. 2017, 15, e02R01.

126. Vandapel, N.; Donamukkala, R.; Hebert, M. Unmanned Ground Vehicle Navigation Using Aerial Ladar Data. Int. J. Robot. Res.
2006, 25, 31–51. [CrossRef]

127. Elmokadem, T. Distributed Coverage Control of Quadrotor Multi-UAV Systems for Precision Agriculture. IFAC-PapersOnLine
2019, 52, 251–256. [CrossRef]

128. Radoglou Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision
Agriculture. Comput. Netw. 2020, 172, 107148. [CrossRef]

129. Zhang, C.; Noguchi, N. Development of a multi-robot tractor system for agriculture field work. Comput. Electron. Agric. 2017,
142, 79–90. [CrossRef]

130. Conesa-Muñoz, J.; Valente, J.; Del Cerro, J.; Barrientos, A.; Ribeiro, A. A Multi-Robot Sense-Act Approach to Lead to a Proper
Acting in Environmental Incidents. Sensors 2016, 16, 1269. [CrossRef] [PubMed]

131. Niu, Z.; Deng, J.; Zhang, X.; Zhang, J.; Pan, S.; Mu, H. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle
(UAV) Images Using Deep Learning Method. Sensors 2021, 21, 4442. [CrossRef] [PubMed]

132. Duan, J.; Yu, S.; Tan, H.L.; Zhu, H.; Tan, C. A Survey of Embodied AI: From Simulators to Research Tasks. IEEE Trans. Emerg. Top.
Comput. Intell. 2022, 6, 230–244. [CrossRef]

133. Dorafshan, S.; Maguire, M. Bridge inspection: Human performance, unmanned aerial systems and automation. J. Civ. Struct.
Health Monit. 2018, 8, 443–476. [CrossRef]

134. Liu, Y.; Lin, Y.; Yeoh, J.K.; Chua, D.K.; Wong, L.W.; Ang, M.H.; Lee, W.; Chew, M.Y. Framework for automated UAV-based
inspection of external building façades. In Automating Cities: Design, Construction, Operation and Future Impact; Springer:
Berlin/Heidelberg, Germany, 2021.

135. Musarat, M.A.; Khan, A.M.; Alaloul, W.S.; Blas, N.; Ayub, S. Automated monitoring innovations for efficient and safe construction
practices. Results Eng. 2024, 22, 102057. [CrossRef]

136. Asadi, K.; Kalkunte Suresh, A.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An
integrated UGV-UAV system for construction site data collection. Autom. Constr. 2020, 112, 103068. [CrossRef]

137. Aela, P.; Chi, H.L.; Fares, A.; Zayed, T.; Kim, M. UAV-based studies in railway infrastructure monitoring. Autom. Constr. 2024,
167, 105714. [CrossRef]

138. Ramos-Hurtado, J.; Muñoz-La Rivera, F.; Mora-Serrano, J.; Deraemaeker, A.; Valero, I. Proposal for the deployment of an
augmented reality tool for construction safety inspection. Buildings 2022, 12, 500. [CrossRef]

139. Acero Molina, A.; Huang, Y.; Jiang, Y. A Review of Unmanned Aerial Vehicle Applications in Construction Management:
2016–2021. Standards 2023, 3, 95–109. [CrossRef]

140. Halder, S.; Afsari, K. Robots in Inspection and Monitoring of Buildings and Infrastructure: A Systematic Review. Appl. Sci. 2023,
13, 2304. [CrossRef]

141. Sharif Mansouri, S.; Kanellakis, C.; Fresk, E.; Kominiak, D.; Nikolakopoulos, G. Cooperative coverage path planning for visual
inspection. Control. Eng. Pract. 2018, 74, 118–131. [CrossRef]

142. Prieto, S.; Giakoumidis, N.; García de Soto, B. AutoCIS: An Automated Construction Inspection System for Quality Inspection of
Buildings. In Proceedings of the ISARC International Symposium on Automation and Robotics in Construction, Dubai, United
Arab Emirates, 2–4 November 2021.

143. Kim, P.; Park, J.; Cho, Y. As-is Geometric Data Collection and 3D Visualization through the Collaboration between UAV and UGV.
In Proceedings of the ISARC International Symposium on Automation and Robotics in Construction, Banff, AB, Canada, 21–24
May 2019.

144. Kim, P.; Price, L.; Cho, Y.; Park, J. UAV-UGV Cooperative 3D Environmental Mapping. In Proceedings of the ASCE International
Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019.

145. Khaloo, A.; Lattanzi, D.; Jachimowicz, A.; Devaney, C. Utilizing UAV and 3D Computer Vision for Visual Inspection of a Large
Gravity Dam. Front. Built Environ. 2018, 4, 386907. [CrossRef]

146. Sharif Mansouri, S.; Kanellakis, C.; Fresk, E.; Kominiak, D.; Nikolakopoulos, G. Cooperative UAVs as a tool for Aerial Inspection
of the Aging Infrastructure. In Proceedings of the Field and Service Robotics: Results of the 11th International Conference, Zurich,
Switzerland, 12–15 September 2017.

147. Yang, Y.; Hirose, S.; Debenest, P.; Guarnieri, M.; Izumi, N.; Suzumori, K. Development of a stable localized visual inspection
system for underwater structures. Adv. Robot. 2016, 30, 1415–1429. [CrossRef]

148. Shimono, S.; Matsubara, O.; Toyama, S.; Nishizawa, U.; Kato, S.; Arisumi, H. Development of underwater inspection system for
dam inspection. In Proceedings of the OCEANS 2015, Washington, DC, USA, 19–22 October 2015.

149. Ueda, T.; Hirai, H.; Fuchigami, K.; Yuki, R.; Jonghyun, A.; Yasukawa, S.; Nishida, Y.; Ishii, K.; Sonoda, T.; Higashi, K.; et al.
Inspection System for Underwater Structure of Bridge Pier. In Proceedings of the International Conference on Artificial Life and
Robotics, Oita, Japan, 10–13 January 2019.

150. Roy, S.; Baruah, D.; Hernandez, S.; Kalafatis, S. Distributed Computation and Dynamic Load balancing in Modular Edge Robotics.
In Proceedings of the 2022 Sixth IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 5–7 December 2022.

151. Zhou, J.; Mu, D.; Yang, F.; Dai, G.; Shell, D.A. A distributed approach to load balance for multi-robot task allocation. In
Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014.

http://dx.doi.org/10.1177/0278364906061161
http://dx.doi.org/10.1016/j.ifacol.2019.12.530
http://dx.doi.org/10.1016/j.comnet.2020.107148
http://dx.doi.org/10.1016/j.compag.2017.08.017
http://dx.doi.org/10.3390/s16081269
http://www.ncbi.nlm.nih.gov/pubmed/27517934
http://dx.doi.org/10.3390/s21134442
http://www.ncbi.nlm.nih.gov/pubmed/34209571
http://dx.doi.org/10.1109/TETCI.2022.3141105
http://dx.doi.org/10.1007/s13349-018-0285-4
http://dx.doi.org/10.1016/j.rineng.2024.102057
http://dx.doi.org/10.1016/j.autcon.2019.103068
http://dx.doi.org/10.1016/j.autcon.2024.105714
http://dx.doi.org/10.3390/buildings12040500
http://dx.doi.org/10.3390/standards3020009
http://dx.doi.org/10.3390/app13042304
http://dx.doi.org/10.1016/j.conengprac.2018.03.002
http://dx.doi.org/10.3389/fbuil.2018.00031
http://dx.doi.org/10.1080/01691864.2016.1218794


J. Sens. Actuator Netw. 2024, 13, 81 35 of 35

152. Mostafa, S.A.; Tang, A.Y.; Hassan, M.H.; Jubair, M.A.; Khaleefah, S.H. A Multi-Agent Ad Hoc On-Demand Distance Vector for
Improving the Quality of Service in MANETs. In Proceedings of the 2018 International Symposium on Agent, Multi-Agent
Systems and Robotics (ISAMSR), Putrajaya, Malaysia, 27 August 2018.

153. Zeiger, F.; Kraemer, N.; Schilling, K. Commanding mobile robots via wireless ad-hoc networks—A comparison of four ad-hoc
routing protocol implementations. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation,
Pasadena, CA, USA, 19–23 May 2008.

154. Henkel, D.; Brown, T.X. Delay-tolerant communication using mobile robotic helper nodes. In Proceedings of the 2008 6th
International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, Berlin,
Germany, 31 March–4 April 2008.

155. Queralta, J.P.; Qingqing, L.; Zou, Z.; Westerlund, T. Enhancing Autonomy with Blockchain and Multi-Access Edge Computing in
Distributed Robotic Systems. In Proceedings of the 2020 Fifth International Conference on Fog and Mobile Edge Computing
(FMEC), Paris, France, 20–23 April 2020.

156. Downs, A.; Madhavan, R.; Hong, T.T. Registration of range data from unmanned aerial and ground vehicles. In Proceedings of
the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2003.

157. Forster, C.; Pizzoli, M.; Scaramuzza, D. Air-ground localization and map augmentation using monocular dense reconstruction. In
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013.

158. Surmann, H.; Berninger, N.; Worst, R. 3D mapping for multi hybrid robot cooperation. In Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 1–24 September 2017.

159. Garzón, M.; Valente, J.; Zapata, D.; Barrientos, A. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in
Large Outdoor Areas. Sensors 2013, 13, 1247–1267. [CrossRef] [PubMed]

160. Wang, C.; Wang, J.; Ma, Z.; Xu, M.; Qi, K.; Ji, Z.; Wei, C. Integrated Learning-based Framework for Autonomous Quadrotor UAV
Landing on a Collaborative Moving UGV. IEEE Trans. Veh. Technol. 2024, 73, 16092–16107. [CrossRef]

161. Wang, J.; Yang, K.; Wu, B.; Wang, J. Cooperative Path Planning for Persistent Surveillance in Large-Scale Environment with
UAV-UGV System. IEEJ Trans. Electr. Electron. Eng. 2024, 19, 1987–2001. [CrossRef]

162. Zhou, Y.; Jin, Z.; Shi, H.; Shi, L.; Lu, N.; Dong, M. Enhanced Emergency Communication Services for Post–Disaster Rescue:
Multi-IRS Assisted Air-Ground Integrated Data Collection. IEEE Trans. Netw. Sci. Eng. 2024, 11, 4651–4664. [CrossRef]

163. Gong, J.; Chang, T.H.; Shen, C.; Chen, X. Flight time minimization of UAV for data collection over wireless sensor networks.
IEEE J. Sel. Areas Commun. 2018, 36, 1942–1954. [CrossRef]

164. El Debeiki, M.; Al-Rubaye, S.; Perrusquía, A.; Conrad, C.; Flores-Campos, J.A. An Advanced Path Planning and UAV Relay
System: Enhancing Connectivity in Rural Environments. Future Internet 2024, 16, 89. [CrossRef]

165. Messaoudi, K.; Baz, A.; Oubbati, O.S.; Rachedi, A.; Bendouma, T.; Atiquzzaman, M. UGV Charging Stations for UAV-Assisted
AoI-Aware Data Collection. IEEE Trans. Cogn. Commun. Netw. 2024, early access. [CrossRef]

166. Khan, A.I.; Al-Mulla, Y. Unmanned aerial vehicle in the machine learning environment. Procedia Comput. Sci. 2019, 160, 46–53.
[CrossRef]

167. Sai, S.; Garg, A.; Jhawar, K.; Chamola, V.; Sikdar, B. A comprehensive survey on artificial intelligence for unmanned aerial
vehicles. IEEE Open J. Veh. Technol. 2023, 4, 713–738. [CrossRef]

168. O’Mahony, N.; Campbell, S.; Krpalkova, L.; Riordan, D.; Walsh, J.; Murphy, A.; Ryan, C. Deep learning for visual navigation of
unmanned ground vehicles: A review. In Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK,
21–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s130101247
http://www.ncbi.nlm.nih.gov/pubmed/23337332
http://dx.doi.org/10.1109/TVT.2024.3425755
http://dx.doi.org/10.1002/tee.24157
http://dx.doi.org/10.1109/TNSE.2024.3432746
http://dx.doi.org/10.1109/JSAC.2018.2864420
http://dx.doi.org/10.3390/fi16030089
http://dx.doi.org/10.1109/TCCN.2024.3394859
http://dx.doi.org/10.1016/j.procs.2019.09.442
http://dx.doi.org/10.1109/OJVT.2023.3316181

	Introduction
	Multi-UAV and Multi-UGV Systems
	Aerial and Ground Collaborative Systems
	Communication and Coordination in UAV-UGV Collaborative Systems
	Communication Technologies
	Coordination Mechanisms
	UAVs Serving as Sensors and UGVs as Actuators or Decision Makers
	UAVs Serving as Auxiliary Facilities and UGVs as Actuators
	UAVs Serving as Sensors and UGVs as Auxiliary Facilities
	UAVs Serving as Actuators and UGVs as Auxiliary Facilities
	UAVs and UGVs Functioning as Sensors

	Advanced Learning Based Techniques for UAV-UGV Cooperative Optimization

	Collaborative Tasks and Applications
	Surveillance and Monitoring
	Agriculture
	Infrastructure Inspection

	Limitations and Challenges of Air-Ground Collaboration
	Discussion
	Conclusions
	References

